F A S C I C U L I M A T H E M A T I C I

Nr 41

Abdelkrim Aliouche and Valeriu Popa

COINCIDENCE AND COMMON FIXED POINT THEOREMS VIA R-WEAK COMMUTATIVITY OF TYPE $\left(A_{T}\right)$

Abstract

We prove common fixed point theorems for two pairs of hybrid mappings satisfying implicit relations in complete metric spaces using the concept of R-weak commutativity of type A_{T} and we correct errors of [1], [3] and [8]. Our theorems generalize results of [1-3], [8], [12-16] and [21]. KEY words: hybrid mappings, common fixed point, R-weakly commuting of type A_{T}, metric space.

AMS Mathematics Subject Classification: 54H25, 47H10.

1. Introduction and preliminaries

Let (X, d) be a metric space. For $x \in X$ and $A \subset X, D(x, A)=\inf \{d(x, y)$, $y \in A\}$.

Let $C B(X)$ be the set of all nonempty closed and bounded subsets of X. Let H be the Hausdorff metric with respect to d defined by

$$
H(A, B)=\max \left\{\sup _{a \in A} D(a, B), \sup _{b \in B} D(A, b)\right\} \quad \text { for all } A, B \in C B(X)
$$

It is well known that $(C B(X), H)$ is a metric space and if (X, d) is complete, then $(C B(X), H)$ is also complete

Lemma 1 ([9]). If $A, B \in C B(X)$ and $k>1$, then for each $a \in A$, there exists $b \in B$ such that $d(a, b) \leq k H(A, B)$.

Let $f: X \rightarrow X$ be a single-valued mapping and $T: X \rightarrow C B(X)$ be a multi-valued mapping.

Definition 1. 1) A point $x \in X$ is said to be a coincidence point of f and T if $f x \in T x$. We denote by $C(f, T)$ the set of all coincidence points of f and T.
2) A point $x \in X$ is a fixed point of T if $x \in T x$.

Definition 2. 1) f and T are said to be commuting [4] in X if for all $x \in X, f T x=T f x$.
2) f and T are said to be weakly commuting on X [17, 18] if for all $x \in X, f T x \in C B(X)$ and

$$
H(f T x, T f x) \leq D(f x, T x)
$$

3) f and T are said to be compatible [5, 7] if for all $x \in X, f T x \in C B(X)$ and

$$
\lim _{n \rightarrow \infty} H\left(f T x_{n}, T f x_{n}\right)=0
$$

whenever $\left\{x_{n}\right\}$ is a sequence in X such that $\lim _{n \rightarrow \infty} f x_{n}=t \in A=\lim _{n \rightarrow \infty} T x_{n}$ for some $t \in X$ and $A \in C B(X)$.

Commuting implies weakly commuting implies compatible, but the converse is not true in general. See [7].

Let $T: X \rightarrow X$ be a single-valued mapping and $F: X \rightarrow C B(X)$ be a multi-valued mapping.

Definition 3 ([10], [19]). 1) T and F are said to be R-weakly commuting at $x \in X$ if $T F x \in C B(X)$ and there exists an $R>0$ such that

$$
\begin{equation*}
H(T F x, F T x) \leq R D(T x, F x) \tag{1}
\end{equation*}
$$

2) T and F are said to be pointwise R-weakly commuting on X if for all $x \in X, T F x \in C B(X)$ and (1) holds for some $R>0$.

Definition 4 ([6]). T and F are said to be R-weakly commuting of type $\left(A_{T}\right)$ at $x \in X$ if there exists an $R>0$ such that

$$
\begin{equation*}
D(T T x, F T x) \leq R D(T x, F x) \tag{2}
\end{equation*}
$$

T and F are said to be R-weakly commuting of type $\left(A_{T}\right)$ on X if for all $x \in X$, (2) holds.

Remark 1. If F is a single-valued mapping, then the definition of R-weak commutativity of type $\left(A_{T}\right)$ reduces to that of Pathak et. al [11].

If T and F are compatible, then they are R-weakly commuting of type $\left(A_{T}\right)$, but the converse is not true in general, see [6].

The following theorem was proved by [8].
Theorem 1. Let (X, d) be a complete metric space, $S, T: X \rightarrow X$ and $F, G: X \rightarrow C B(X)$ satisfying

$$
\begin{equation*}
F(X) \subset S(X) \quad \text { and } \quad G(X) \subset T(X) \tag{3}
\end{equation*}
$$

(4) The pairs (T, F) and (S, G) are R-weakly commuting of type $\left(A_{T}\right)$ at their coincidence points.

$$
\begin{equation*}
H(F x, G y) \leq a \frac{D^{2}(F x, S y)+D^{2}(G y, T x)}{D(F x, S y)+D(G y, T x)}+b d(T x, S y) \tag{5}
\end{equation*}
$$

for all $x, y \in X, x \neq y, F x \neq F y$ and $G x \neq G y$, where $a, b>0$ and $a+2 b<1$, whenever $D(F x, S y)+D(G y, T x) \neq 0$ and $H(F x, G y)=0$ whenever $D(F x, S y)+D(G y, T x)=0$. Then, there exists $z \in X$ such that $z=T z=S z \in F z \cap G z$.

This theorem generalizes Theorems 3.1 and 3.2 of [1].
In [13] and [14], the study of fixed points for mappings satisfying implicit relations was introduced and the study of a pair of hybrid mappings satisfying implicit relations was initiated in [15].

It is our purpose in this paper to prove coincidence and common fixed point theorems for two pairs of hybrid mappings satisfying implicit relations using the concept of R-weak commutativity of type A_{T} which generalize the results of [1-3], [8], [12-16] and [21].

2. Implicit relations

Let Φ_{6} the family of all real continuous mappings $\phi\left(t_{1}, t_{2}, t_{3}, t_{4}, t_{5}, t_{6}\right)$: $\mathbb{R}_{+}^{6} \rightarrow \mathbb{R}$ satisfying the following conditions:
$\left(\phi_{1}\right): \phi$ is increasing in variable t_{1} and decreasing in variables t_{3}, t_{4}, t_{5} and t_{6}.
$\left(\phi_{2}\right)$: there exists $0 \leq h<1$ and $k>1$ such that
$\left(\phi_{a}\right): u \leq k t$ and $\phi(t, v, v, u, u+v, 0) \leq 0$ or
$\left(\phi_{b}\right): u \leq k t$ and $\phi(t, v, u, v, 0, u+v) \leq 0$
implies $u \leq h v$.
Example 1. $\phi\left(t_{1}, t_{2}, t_{3}, t_{4}, t_{5}, t_{6}\right)=t_{1}-a t_{2}-b\left(t_{3}+t_{4}\right)-c\left(t_{5}+t_{6}\right)$, $a, c>0, b \geq 0$ and $a+2 b+2 c<1$.
$\left(\phi_{1}\right)$: Obviously.
$\left(\phi_{2}\right):$ Let $1<k<\frac{1}{a+2 b+2 c}, u \leq k t$ and $\phi(t, v, v, u, u+v, 0)=$ $t-a v-b(v+u)-c(u+v) \leq 0$. Then, $u \leq k t \leq k a v+k b(v+u)+k c(u+v)]$ and so $u \leq h v$, where $h=\frac{k(a+b+c)}{1-(k b+k c)}<1$. Similarly, $u \leq k t$ and $\phi(t, v, u, v, 0, u+v) \leq 0$ implies $u \leq h v$.

Example 2. $\phi\left(t_{1}, t_{2}, t_{3}, t_{4}, t_{5}, t_{6}\right)=t_{1}-a \max \left\{t_{2}, t_{3}, t_{4}, \frac{t_{5}+t_{6}}{2}\right\}, 0<$ $a<1$.
$\left(\phi_{1}\right)$: Obviously.
$\left(\phi_{2}\right):$ Let $1<k<\frac{1}{a}, u \leq k t$ and $\phi(t, v, v, u, u+v, 0)=t-a \max \{v, u$, $\left.\frac{u+v}{2}\right\} \leq 0$. Then, $u \leq k t \leq k a \max \left\{v, u, \frac{u+v}{2}\right\}=k a \max \{v, u\}$. If $u>0$ and $u \geq v$, it follows that $u \leq k a u<u$ which is a contradiction and so $u \leq h v$, where $h=k a<1$. If $u=0$, therefore $u \leq h v$. Similarly, $u \leq k t$ and $\phi(t, v, u, v, 0, u+v) \leq 0$ implies $u \leq h v$.

Example 3. $\phi\left(t_{1}, t_{2}, t_{3}, t_{4}, t_{5}, t_{6}\right)=t_{1}-a \max \left\{t_{2}^{2}, t_{3} t_{4}, t_{5} t_{6}, t_{3} t_{5}, t_{4} t_{6}\right\}^{\frac{1}{2}}$, $0<a<\frac{1}{\sqrt{2}}$.
$\left(\phi_{1}\right)$: Obviously.
$\left(\phi_{2}\right):$ Let $1<k<\frac{1}{a \sqrt{2}}, u \leq k t$ and $\phi(t, v, v, u, u+v, 0)=t-$ $a \max \left\{v^{2}, u v, v(u+v)\right\}^{\frac{1}{2}} \leq 0$. Then, $u \leq k t \leq k a \max \left\{v^{2}, u v, v(u+v)\right\}^{\frac{1}{2}}$. If $u>0$ and $u \geq v$, it follows that $u \leq k a \sqrt{2} u<u$ which is a contradiction and so $u \leq h v$, where $h=k a \sqrt{2}<1$. If $u=0$, therefore $u \leq h v$. Similarly, $u \leq k t$ and $\phi(t, v, u, v, 0, u+v) \leq 0$ implies $u \leq h v$.

Example 4. $\phi\left(t_{1}, t_{2}, t_{3}, t_{4}, t_{5}, t_{6}\right)=t_{1}^{2}+\frac{t_{1}}{1+t_{5} t_{6}}-a t_{2}^{2}-b t_{3}^{2}-c t_{4}^{2}, a>0$, $b, c \geq 0$ and $a+b+c<1$.
$\left(\phi_{1}\right)$: Obviously.
$\left(\phi_{2}\right):$ Let $1<k<\frac{1}{\sqrt{a+b+c}}, u \leq k t$ and $\phi(t, v, v, u, u+v, 0)=t^{2}+$ $t-a v^{2}-b v^{2}-c u^{2} \leq 0$. Then, $t^{2} \leq a v^{2}+b v^{2}+c u^{2}$ and $u^{2} \leq k^{2} t^{2} \leq$ $k^{2}\left(a v^{2}+b v^{2}+c u^{2}\right)$. It follows that $u \leq h_{1} v$, where $h_{1}=k \sqrt{\frac{a+b}{1-k^{2} c}}<1$. Similarly, $u \leq k t$ and $\phi(t, v, u, v, 0, u+v) \leq 0$ implies $u \leq h_{2} v$, where $h_{2}=k \sqrt{\frac{a+c}{1-k^{2} b}}<1$. If $h=\max \left\{h_{1}, h_{2}\right\}$, then $u \leq h v$.

Example 5. $\phi\left(t_{1}, t_{2}, t_{3}, t_{4}, t_{5}, t_{6}\right)=t_{1}^{p}-\max \left\{a t_{2} t_{3}^{p-1}, a t_{2}^{p-1} t_{4}, a t_{3}^{p-1} t_{4}\right.$, $\left.c t_{5}^{p-1} t_{6}\right\}, p \geq 2,0<a<1$ and $c \geq 0$.
$\left(\phi_{1}\right)$: Obviously.
$\left(\phi_{2}\right):$ Let $1<k<\frac{1}{\sqrt[p]{a}}, u \leq k t$ and $\phi(t, v, v, u, u+v, 0)=t^{p}-$ $\max \left\{a v^{p}, a v^{p-1} u\right\} \leq 0$. Then, $u^{p} \leq k^{p} t^{p} \leq k^{p} \max \left\{a v^{p}, a v^{p-1} u\right\}$. If $u>0$ and $u \geq v$, it follows that $u^{p} \leq a k^{p} u^{p}<u^{p}$ which is a contradiction and so $u \leq h v$, where $h=k \sqrt[p]{a}<1$. If $u=0$, therefore $u \leq h v$. Similarly, $u \leq k t$ and $\phi(t, v, u, v, 0, u+v) \leq 0$ implies $u \leq h v$.

Example 6. $\phi\left(t_{1}, t_{2}, t_{3}, t_{4}, t_{5}, t_{6}\right)=t_{1}-b\left[a \max \left\{t_{2}, t_{3}, t_{4}, \frac{t_{5}+t_{6}}{2}\right\}-(1-\right.$ a) $\left.\max \left\{t_{2}^{2}, t_{3} t_{4}, t_{5} t_{6}, \frac{1}{2} t_{3} t_{6}, \frac{1}{2} t_{4} t_{5}\right\}^{\frac{1}{2}}\right], 0<b<1$ and $0 \leq a<1$.
$\left(\phi_{1}\right)$: Obviously.
$\left(\phi_{2}\right):$ Let $1<k<\frac{1}{b}, u \leq k t$ and $\phi(t, v, v, u, u+v, 0)=t-b[a \max \{v, u$, $\left.\left.\frac{u+v}{2}\right\}-(1-a) \max \left\{v^{2}, u v, \frac{1}{2} u(u+v)\right\}^{\frac{1}{2}}\right] \leq 0$. Then, $u \leq k t \leq k b[a \max \{v, u$, $\left.\left.\frac{u+v}{2}\right\}+(1-a) \max \left\{v^{2}, u v, \frac{1}{2} u(u+v)\right\}^{\frac{1}{2}}\right]$. If $u>0$ and $u \geq v$, it follows that $u \leq k b u<u$ which is a contradiction and so $u \leq h v$, where $h=k b<1$. If $u=0$, therefore $u \leq h v$. Similarly, $u \leq k t$ and $\phi(t, v, u, v, 0, u+v) \leq 0$ implies $u \leq h v$.

Example 7. $\phi\left(t_{1}, t_{2}, t_{3}, t_{4}, t_{5}, t_{6}\right)=t_{1}-a t_{2}-b \frac{t_{5}^{2}+t_{6}^{2}}{t_{5}+t_{6}}-c\left(t_{3}+t_{4}\right), t_{5}+t_{6} \neq$ $0, a, b>0, c \geq 0$ and $a+2 b+2 c<1$.

Example 8. $\phi\left(t_{1}, t_{2}, t_{3}, t_{4}, t_{5}, t_{6}\right)=t_{1}-a t_{2}-b \frac{t_{3}^{2}+t_{4}^{2}}{t_{3}+t_{4}}-c\left(t_{5}+t_{6}\right), t_{3}+t_{4} \neq$ $0, a, b, c>0$ and $a+2 b+2 c<1$.

They follow as in Example 1 since $\frac{t_{5}^{2}+t_{6}^{2}}{t_{5}+t_{6}} \leq t_{5}+t_{6}$ and $\frac{t_{3}^{2}+t_{4}^{2}}{t_{3}+t_{4}} \leq t_{3}+t_{4}$ if $t_{5}+t_{6} \neq 0$ and $t_{3}+t_{4} \neq 0$.

3. Main results

Theorem 2. Let (X, d) be a metric space, $S, T: X \rightarrow X$ and F, G : $X \rightarrow C B(X)$ satisfying (3)

$$
\begin{align*}
\phi(H(F x, G y), d(T x, S y), D(T x, F x), & D(S y, G y) \tag{6}\\
& D(T x, G y), D(S y, F x)) \leq 0
\end{align*}
$$

for all $x, y \in X$, where $\phi \in \Phi_{6}$, whenever $D(T x, G y)+D(S y, F x) \neq 0$ and $H(F x, G y)=0$ whenever $D(T x, G y)+D(S y, F x)=0$. Suppose that one of $S(X)$ or $T(X)$ is complete. Then
a) there exists $q, p \in X$ such that $T q \in F q$ and $S p \in G p$.

Further, if the pair (T, F) is R-weakly commuting of type $\left(A_{T}\right)$ and (S, G) is R-weakly commuting of type $\left(A_{S}\right)$ at their coincidence points,
b) there exists $z \in X$ such that $T z \in F z$ and $S z \in G z$.
c) In the case (b), if $S z=T z$, then $S z=T z \in F z \cap G z$.
d) In the case (c), if $S z=T z=z$, then z is a common fixed point of S, T, F and G.

Proof. First, assume that there exists $q, p \in X$ such that $D(S p, F q)+$ $D(T q, G p)=0$. So, $D(S p, F q)=0$ and $D(T q, G p)=0$ which implies that $S p \in F q$ and $T q \in G p$. Since $H(F q, G p)=0$, it follows that $D(T q, F q) \leq$ $H(F q, G p)=0$ and hence $T q \in F q$. In a similar manner, we get $S p \in G p$.

Now, assume that $D(T x, G y)+D(S y, F x) \neq 0$ for all $x, y \in X$. Let $x_{0} \in X$ be an arbitrary point. By (3) and Lemma 1 , we define a sequence $\left\{y_{n}\right\}$ in X by

$$
y_{2 n}=T x_{2 n} \in G x_{2 n-1}, \quad y_{2 n+1}=S x_{2 n+1} \in F x_{2 n}
$$

and

$$
\begin{aligned}
d\left(y_{2 n}, y_{2 n+1}\right) & \leq k H\left(F x_{2 n}, G x_{2 n-1}\right), \\
d\left(y_{2 n+1}, y_{2 n+2}\right) & \leq k H\left(F x_{2 n}, G x_{2 n+1}\right), \text { for } n=1,2, \ldots
\end{aligned}
$$

Using (6) and (ϕ_{1}), we have

$$
\begin{aligned}
0 \geq & \phi\left(H\left(F x_{2 n}, G x_{2 n-1}\right), d\left(T x_{2 n}, S x_{2 n-1}\right), D\left(T x_{2 n}, F x_{2 n}\right)\right. \\
& \left.D\left(S x_{2 n-1}, G x_{2 n-1}\right), D\left(T x_{2 n}, G x_{2 n-1}\right), D\left(S x_{2 n-1}, F x_{2 n}\right)\right) \\
\geq & \phi\left(H\left(F x_{2 n}, G x_{2 n-1}\right), d\left(y_{2 n-1}, y_{2 n}\right), d\left(y_{2 n}, y_{2 n+1}\right)\right. \\
& \left.d\left(y_{2 n-1}, y_{2 n}\right), 0, d\left(y_{2 n-1}, y_{2 n+1}\right)\right) \\
\geq & \phi\left(H\left(F x_{2 n}, G x_{2 n-1}\right), d\left(y_{2 n-1}, y_{2 n}\right), d\left(y_{2 n}, y_{2 n+1}\right)\right. \\
& \left.d\left(y_{2 n-1}, y_{2 n}\right), 0, d\left(y_{2 n-1}, y_{2 n}\right)+d\left(y_{2 n}, y_{2 n+1}\right)\right) .
\end{aligned}
$$

By $\left(\phi_{b}\right)$, we obtain

$$
d\left(y_{2 n}, y_{2 n+1}\right) \leq h d\left(y_{2 n-1}, y_{2 n}\right)
$$

In the same manner, applying (6) we get

$$
\begin{aligned}
& 0 \geq \phi\left(H\left(F x_{2 n}, G x_{2 n+1}\right), d\left(T x_{2 n}, S x_{2 n+1}\right), D\left(T x_{2 n}, F x_{2 n}\right)\right. \\
&\left.D\left(S x_{2 n+1}, G x_{2 n+1}\right), D\left(T x_{2 n}, G x_{2 n+1}\right), D\left(S x_{2 n+1}, F x_{2 n}\right)\right) \\
& \geq \phi\left(H\left(F x_{2 n}, G x_{2 n+1}\right), d\left(y_{2 n}, y_{2 n+1}\right), d\left(y_{2 n}, y_{2 n+1}\right),\right. \\
&\left.d\left(y_{2 n+1}, y_{2 n+2}\right), d\left(y_{2 n}, y_{2 n+2}\right), 0\right) \\
& \geq \phi\left(H\left(F x_{2 n}, G x_{2 n+1}\right), d\left(y_{2 n}, y_{2 n+1}\right), d\left(y_{2 n}, y_{2 n+1}\right),\right. \\
&\left.d\left(y_{2 n+1}, y_{2 n+2}\right), d\left(y_{2 n}, y_{2 n+1}\right)+d\left(y_{2 n+1}, y_{2 n+2}\right), 0\right) .
\end{aligned}
$$

Therefore

$$
d\left(y_{2 n+1}, y_{2 n+2}\right) \leq h d\left(y_{2 n}, y_{2 n+1}\right)
$$

and so

$$
d\left(y_{n}, y_{n+1}\right) \leq h d\left(y_{n-1}, y_{n}\right)
$$

Then, $\left\{y_{n}\right\}$ is a Cauchy sequence in X. Assume that $S(X)$ is complete. Then, $\left\{y_{2 n+1}\right\}$ converges to $z \in S(X)$ and so there exists $p \in X$ such that $z=S p$. Also, $\left\{y_{2 n}\right\}$ converges to z since

$$
d\left(y_{2 n}, z\right) \leq d\left(y_{2 n}, y_{2 n+1}\right)+d\left(y_{2 n+1}, z\right)
$$

Applying (6) and (ϕ_{1}) we have

$$
\begin{gather*}
0 \geq \phi\left(H\left(F x_{2 n}, G p\right), d\left(T x_{2 n}, S p\right), D\left(T x_{2 n}, F x_{2 n}\right),\right. \tag{7}\\
\left.D(S p, G p), D\left(T x_{2 n}, G p\right), D\left(S p, F x_{2 n}\right)\right) \\
\geq \phi\left(D\left(y_{2 n+1}, G p\right), d\left(y_{2 n}, z\right), d\left(y_{2 n}, y_{2 n+1}\right),\right. \\
\left.D(S p, G p), D\left(y_{2 n}, G p\right), d\left(S p, y_{2 n+1}\right)\right) .
\end{gather*}
$$

Letting $n \rightarrow \infty$ we get

$$
\phi(D(S p, G p), 0,0, D(S p, G p), D(S p, G p), 0) \leq 0
$$

By $\left(\phi_{a}\right)$ we obtain $S p \in G p$. As $G(X) \subset T(X)$, there exists $q \in X$ such that $z=S p=T q$.

Using (6) and (ϕ_{1}) we have

$$
\begin{align*}
& 0 \geq \phi\left(H\left(F q, G x_{2 n-1}\right), d\left(T q, S x_{2 n-1}\right), D(T q, F q)\right. \tag{8}\\
&\left.D\left(S x_{2 n-1}, G x_{2 n-1}\right), D\left(T q, G x_{2 n-1}\right), D\left(S x_{2 n-1}, F q\right)\right) \\
& \geq \quad \phi\left(D\left(F q, y_{2 n}\right), d\left(T q, y_{2 n-1}\right), D(T q, F q),\right. \\
&\left.d\left(y_{2 n-1}, y_{2 n}\right), d\left(T q, y_{2 n}\right), D\left(y_{2 n-1}, F q\right)\right) .
\end{align*}
$$

Letting $n \rightarrow \infty$ we get

$$
\phi(D(F q, T q), 0, D(F q, T q), 0,0, D(F q, T q)) \leq 0
$$

By $\left(\phi_{b}\right)$ we obtain $T q \in F q$. Since T and F are R-weakly commuting of type $\left(A_{T}\right)$ at $q \in C(F, T)$, there exists an $R>0$ such that $D(T T q, F T q) \leq$ $R D(T q, F q)$ and so $T z \in F z$. In the same manner, $S z \in G z$. If $S z=T z$, then $S z=T z \in F z \cap G z$ and if $S z=T z=z$, then z is a common fixed point of S, T, F and G.

Suppose that $T(X)$ is complete. Therefore, $\left\{y_{2 n}\right\}$ converges to $z \in T(X)$ and so there exists $q \in X$ such that $z=T q$. Applying (6) and $\left(\phi_{1}\right)$ we have the inequality (8). Letting $n \rightarrow \infty$ we get

$$
\phi(D(F q, T q), 0, D(F q, T q), 0,0, D(F q, T q)) \leq 0
$$

By $\left(\phi_{b}\right)$ we obtain $T q \in F q$. As $F(X) \subset S(X)$, there exists $p \in X$ such that $z=S p=T q$.

Using (6) and (ϕ_{1}) we get the inequality (7). Letting $n \rightarrow \infty$ we get

$$
\phi(D(S p, G p), 0,0, D(S p, G p), D(S p, G p), 0) \leq 0
$$

By $\left(\phi_{a}\right)$ we obtain $S p \in G p$. The rest of the proof follows as in the case $S(X)$ is complete.

Corollary 1. Let (X, d) be a metric space, $S, T: X \rightarrow X$ and F, G : $X \rightarrow C B(X)$ satisfying (3) and

$$
\begin{aligned}
H(F x, G y) \leq & a d(T x, S y)+b(D(T x, F x)+D(S y, G y)) \\
& +c(D(T x, G y)+D(S y, F x))
\end{aligned}
$$

for all $x, y \in X$, where $a, c>0, b \geq 0$ and $a+2 b+2 c<1$. Suppose that one of $S(X)$ or $T(X)$ is complete. Then, (a) holds. Further, if the pair (T, F) is R-weakly commuting of type $\left(A_{T}\right)$ and (S, G) is R-weakly commuting of type $\left(A_{S}\right)$ at their coincidence points, therefore the conclusions (b), (c) and (d) of Theorem 2 hold.

Proof. It follows from Theorem 2 and Example 1.
Remark 2. In Theorems of [1] and [8], to prove that $z=T z$, the authors used: " $T x_{2 n} \in G x_{2 n-1}$ and $T z \in F z$ implies that $d\left(T x_{2 n}, T z\right) \leq$ $H\left(G x_{2 n-1}, F z\right) "$ which is false because " $a \in A$ and $b \in B$ implies $d(a, b) \leq$ $H(A, B)$ " is not true in general as it shown by the following example.

Example 9. Let $d(x, y)=|x-y|, A=\left[0, \frac{1}{2}\right]$ and $B=\left[\frac{1}{4}, 1\right]$. We have $0 \in A$ and $1 \in B$, but $d(0,1)=1>H(A, B)=\frac{1}{2}$. Therefore, Theorem 1.7 of [8] is false as it is proved by the following example.

Example 10. Let $(X, d)=([1, \infty),|\cdot|), S x=T x=x^{2}+1$ and $F x=$ $G x=[2, x+3]$ for all $x \in X$. It is easy to verify that for all $x, y \in X$

$$
d(S x, S y)=\left|x^{2}-y^{2}\right| \geq 2|x-y|=H(F x, F y)
$$

and hence

$$
\begin{aligned}
H(F x, F y) & \leq \frac{1}{2} d(T x, T y) \\
& \leq \frac{1}{2} d(T x, T y)+\frac{1}{8} \frac{D^{2}(T y, F x)+D^{2}(T x, F y)}{D(T y, F x)+D(T x, F y)}
\end{aligned}
$$

if $D(T y, F x)+D(T x, F y) \neq 0$ and the other conditions of Theorem 1.7 of [8] are satisfied, but S and F have no common fixed point.

The following corollary is the correct form of Theorem 1.7 of [8].
Corollary 2. Let (X, d) be a complete metric space, $T, S: X \rightarrow X$ and $F, G: X \rightarrow C B(X)$ satisfying (3) and

$$
H(F x, G y) \leq a d(T x, S y)+c \frac{D^{2}(S y, F x)+D^{2}(T x, G y)}{D(S y, F x)+D(T x, G y)}
$$

for all $x, y \in X$, where $a, c>0$ and $a+2 c<1$, whenever $D(T x, G y)+$ $D(S y, F x) \neq 0$ and $H(F x, G y)=0$ whenever $D(T x, G y)+D(S y, F x)=0$. Then, (a) holds. Further, if the pair (T, F) is R-weakly commuting of type $\left(A_{T}\right)$ and (S, G) is R-weakly commuting of type $\left(A_{S}\right)$ at their coincidence points, therefore the conclusions (b), (c) and (d) of Theorem 2 hold.

Proof. It follows from the fact that $\frac{D^{2}(S y, F x)+D^{2}(T x, G y)}{D(S y, F x)+D(T x, G y)} \leq D(S y$, $F x)+D(T x, G y)$ if $D(T x, G y)+D(S y, F x) \neq 0$ and Corollary 1.

Remark 3. In [16] Remark 3 and [8] Remark 5, we have: "the conditions in the hypothesis of Theorem 3.1 of [1] and Theorem 1.7 of [8], $x \neq y, F x \neq$ $F y$ and $G x \neq G y$ are necessary since the theorem fails for F and G taken as constant mappings". This is demonstrated by the following example.

Example 11. Let $X=\{0,1\}, T x=1-x$ and $F x=G x=\{0,1\}$ for all $x \in X$. It is easy to verify that the mappings satisfy all the hypothesis except $x \neq y, F x \neq F y$.

Remark 4. 1) In Example 11, we have $T(0) \in F(0)$ and $T(1) \in F(1)$; i.e., T and F have coincidence points. Since $T^{2}(0) \neq T(0)$ and $T^{2}(1) \neq T(1)$, T and F have no common fixed point
2) In theorems of [1], [3] and [8], $x \neq y, F x \neq F y$ and $G x \neq G y$ are not necessary as it is shown by the following example.
3) In Theorem 1 of [21], S and g are compatible should be the pairs (S, f) and (T, G) are compatible and in Corollary $2, g$ should be replaced by f and the pair (S, f) is compatible should be added.
4) In [16], the authors made the following remark. It is not yet known whether their theorem remains true if one of the mappings f and T is not continuous and Theorem 2 of [20] yields that the answer is affirmative.

Example 12. Let $X=\left\{0,1, \frac{1}{2}\right\}, T x=1-x$ and $F x=G x=\left\{0, \frac{1}{2}, 1\right\}$ for all $x \in X$. It is easy to verify that the mappings satisfy the conditions of theorems of [1], [3] and [8] except $x \neq y, F x \neq F y$, but $T\left(\frac{1}{2}\right)=\frac{1}{2} \in F\left(\frac{1}{2}\right)$ and so $\frac{1}{2}$ is a common fixed point of T and F.

As $x \neq y, F x \neq F y$ and $G x \neq G y$ are not necessary, it follows that theorem of [1] and Theorems 3.2 and 3.3 of [3] part (a) are false, it suffices to take Example 3.8 for [1] and $X=\{0,1\}, T x=1-x, S x=I x=J x=x$ and $F x=G x=\{0,1\}$ for all $x \in X$ for [3].

We can also prove the following theorem which generalizes Theorems 3.2 and 3.3 of [3].

Theorem 3. Let (X, d) be a metric space, $S, T, f, g: X \rightarrow X$ and $F, G: X \rightarrow C B(X)$ satisfying

$$
\begin{aligned}
F(X) \subset T g(X) \quad \text { and } \quad G(X) \subset S f(X) \\
\phi(H(F x, G y), d(S f x, T g y), D(S f x, F x), D(T g y, G y), \\
D(S f x, G y), D(F x, T g y)) \leq 0
\end{aligned}
$$

for all $x, y \in X$, where $\phi \in \Phi_{6}$, whenever $D(S f x, G y)+D(F x, T g y) \neq 0$ and $H(F x, G y)=0$ whenever $D(S f x, G y)+D(F x, T g y)=0$. Suppose that one of $S(X)$ or $T(X)$ is complete. Then
a) There exists $p, q \in X$ such that $S f p \in F p$ and $T g q \in G q$.

Further, if $(S f, F)$ is R-weakly commuting of type $A_{S f}$ and $(T g, G)$ is R-weakly commuting of type $A_{T g}$ at their coincidence points, therefore
b) There exists $z \in X$ such that $S f z \in F z$ and $T g z \in G z$.
c) In the case (b), if $S f z=T g z$, then $S f z=T g z \in F z \cap G z$.
d) In the case (c), if $S f z=T g z=z,(S, f),(S f, S),(T, g),(T g, T)$ commute, $S^{2} z=S z, f^{2} z=f z, T^{2} z=T z$ and $g^{2} z=g z$, then z is a common fixed point of $f, S, T, g, S f, T g, F$ and G.

The following theorem generalizes theorems of Popa [13-16].
Theorem 4. Let (X, d) be a metric space, $S, T: X \rightarrow X$ and F, G : $X \rightarrow C B(X)$ satisfying (3) and

$$
\begin{aligned}
\phi(H(F x, G y), d(T x, S y), & D(T x, F x), D(S y, G y) \\
& D(T x, G y), D(S y, F x)) \leq 0
\end{aligned}
$$

for all $x, y \in X$, where $\phi \in \Phi_{6}$. Suppose that one of $S(X)$ or $T(X)$ is complete. Then, (a) holds. Further, if (S, G) is R-weakly commuting of type A_{S} and (T, F) is R-weakly commuting of type A_{T} at their coincidence points, therefore the conclusions (b), (c) and (d) of Theorem 2 hold.

Theorem 5. Let $\left\{F_{n}\right\}_{n \geq 1}$ be a sequence of mappings from a metric space (X, d) into $C B(X)$ and $S, \bar{T}: X \rightarrow X$ satisfying

$$
\begin{gather*}
F_{1}(X) \subset S(X) \quad \text { and } \quad F_{n}(X) \subset T(X), \quad n>1 \tag{9}\\
\phi\left(H\left(F_{1} x, F_{n} y\right), d(T x, S y), D\left(T x, F_{1} x\right), D\left(S y, F_{n} y\right),\right. \\
\left.D\left(T x, F_{n} y\right), D\left(S y, F_{1} x\right)\right) \leq 0
\end{gather*}
$$

for all $x, y \in X$, where $\phi \in \Phi_{6}$, whenever $D\left(T x, F_{n} y\right)+D\left(F_{1} x, S y\right) \neq 0$ and $H\left(F_{1} x, F_{n} y\right)=0$ whenever $D\left(T x, F_{n} y\right)+D\left(F_{1} x, S y\right)=0$. Suppose that one of $S(X)$ or $T(X)$ is complete. Then
a) There exists $p, q \in X$ such that $S p \in F_{n} p$ and $T q \in F_{1} q, n>1$.

Further, if pair $\left(T, F_{1}\right)$ is R-weakly commuting of type $\left(A_{T}\right)$ and $\left(S, F_{n}\right)$ is R-weakly commuting of type $\left(A_{S}\right)$ at their coincidence points for $n>1$, therefore
b) There exists $z \in X$ such that $T z \in F_{1} z$ and $S z \in F_{n} z$.
c) In the case (b), if $S z=T z$, then $S z=T z \in F_{1} z \cap F_{n} z$.
d) In the case (c), if $S z=T z=z$, then z is a common fixed point of T_{n}, F and G.

The following theorem generalizes theorems of Popa [13-16] and Djoudi and Aliouche [2].

Theorem 6. Let $\left\{F_{n}\right\}_{n \geq 1}$ be a sequence of mappings from a metric space (X, d) into $C B(X)$ and $S, \bar{T}: X \rightarrow X$ satisfying (9) and

$$
\begin{aligned}
\phi\left(H\left(F_{1} x, F_{n} y\right), d(T x, S y),\right. & D\left(T x, F_{1} x\right), D\left(S y, F_{n} y\right) \\
& \left.D\left(T x, F_{n} y\right), D\left(S y, F_{1} x\right)\right) \leq 0
\end{aligned}
$$

for all $x, y \in X$, where $\phi \in \Phi_{6}$. Suppose that one of $S(X)$ or $T(X)$ is complete. Then, (a) holds. Further, if $\left(T, F_{1}\right)$ is R-commuting of type A_{T} and $\left(S, F_{n}\right)$ is R-weakly commuting of type A_{S} at their coincidence points for $n>1$, therefore the conclusions (b), (c) and (d) of Theorem 5 hold.

Acknowledgments. The authors would like to thank the referees for their useful suggestions.

References

[1] Asad A.J., Ahmad Z., A common fixed point of multi-valued mappings with weak commutativity conditions, Radovi Math., 9(1999), 119-124.
[2] Djoudi A., Aliouche A., A general common fixed point theorem for reciprocally continuous mappings satisfying an implicit relation, The Austral. J. Math. Anal. Appl., 3(2006), 1-7.
[3] Imdad M., Khan T.I., Results on nonlinear hybrid contractions satisfying a rational inequality, Southeast Asian Bulletin of Mathematics, 26(2002), 421-432.
[4] Itoh S., Takahashi W., Single-valued mappings, Multi-valued mappings and fixed point theorems, J. Math. Anal. Appl., 59(1977), 514-521.
[5] Jungck G., Compatible mappings and common fixed points, Internat. J. Math. Math. Sci., 9(1986), 771-779.
[6] Kamran T., Fixed points of asymptotically regular noncompatible maps, Demonsratio Math., 38(2)(2005), 485-495.
[7] Kaneko H., Sessa S., Fixed point theorems for compatible multi-valued and single valued mappings, Internat. J. Math. Math. Sci., 12(1989), 257-262.
[8] Kubiaczyk I., Deshpande B., Common fixed points for multivalued mappings without continuity, Fasciculi Mathematici, 37(2007), 10-26.
[9] Nadler S.B., Multi-valued contractions mappings, Pacific J. Math., 30(2)(1969), 475-488.
[10] Pant R.P., Common fixed points of noncommuting mappings, J. Math. Anal. Appl., 188(1994), 436-440.
[11] Pathak H.K., Сho Y.J., Kang S.M., Remarks on R-weakly commuting mappings and comon fixed point theorems, Bull. Korean. Math. Soc., 34(1997), 247-257.
[12] Pathak H.K., Khan M.S., Fixed and coincidence points of hybrid mappings, Arch. Math. (Brno), 38(3)(2002), 201-208.
[13] Popa V., Some fixed point theorems for contractive mappings, Stud. Cer. St. Ser. Mat. Univ. Bacau, 7(1997), 157-163.
[14] Popa V., Some fixed point theorems for compatible mappings satisfying an implicit relation, Demonstratio Math., 32(1)(1999), 157-163.
[15] Popa V., A general coincidence theorem for compatible multi-valued mappings satisfying an implicit relation, Demonstratio Math., 33(1)(2000), 159-164.
[16] Popa V., Coincidence and fixed points theorems for noncontinuous hybrid contractions, Nonlinear Anal. Forum., 7(2)(2002), 153-158.
[17] Sessa S., On a weak commutativity condition of mappings in fixed point considerations, Publ. Inst. Math., (Beograd), 32(46)(1982), 149-153.
[18] Sessa S., Khan M.S., Imdad M., A common fixed point theorem with a weak commutativity condition, Glas. Math. Ser. III, 21(1986), 225-235.
[19] Shahzad N., Kamran T., Coincidence points and R-weakly commuting maps, Arch. Math. (Brno), 37(2001), 179-183.
[20] Singh S.L., Mishra S.N., Some remarks on coincidences and fixed points, C. R. Math. Rep. Acad. Sci. Canada., 18(2-3)(1996), 66-70.
[21] Turkoglu D., Ozer O., Fisher B., A coincidence point theorem for multi-valued contractions, Math. Communications, 7(2002), 39-44.

Abdelkrim Aliouche
Department of Mathematics
University of Larbi Ben M'Hidi
Oum-El-Bouaghi, 04000, Algeria
e-mail: alioumath@yahoo.fr

Valeriu Popa
Department of Mathematics
University of Bacău Str. Spiru Haret nr. 8
600114 Bacău, Romania
e-mail: vpopa@ub.ro

Received on 31.03.2008 and, in revised form, on 04.06.2008.

