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1. Introduction and preliminaries

Let (X, d) be a metric space. For x ∈ X and A⊂X, D(x,A)= inf{d(x, y),
y ∈ A}.

Let CB(X) be the set of all nonempty closed and bounded subsets of X.
Let H be the Hausdorff metric with respect to d defined by

H(A,B) = max
{

sup
a∈A

D(a,B), sup
b∈B

D(A, b)
}

for all A,B ∈ CB(X).

It is well known that (CB(X),H) is a metric space and if (X, d) is com-
plete, then (CB(X),H) is also complete

Lemma 1 ([9]). If A,B ∈ CB(X) and k > 1, then for each a ∈ A, there
exists b ∈ B such that d(a, b) ≤ kH(A,B).

Let f : X → X be a single-valued mapping and T : X → CB(X) be a
multi-valued mapping.

Definition 1. 1) A point x ∈ X is said to be a coincidence point of f
and T if fx ∈ Tx. We denote by C(f, T ) the set of all coincidence points
of f and T .

2) A point x ∈ X is a fixed point of T if x ∈ Tx.
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Definition 2. 1) f and T are said to be commuting [4] in X if for all
x ∈ X, fTx = Tfx.

2) f and T are said to be weakly commuting on X [17, 18] if for all
x ∈ X, fTx ∈ CB(X) and

H(fTx, Tfx) ≤ D(fx, Tx)

3) f and T are said to be compatible [5, 7] if for all x ∈ X, fTx ∈ CB(X)
and

lim
n→∞

H(fTxn, T fxn) = 0

whenever {xn} is a sequence in X such that lim
n→∞

fxn = t ∈ A = lim
n→∞

Txn

for some t ∈ X and A ∈ CB(X).

Commuting implies weakly commuting implies compatible, but the con-
verse is not true in general. See [7].

Let T : X → X be a single-valued mapping and F : X → CB(X) be a
multi-valued mapping.

Definition 3 ([10], [19]). 1) T and F are said to be R-weakly commuting
at x ∈ X if TFx ∈ CB(X) and there exists an R > 0 such that

(1) H(TFx, FTx) ≤ RD(Tx, Fx).

2) T and F are said to be pointwise R-weakly commuting on X if for all
x ∈ X, TFx ∈ CB(X) and (1) holds for some R > 0.

Definition 4 ([6]). T and F are said to be R-weakly commuting of type
(AT ) at x ∈ X if there exists an R > 0 such that

(2) D(TTx, FTx) ≤ RD(Tx, Fx).

T and F are said to be R-weakly commuting of type (AT ) on X if for all
x ∈ X, (2) holds.

Remark 1. If F is a single-valued mapping, then the definition of R-weak
commutativity of type (AT ) reduces to that of Pathak et. al [11].

If T and F are compatible, then they are R-weakly commuting of type
(AT ), but the converse is not true in general, see [6].

The following theorem was proved by [8].

Theorem 1. Let (X, d) be a complete metric space, S, T : X → X and
F,G : X → CB(X) satisfying

(3) F (X) ⊂ S(X) and G(X) ⊂ T (X),
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The pairs (T, F ) and (S, G) are R-weakly commuting of type (AT )(4)
at their coincidence points.

(5) H(Fx, Gy) ≤ a
D2(Fx, Sy) + D2(Gy, Tx)
D(Fx, Sy) + D(Gy, Tx)

+ bd(Tx, Sy),

for all x, y ∈ X, x 6= y, Fx 6= Fy and Gx 6= Gy, where a, b > 0 and
a + 2b < 1, whenever D(Fx, Sy) + D(Gy, Tx) 6= 0 and H(Fx, Gy) = 0
whenever D(Fx, Sy) + D(Gy, Tx) = 0. Then, there exists z ∈ X such that
z = Tz = Sz ∈ Fz ∩Gz.

This theorem generalizes Theorems 3.1 and 3.2 of [1].
In [13] and [14], the study of fixed points for mappings satisfying im-

plicit relations was introduced and the study of a pair of hybrid mappings
satisfying implicit relations was initiated in [15].

It is our purpose in this paper to prove coincidence and common fixed
point theorems for two pairs of hybrid mappings satisfying implicit relations
using the concept of R−weak commutativity of type AT which generalize
the results of [1-3], [8], [12-16] and [21].

2. Implicit relations

Let Φ6 the family of all real continuous mappings φ(t1, t2, t3, t4, t5, t6) :
R6

+ → R satisfying the following conditions:
(φ1) : φ is increasing in variable t1 and decreasing in variables t3, t4, t5

and t6.
(φ2) : there exists 0 ≤ h < 1 and k > 1 such that
(φa) : u ≤ kt and φ(t, v, v, u, u + v, 0) ≤ 0 or
(φb) : u ≤ kt and φ(t, v, u, v, 0, u + v) ≤ 0

implies u ≤ hv.

Example 1. φ(t1, t2, t3, t4, t5, t6) = t1 − at2 − b(t3 + t4) − c(t5 + t6),
a, c > 0, b ≥ 0 and a + 2b + 2c < 1.

(φ1) : Obviously.

(φ2) : Let 1 < k <
1

a + 2b + 2c
, u ≤ kt and φ(t, v, v, u, u + v, 0) =

t−av− b(v +u)− c(u+ v) ≤ 0. Then, u ≤ kt ≤ kav +kb(v +u)+kc(u+ v)]

and so u ≤ hv, where h =
k(a + b + c)
1− (kb + kc)

< 1. Similarly, u ≤ kt and

φ(t, v, u, v, 0, u + v) ≤ 0 implies u ≤ hv.

Example 2. φ(t1, t2, t3, t4, t5, t6) = t1 − a max{t2, t3, t4,
t5 + t6

2
} , 0 <

a < 1.
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(φ1) : Obviously.

(φ2) : Let 1 < k <
1
a
, u ≤ kt and φ(t, v, v, u, u + v, 0) = t − a max{v, u,

u + v

2
} ≤ 0. Then, u ≤ kt ≤ kamax{v, u,

u + v

2
} = kamax{v, u}. If u > 0

and u ≥ v, it follows that u ≤ kau < u which is a contradiction and so
u ≤ hv, where h = ka < 1. If u = 0, therefore u ≤ hv. Similarly, u ≤ kt
and φ(t, v, u, v, 0, u + v) ≤ 0 implies u ≤ hv.

Example 3. φ(t1, t2, t3, t4, t5, t6) = t1 − amax{t22, t3t4, t5t6, t3t5, t4t6}
1
2 ,

0 < a <
1√
2
.

(φ1) : Obviously.

(φ2) : Let 1 < k <
1

a
√

2
, u ≤ kt and φ(t, v, v, u, u + v, 0) = t −

amax{v2, uv, v(u + v)}
1
2 ≤ 0. Then, u ≤ kt ≤ kamax{v2, uv, v(u + v)}

1
2 . If

u > 0 and u ≥ v, it follows that u ≤ ka
√

2u < u which is a contradiction
and so u ≤ hv, where h = ka

√
2 < 1. If u = 0, therefore u ≤ hv. Similarly,

u ≤ kt and φ(t, v, u, v, 0, u + v) ≤ 0 implies u ≤ hv.

Example 4. φ(t1, t2, t3, t4, t5, t6) = t21 +
t1

1 + t5t6
− at22− bt23− ct24, a > 0,

b, c ≥ 0 and a + b + c < 1.
(φ1) : Obviously.

(φ2) : Let 1 < k <
1√

a + b + c
, u ≤ kt and φ(t, v, v, u, u + v, 0) = t2 +

t − av2 − bv2 − cu2 ≤ 0. Then, t2 ≤ av2 + bv2 + cu2 and u2 ≤ k2t2 ≤

k2
(
av2 + bv2 + cu2

)
. It follows that u ≤ h1v, where h1 = k

√
a + b

1− k2c
< 1.

Similarly, u ≤ kt and φ(t, v, u, v, 0, u + v) ≤ 0 implies u ≤ h2v, where

h2 = k

√
a + c

1− k2b
< 1. If h = max{h1, h2}, then u ≤ hv.

Example 5. φ(t1, t2, t3, t4, t5, t6) = tp1 − max{at2t
p−1
3 , atp−1

2 t4, atp−1
3 t4,

ctp−1
5 t6}, p ≥ 2, 0 < a < 1 and c ≥ 0.
(φ1) : Obviously.

(φ2) : Let 1 < k <
1

p
√

a
, u ≤ kt and φ(t, v, v, u, u + v, 0) = tp −

max{avp, avp−1u} ≤ 0. Then, up ≤ kptp ≤ kp max{avp, avp−1u}. If u > 0
and u ≥ v, it follows that up ≤ akpup < up which is a contradiction and so
u ≤ hv, where h = k p

√
a < 1. If u = 0, therefore u ≤ hv. Similarly, u ≤ kt

and φ(t, v, u, v, 0, u + v) ≤ 0 implies u ≤ hv.

Example 6. φ(t1, t2, t3, t4, t5, t6) = t1− b[amax{t2, t3, t4,
t5 + t6

2
}− (1−

a) max{t22, t3t4, t5t6, 1
2 t3t6,

1
2 t4t5}

1
2 ], 0 < b < 1 and 0 ≤ a < 1.
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(φ1) : Obviously.

(φ2) : Let 1 < k <
1
b
, u ≤ kt and φ(t, v, v, u, u + v, 0) = t− b[amax{v, u,

u + v

2
}−(1−a) max{v2, uv, 1

2u(u+v)}
1
2 ] ≤ 0. Then, u ≤ kt ≤ kb[amax{v, u,

u + v

2
} + (1 − a) max{v2, uv, 1

2u(u + v)}
1
2 ]. If u > 0 and u ≥ v, it follows

that u ≤ kbu < u which is a contradiction and so u ≤ hv, where h = kb < 1.
If u = 0, therefore u ≤ hv. Similarly, u ≤ kt and φ(t, v, u, v, 0, u + v) ≤ 0
implies u ≤ hv.

Example 7. φ(t1, t2, t3, t4, t5, t6) = t1−at2−b
t25 + t26
t5 + t6

−c(t3+t4), t5+t6 6=
0, a, b > 0, c ≥ 0 and a + 2b + 2c < 1.

Example 8. φ(t1, t2, t3, t4, t5, t6) = t1−at2−b
t23 + t24
t3 + t4

−c(t5+t6), t3+t4 6=
0, a, b, c > 0 and a + 2b + 2c < 1.

They follow as in Example 1 since
t25 + t26
t5 + t6

≤ t5 + t6 and
t23 + t24
t3 + t4

≤ t3 + t4

if t5 + t6 6= 0 and t3 + t4 6= 0.

3. Main results

Theorem 2. Let (X, d) be a metric space, S, T : X → X and F,G :
X → CB(X) satisfying (3)

φ(H(Fx, Gy), d(Tx, Sy), D(Tx, Fx), D(Sy,Gy),(6)
D(Tx,Gy), D(Sy, Fx)) ≤ 0

for all x, y ∈ X, where φ ∈ Φ6, whenever D(Tx,Gy) + D(Sy, Fx) 6= 0 and
H(Fx, Gy) = 0 whenever D(Tx,Gy) + D(Sy, Fx) = 0. Suppose that one of
S(X) or T (X) is complete. Then

a) there exists q, p ∈ X such that Tq ∈ Fq and Sp ∈ Gp.
Further, if the pair (T, F ) is R-weakly commuting of type (AT ) and (S, G)

is R-weakly commuting of type (AS) at their coincidence points,
b) there exists z ∈ X such that Tz ∈ Fz and Sz ∈ Gz.
c) In the case (b), if Sz = Tz, then Sz = Tz ∈ Fz ∩Gz.
d) In the case (c), if Sz = Tz = z, then z is a common fixed point of

S, T, F and G.

Proof. First, assume that there exists q, p ∈ X such that D(Sp, Fq) +
D(Tq,Gp) = 0. So, D(Sp, Fq) = 0 and D(Tq,Gp) = 0 which implies that
Sp ∈ Fq and Tq ∈ Gp. Since H(Fq, Gp) = 0, it follows that D(Tq, Fq) ≤
H(Fq, Gp) = 0 and hence Tq ∈ Fq. In a similar manner, we get Sp ∈ Gp.
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Now, assume that D(Tx,Gy) + D(Sy, Fx) 6= 0 for all x, y ∈ X. Let
x0 ∈ X be an arbitrary point. By (3) and Lemma 1, we define a sequence
{yn} in X by

y2n = Tx2n ∈ Gx2n−1, y2n+1 = Sx2n+1 ∈ Fx2n

and

d(y2n, y2n+1) ≤ kH(Fx2n, Gx2n−1),
d(y2n+1, y2n+2) ≤ kH(Fx2n, Gx2n+1), for n = 1, 2, ... .

Using (6) and (φ1), we have

0 ≥ φ(H(Fx2n, Gx2n−1), d(Tx2n, Sx2n−1), D(Tx2n, Fx2n),
D(Sx2n−1, Gx2n−1), D(Tx2n, Gx2n−1), D(Sx2n−1, Fx2n))

≥ φ(H(Fx2n, Gx2n−1), d(y2n−1, y2n), d(y2n, y2n+1),
d(y2n−1, y2n), 0, d(y2n−1, y2n+1))

≥ φ(H(Fx2n, Gx2n−1), d(y2n−1, y2n), d(y2n, y2n+1),
d(y2n−1, y2n), 0, d(y2n−1, y2n) + d(y2n, y2n+1)).

By (φb), we obtain

d(y2n, y2n+1) ≤ hd(y2n−1, y2n).

In the same manner, applying (6) we get

0 ≥ φ(H(Fx2n, Gx2n+1), d(Tx2n, Sx2n+1), D(Tx2n, Fx2n),
D(Sx2n+1, Gx2n+1), D(Tx2n, Gx2n+1), D(Sx2n+1, Fx2n))

≥ φ(H(Fx2n, Gx2n+1), d(y2n, y2n+1), d(y2n, y2n+1),
d(y2n+1, y2n+2), d(y2n, y2n+2), 0)

≥ φ(H(Fx2n, Gx2n+1), d(y2n, y2n+1), d(y2n, y2n+1),
d(y2n+1, y2n+2), d(y2n, y2n+1) + d(y2n+1, y2n+2), 0).

Therefore
d(y2n+1, y2n+2) ≤ hd(y2n, y2n+1).

and so
d(yn, yn+1) ≤ hd(yn−1, yn).

Then, {yn} is a Cauchy sequence in X. Assume that S(X) is complete.
Then, {y2n+1} converges to z ∈ S(X) and so there exists p ∈ X such that
z = Sp. Also, {y2n} converges to z since

d(y2n, z) ≤ d(y2n, y2n+1) + d(y2n+1, z)
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Applying (6) and (φ1) we have

0 ≥ φ(H(Fx2n, Gp), d(Tx2n, Sp), D(Tx2n, Fx2n),(7)
D(Sp,Gp), D(Tx2n, Gp), D(Sp, Fx2n))

≥ φ(D(y2n+1, Gp), d(y2n, z), d(y2n, y2n+1),
D(Sp,Gp), D(y2n, Gp), d(Sp, y2n+1)).

Letting n →∞ we get

φ(D(Sp,Gp), 0, 0, D(Sp,Gp), D(Sp,Gp), 0) ≤ 0.

By (φa) we obtain Sp ∈ Gp. As G(X) ⊂ T (X), there exists q ∈ X such
that z = Sp = Tq.

Using (6) and (φ1) we have

0 ≥ φ(H(Fq, Gx2n−1), d(Tq, Sx2n−1), D(Tq, Fq),(8)
D(Sx2n−1, Gx2n−1), D(Tq,Gx2n−1), D(Sx2n−1, F q))

≥ φ(D(Fq, y2n), d(Tq, y2n−1), D(Tq, Fq),
d(y2n−1, y2n), d(Tq, y2n), D(y2n−1, F q)).

Letting n →∞ we get

φ(D(Fq, Tq), 0, D(Fq, Tq), 0, 0, D(Fq, Tq)) ≤ 0.

By (φb) we obtain Tq ∈ Fq. Since T and F are R-weakly commuting of
type (AT ) at q ∈ C(F, T ), there exists an R > 0 such that D(TTq, FTq) ≤
RD(Tq, Fq) and so Tz ∈ Fz. In the same manner, Sz ∈ Gz. If Sz = Tz,
then Sz = Tz ∈ Fz ∩ Gz and if Sz = Tz = z, then z is a common fixed
point of S, T, F and G.

Suppose that T (X) is complete. Therefore, {y2n} converges to z ∈ T (X)
and so there exists q ∈ X such that z = Tq. Applying (6) and (φ1) we have
the inequality (8). Letting n →∞ we get

φ(D(Fq, Tq), 0, D(Fq, Tq), 0, 0, D(Fq, Tq)) ≤ 0.

By (φb) we obtain Tq ∈ Fq. As F (X) ⊂ S(X), there exists p ∈ X such
that z = Sp = Tq.

Using (6) and (φ1) we get the inequality (7). Letting n →∞ we get

φ(D(Sp,Gp), 0, 0, D(Sp,Gp), D(Sp,Gp), 0) ≤ 0.

By (φa) we obtain Sp ∈ Gp. The rest of the proof follows as in the case
S(X) is complete. �
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Corollary 1. Let (X, d) be a metric space, S, T : X → X and F,G :
X → CB(X) satisfying (3) and

H(Fx, Gy) ≤ ad(Tx, Sy) + b(D(Tx, Fx) + D(Sy,Gy))
+ c(D(Tx,Gy) + D(Sy, Fx))

for all x, y ∈ X, where a, c > 0, b ≥ 0 and a+2b+2c < 1. Suppose that one
of S(X) or T (X) is complete. Then, (a) holds. Further, if the pair (T, F )
is R-weakly commuting of type (AT ) and (S, G) is R-weakly commuting of
type (AS) at their coincidence points, therefore the conclusions (b), (c) and
(d) of Theorem 2 hold.

Proof. It follows from Theorem 2 and Example 1. �

Remark 2. In Theorems of [1] and [8], to prove that z = Tz, the
authors used: ”Tx2n ∈ Gx2n−1 and Tz ∈ Fz implies that d(Tx2n, T z) ≤
H(Gx2n−1, F z)” which is false because ”a ∈ A and b ∈ B implies d(a, b) ≤
H(A,B)” is not true in general as it shown by the following example.

Example 9. Let d(x, y) = |x− y|, A = [0,
1
2
] and B = [

1
4
, 1]. We have

0 ∈ A and 1 ∈ B, but d(0, 1) = 1 > H(A,B) =
1
2
. Therefore, Theorem 1.7

of [8] is false as it is proved by the following example.

Example 10. Let (X, d) = ([1,∞), |.|), Sx = Tx = x2 + 1 and Fx =
Gx = [2, x + 3] for all x ∈ X. It is easy to verify that for all x, y ∈ X

d(Sx, Sy) =
∣∣x2 − y2

∣∣ ≥ 2 |x− y| = H(Fx, Fy)

and hence

H(Fx, Fy) ≤ 1
2
d(Tx, Ty)

≤ 1
2
d(Tx, Ty) +

1
8

D2(Ty, Fx) + D2(Tx, Fy)
D(Ty, Fx) + D(Tx, Fy)

if D(Ty, Fx) + D(Tx, Fy) 6= 0 and the other conditions of Theorem 1.7 of
[8] are satisfied, but S and F have no common fixed point.

The following corollary is the correct form of Theorem 1.7 of [8].

Corollary 2. Let (X, d)be a complete metric space, T, S : X → X and
F,G : X → CB(X)satisfying (3) and

H(Fx,Gy) ≤ ad(Tx, Sy) + c
D2(Sy, Fx) + D2(Tx,Gy)
D(Sy, Fx) + D(Tx,Gy)
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for all x, y ∈ X, where a, c > 0 and a + 2c < 1, whenever D(Tx,Gy) +
D(Sy, Fx) 6= 0 and H(Fx, Gy) = 0 whenever D(Tx,Gy) + D(Sy, Fx) = 0.
Then, (a) holds. Further, if the pair (T, F ) is R -weakly commuting of type
(AT ) and (S, G) is R-weakly commuting of type (AS) at their coincidence
points, therefore the conclusions (b), (c) and (d) of Theorem 2 hold.

Proof. It follows from the fact that
D2(Sy, Fx) + D2(Tx,Gy)
D(Sy, Fx) + D(Tx,Gy)

≤ D(Sy,

Fx) + D(Tx,Gy) if D(Tx,Gy) + D(Sy, Fx) 6= 0 and Corollary 1. �

Remark 3. In [16] Remark 3 and [8] Remark 5, we have: ”the conditions
in the hypothesis of Theorem 3.1 of [1] and Theorem 1.7 of [8], x 6= y, Fx 6=
Fy and Gx 6= Gy are necessary since the theorem fails for F and G taken
as constant mappings”. This is demonstrated by the following example.

Example 11. Let X = {0, 1}, Tx = 1 − x and Fx = Gx = {0, 1} for
all x ∈ X. It is easy to verify that the mappings satisfy all the hypothesis
except x 6= y, Fx 6= Fy.

Remark 4. 1) In Example 11, we have T (0) ∈ F (0) and T (1) ∈ F (1);
i.e., T and F have coincidence points. Since T 2(0) 6= T (0) and T 2(1) 6= T (1),
T and F have no common fixed point

2) In theorems of [1], [3] and [8], x 6= y, Fx 6= Fy and Gx 6= Gy are not
necessary as it is shown by the following example.

3) In Theorem 1 of [21], S and g are compatible should be the pairs (S, f)
and (T,G) are compatible and in Corollary 2, g should be replaced by f and
the pair (S, f) is compatible should be added.

4) In [16], the authors made the following remark. It is not yet known
whether their theorem remains true if one of the mappings f and T is not
continuous and Theorem 2 of [20] yields that the answer is affirmative.

Example 12. Let X = {0, 1,
1
2
}, Tx = 1 − x and Fx = Gx = {0,

1
2
, 1}

for all x ∈ X. It is easy to verify that the mappings satisfy the conditions of

theorems of [1], [3] and [8] except x 6= y, Fx 6= Fy, but T (
1
2
) =

1
2
∈ F (

1
2
)

and so
1
2

is a common fixed point of T and F .
As x 6= y, Fx 6= Fy and Gx 6= Gy are not necessary, it follows that

theorem of [1] and Theorems 3.2 and 3.3 of [3] part (a) are false, it suffices
to take Example 3.8 for [1] and X = {0, 1}, Tx = 1− x, Sx = Ix = Jx = x
and Fx = Gx = {0, 1} for all x ∈ X for [3].

We can also prove the following theorem which generalizes Theorems 3.2
and 3.3 of [3].
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Theorem 3. Let (X, d) be a metric space, S, T, f, g : X → X and
F,G : X → CB(X) satisfying

F (X) ⊂ Tg(X) and G(X) ⊂ Sf(X)

φ(H(Fx,Gy), d(Sfx, Tgy), D(Sfx, Fx), D(Tgy, Gy),
D(Sfx,Gy), D(Fx, Tgy)) ≤ 0

for all x, y ∈ X , where φ ∈ Φ6, whenever D(Sfx,Gy) + D(Fx, Tgy) 6= 0
and H(Fx,Gy) = 0 whenever D(Sfx,Gy) + D(Fx, Tgy) = 0. Suppose that
one of S(X) or T (X) is complete. Then

a) There exists p, q ∈ X such that Sfp ∈ Fp and Tgq ∈ Gq.
Further, if (Sf, F ) is R-weakly commuting of type ASf and (Tg, G) is

R-weakly commuting of type ATg at their coincidence points, therefore
b) There exists z ∈ X such that Sfz ∈ Fz and Tgz ∈ Gz.
c) In the case (b), if Sfz = Tgz, then Sfz = Tgz ∈ Fz ∩Gz.
d) In the case (c), if Sfz = Tgz = z, (S, f),(Sf,S), (T ,g), (Tg,T )

commute, S2z = Sz, f2z = fz, T 2z = Tz and g2z = gz, then z is a
common fixed point of f , S, T , g, Sf , Tg, F and G.

The following theorem generalizes theorems of Popa [13-16].

Theorem 4. Let (X, d) be a metric space, S, T : X → X and F,G :
X → CB(X) satisfying (3) and

φ(H(Fx,Gy), d(Tx, Sy), D(Tx, Fx), D(Sy,Gy),
D(Tx,Gy), D(Sy, Fx)) ≤ 0

for all x, y ∈ X, where φ ∈ Φ6. Suppose that one of S(X) or T (X) is
complete. Then, (a) holds. Further, if (S, G) is R-weakly commuting of
type AS and (T, F ) is R-weakly commuting of type AT at their coincidence
points, therefore the conclusions (b), (c) and (d) of Theorem 2 hold.

Theorem 5. Let {Fn}n≥1 be a sequence of mappings from a metric space
(X, d) into CB(X) and S, T : X → X satisfying

(9) F1(X) ⊂ S(X) and Fn(X) ⊂ T (X), n > 1

φ(H(F1x, Fny), d(Tx, Sy), D(Tx, F1x), D(Sy, Fny),
D(Tx, Fny), D(Sy, F1x)) ≤ 0

for all x, y ∈ X, where φ ∈ Φ6, whenever D(Tx, Fny)+D(F1x, Sy) 6= 0 and
H(F1x, Fny) = 0 whenever D(Tx, Fny)+D(F1x, Sy) = 0. Suppose that one
of S(X) or T (X) is complete. Then
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a) There exists p, q ∈ X such that Sp ∈ Fnp and Tq ∈ F1q, n > 1.
Further, if pair (T, F1) is R-weakly commuting of type (AT ) and (S, Fn)

is R-weakly commuting of type (AS) at their coincidence points for n > 1,
therefore

b) There exists z ∈ X such that Tz ∈ F1z and Sz ∈ Fnz.
c) In the case (b), if Sz = Tz, then Sz = Tz ∈ F1z ∩ Fnz.
d) In the case (c), if Sz = Tz = z, then z is a common fixed point of Tn,

F and G.

The following theorem generalizes theorems of Popa [13-16] and Djoudi
and Aliouche [2].

Theorem 6. Let {Fn}n≥1 be a sequence of mappings from a metric space
(X, d) into CB(X) and S, T : X → X satisfying (9) and

φ(H(F1x, Fny), d(Tx, Sy), D(Tx, F1x), D(Sy, Fny),
D(Tx, Fny), D(Sy, F1x)) ≤ 0

for all x, y ∈ X, where φ ∈ Φ6. Suppose that one of S(X) or T (X) is
complete. Then, (a) holds. Further, if (T, F1) is R−commuting of type AT

and (S, Fn) is R-weakly commuting of type AS at their coincidence points
for n > 1, therefore the conclusions (b), (c) and (d) of Theorem 5 hold.
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