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ABSTRACT. In this paper, we define and examine some new differ-
ence sequence spaces combining with de la Vallee-Poussin mean
and a sequence of Orlicz functions which completes the gap of
the literature. We also introduce the concept of S;\‘Am—statistical
convergent sequences and give some inclusion relations between
these defined spaces with the space of S}\‘N"-statistical convergent
sequences.
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1. Introduction

Let w be the set of all sequences of real or complex numbers and I, ¢
and c¢g be, respectively, the Banach spaces of bounded, convergent and null
sequences x = (z) with the usual norm ||z| = supy, |z

Let A = (\,) be a non-decreasing sequence of positive numbers tending
toooand App1 < A+ 1, A1 =1.

The generalized de la Vallee-Poussin mean is defined by

where I, = [n — A\, + 1,n].

A sequence x = (xy) is said to be (V,A)-summable to a number [ [1]
if t,(x) — lasn — oo. If A, = n, then (V,\)-summability and strongly
(V, A)-summability reduce to (C, 1)-summability and [C, 1]-summability, re-
spectively.

An Orlicz function is a function M : [0, 00) — [0, 00), which is continuous,
non-decreasing and convex with M (0) = 0, M (z) > 0 for x > 0 and M (z) —
oo as * — oo. If the convexity of an Orlicz function M is replaced by

M(z+vy) < M(x)+ M(y)
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then this function is called modulus function, defined and discussed by
Ruckle [2] and Maddox [3].

Lindenstrauss and Tzafriri [4] used the idea of Orlicz function to construct
the sequence space

Iy = {xew:ZM<|:C/f|)<oo, forsomep>0}.

k=1

The space [;; becomes a Banach space with the norm

|z|| = inf{p >0: iM ('i’f') < 1}

k=1

which is called an Orlicz sequence space. The space [y is closely related
to the space [, which is an Orlicz sequence space with M (x) = 2P for 1 <
p < oo0. Orlicz sequence spaces were introduced and studied by Parashar
and Choudhary [5], Nuray and Gulcu [6], Bhardwaj and Singh [7] and many
others.

It is well known that if M is a convex function and M(0) = 0, then
M (tx) < tM(z) for all t with 0 < ¢ < 1.

An Orlicz funtion M is said to satisfy As-condition for all values of u,
if there exists constant K > 0, such that M (2u) < KM (u) (v > 0). The
As-condition is equivalent to the inequality M (Lu) < K.L.M(u) for all
values of uw and for L > 1 being satisfied [8].

The difference sequence space X (A) was introduced by Kizmaz [9] as
follows:

X(A) = {z=(zx) ew: (Azg) € X}

for X = ls, c and ¢q ; where Azy = x — x4 for all k£ € N.
The notion of difference sequence spaces was further generalized by Et
and Colak [10] as follows:

X(A™) = {z = (ap) ew: (AMzy) € X}
for X = I, ¢ and ¢, where Az, = A™ 1y, — A™ g 1 and APz, = 2,
for all k& €. Taking X = l(p), c(p) and co(p), these sequence spaces has

been generalized by Et and Basarir [11].
The generalized difference has the following binomial representation:

o= S (7 )

for all £k € N.
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Subsequently, difference sequence spaces have been discussed by several
authors [12], [13] and [14].

The following inequality will be used throughout this paper. Let p = (pg)
be a sequence of positive real numbers with 0 < pr < suppr = G, and let
D = max (1, 2G_1). Then for ay, by € C, the set of complex numbers for all
k € N, we have [15]

(1) lag +0[P* < D {|ag|P* + [br[P*} .

Now we introduce the following sequence spaces.

Let M = (M;) be a sequence of Orlicz functions, m be a positive integer
and u = (u;) be any sequence such that u; # 0 for all 4, then we define:

.1 - |u; A™ ;) P
A M, p,u,s)am = {z € w: lim — sy (L2 Ty )
wo( iy Dy Uy S)A {r ew: lim )\HZZ i( 5 )

n—00 A
1€l

for some p >0, s> 0}

1 ATy ]
w(A, My, p,u, s)am = {JZ €w: lim — sup i*sMi(w)pi =0,
n—00 \p el p
for some I,p >0, s >0}
and
1 N
woo()‘a M;, p,u, S)Am = {a: € w :sup — sup i_sMi(M)m < 00,
n Anicl,
for some p >0, s> 0}
m
where u;A™z; = (u;A™ Lo, —u; 1 A™ L2, q) such that u;A™x; = Y (—1)"
n=0

0 _ _
XMNUj 4 T, UiA Ty = (uz;) and wAz; = (T — Uip1Ti41)-
i |u; Az, —le] )]p’b

X AM . pi,
Here for convenience, we put Mi(W’Aipx’le') instead of [M;( 5

We get the following sequence spaces from the above sequence spaces on
giving particular values to s, m, M = (M;), p = (p;), u = (u;) for all i.

(2) If M;(z) = x for all 4, then we write wo(A, p, u, s)am, wW(A, p,u, s)Am
and weo (A, p, u, $)am, respectively.

(i) If M;(z) =x and p= (p;) =1foralli,u=e, s=0and m =1 then
we write wo(A)a, wo(A)a and wee(A)a, respectively.

2. Main results
In this section, we examine some topological properties of wy(\, M;, p, u,

s)am, w(A, M, p,u, s)am and weo (A, M;, p,u, s)am spaces and investigate
some inclusion relations between these spaces.
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Theorem 1. Let (M;) be a sequence of Orlicz functions, m be a positive
integer and p = (p;) be a bounded sequence of strictly positive real numbers.
Then wo(X, My, p,u, $)am, w(A, M;, p,u, s)am and woo (N, M;, p,u, $)am are
linear spaces over the set of complex numbers.

Proof. It is easy to prove this theorem using (1). |

Theorem 2. Let (M;) be a sequence of Orlicz functions and m be a
positive integer. If sup(M;(z))P* < oo for all fivred x > 0 then
i

’UJ()\, Mian u, S)Am C wOO(A7 Miupa u, S)Am

Proof. Let © € w(\, M;,p,u,s)am. Then there exists some positive p;

such that
zAm i —1 Di
lim —Z 1 °M; <M> = 0.
e zEI P

Define p = 2p;. Since M; is non-decreasing and convex, for each 4, by
using (1), we have

’LA g Di
SUP)\ Z % M; <|u p $|>

i€l
1 _ |u; A™x;| — le + e\ "'
= Ssup )\7 Z (3 sMi < )

M e, P

B |u; A" x| — le \ P!

s F—
- {SupA 2. 2pi Z( p1
i€ly
_ |l6‘ Di

S

+ sup)\ Z o M; <p1 < oo.
i€ly
Hence x € woo (A, M, p,u, $)am. This completes the proof. |

Theorem 3. Let (M;) be a sequence of Orlicz functions, m be a positive
integer and 0 < h = inf p;. Then woo (A, My, p,u, $)am C wo(A, p,u, $)am if
and only if

(2) lim — S i M7 = oo

for some t > 0.
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Proof. Let © € wso (N, My, p,u, $)am C wo(\, p,u, s)am. Suppose that
(2) does not hold. Therefore there is a subinterval I, of the set of interval

I, and a number t5 > 0 , where tg = MA*/;%Z" for all i such that

(3) !

: S it Mi(to) < K < o0,  k=1,2,3,....
n(k) 1€l (k)

Let us define x = (x;) as following

Amo _ Jpto, 1€ Iy,
uilh xl_{ 0, i¢ Ly-
Thus by (3), € Weo(A, My, p,u, s)am. But z ¢ wo(A, p,u)a. Hence (2)
must hold.
Conversely, suppose that (2) holds and that = € weo (X, M, p,u, s)am.
Then for each n

1 Am i Dq
(4) = Y i, <M> < K < .
An : P
’LGIn
Suppose that x ¢ wo(\,p,u,s)am. Then for some number 0 < & < 1,
there is a number i such that for a subinterval I,,, of the set of interval I,,,

N L . . . .
Lp%l > ¢ for ¢ > ig. From properties of the Orlicz function, we can write

Mi(mAi;nx"')pi > M;(e)Pi which contradicts (2), by using (4). Hence we get
T € Woo( A, My, p,u, s)am C wo(A, p,u, s)am. This completes the proof. M

Theorem 4. Let 0 < h = infp; < p; < supp; = H < co. Then for a
sequence of Orlicz functions (M;) which satisfies the Ay—condition, we have
wo (A, p, uy $)Am C wo(A, My, p,u, s)am, w(A, p,u, $)am C w(X, M;, p,u, s)am
and Weo (A, p, U, $)Am C Woo (A, My, p,u, $)am.

Proof. Let € w(\, p,u,s)am. Then we have

1 lAm i — pi
— Z 1 °M; M — 0 as n — oo, for some .
An p
i€l
Let € > 0 and choose ¢ with 0 < § < 1 such that M;(t) < e for 0 < ¢ <.
Then we can write

1Zi-sM.(|uiAmxi—Ze|>“:1 5 i-sM.(ruiAmxi—zer)“
A ’ A '

e, P " icly p
‘uiAmzi—lel
1= 7 Pl

pi

1 s ]uZAmxl — le[
= Y M () =Y Y
>\n : 1%
1€l,
‘uiAmzifle|
= s

)
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For the first summation above, we immediately write

pi
1 s |u; A™x; — le| I
S= by e (AT e ey

i€ly P
|uiAmaci7le| <5
— > =

by using continuity of M;. For the second summation, we will make the
following procedure. We have

|ui A™x;—le|
A — e
('u ° le') < 1+< 2 )
p )

Since M; is non-decreasing and convex, it follows that

|u; A x; — le] (lmAmei_le')
(o) g f (45)
P 1)

] 1 <|uiAmri—le\)
p

< M)+ Mo P T

5 Mi(2) + 5 M; 3

Since M; satisfies the Ay—condition, we can write

‘ A l ’ 1 <|uiAmzifle|>
Ug Tr; — e P
LY i A I APy VAR O VAT
( p ) 2 0 ®

. (\uiAmwi—le\> (\uiAmwi—ld)
Jp A S VAT S A VA G VAT

T3 5 5

In this way, we write

E, = s [ ] e ()

i€ln

Taking the limit as ¢ — 0 and n — oo, it follows that z € w(\, M;, p, u,
s)am. Following similar arguments, we can prove that wy(A, p,u, s)am C
wo (A, Mi, p,u, $)am and wee (A, p, u, $)Am C Weo (N, My, p,u, s)Am. |

Theorem 5. Let (M;) be a sequence of Orlicz functions. Then the
following statements are equivalent:

(1) Woo (A, Py u, 8)Am C Woo( N, My, p,uy $)Am,

(13) wo(\, p,u, 8)am C Woo (A, My, p,u, $)am,

(#i1) sup ﬁ > i*SMi(t)pi < oo for allt > 0.
n iel,
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Proof. (i) =(ii): Let (i) holds. To verify (ii), it is enough to prove
wo (A, p, Uy S)Am C Woo (A, p,u, s)am. Let x € wo(A, p,u,s)am. Then there
exists n > ng, for € > 0, such that

1 s |U1Aml‘l|>pl
— 7 EE— < €.
A 2 < p

" iel,

Hence there exists K > 0 such that

1 ,7 ‘UZAm[El‘ )pi
sup — | — < K.
A 2 ( p

"o e,
So we get & € Woo (A, p, u, $)Am.
(73) =(i4i): Let (i) holds. Suppose (iii) does not hold. Then for some
t>0 )
sup — i_sM. tpi = 00

and we can find a subinterval I, of the set of interval I;, such that

1 - 1 Di
(5) Z i °M; (r) > r=1,2,3,....

An(k) i61n<k)

Let us define x = (x;) as following

e qel
uiAmZL‘i — o ’ n(k)»
{ 0, ] ¢ In(k)

Then x € wo(\,p,u, s)am, but by (5) = ¢ we(A, Mj, p,u, s)am, which con-
tradicts (i7). Hence (#i7) must holds.

(73i) =(i): Let (4i7) holds and = € woo(A, p,u, s)am. Suppose that = ¢
Woo (A, M, p,u, 8)am. Then for z € weo (A, p,u, $)aAm

1 . ‘uZAme‘>pz
6 sup — iM; | —— = oo.
( ) np )\n Z ! < 1%

el
Let t = W for each i, then by (6)
1 - .
sup <~ Zz SMi(t)P = oo
n n icl,

which contradicts (7i7). Hence (i) must holds. [ |
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Theorem 6. Let (M;) be a sequence of Orlicz functions. Then the
following statements are equivalent:

(,L) wo()\, Miapv u, S)Am C wO()\apa u, S)Am;

(#4) wo(A, Mi, p, u, $)am C oo (A, P, U, 8)Am,

(ifi) inf = i M;(t) < oo for all t> 0.
niel,

Proof. (i) = (i7): It is obvious.
(#4) = (4i7): Let (i7) holds. Suppose (iii) does not hold. Then

1
i%f . Z i °*M;(t)?" = 0 for some t >0
i€l
and we can find a subinterval I, of the set of interval I;, such that

1

1
AT M(ry < =, r=1,23,....

(7)
)\n(k) iEIn(k) "

Let us define z = (x;) as following

m pr, i€ In(k)a
uiA T; = .
{ O, ] §é In(k)
Thus by (7), z € wo(A, p,u,s)am, but & ¢ ws (A, p,u, s)am which contra-
dicts (it). Hence (i77) must holds.
(#4i) = (4): Let (4i7) holds. Suppose that x € wo(\, M;, p, u, s)am. Then

1 4Am . Di
(8) — Z i °M; (M> — 0 as n — oo.
)\n : 1%
ZGIn
Again suppose that = ¢ wo(\,p,u,s)am. Then for some number £ > 0
and a subinterval I, of the set of interval I, we have wid™zi] o for

all 4. From properties of the Orlicz function, we can write MZ-(W)“ >
Mi (E)pi .
Consequently by (8), we have
1
lim ™ > i Mi(e)P =0

n—oo
i€ln
which contradicts (i7i). Hence (i) must holds. [ |

Theorem 7. Let (p;) be any bounded sequences of strictly positive real
numbers. Then
(1) If 0 <infp; <p; <1 for all i, then
w(A, Mi,u, ) xm C w(X, Mj,p,u, s)am,
(13) If 1 <p; <supp; = H < oo then
w(X, Mi, p,u, 8) ;m € w(A, Mj,u,s)am.
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Proof. (i) Let x € w(\, M;, u, s). Then since 0 < infp; < p; <1, we get

CAM . DPi AT
Ai S ('“’A xl') S%Zr% <“ZA x")
n P

icly " icl, p

and hence = € w(A, M;,p,u, s)Am.
(i) Let 1 < p; <supp; = H < oo and = € w(\, M;, p,u,s)am. Then for
each 0 < € < 1, there exists a positive integer ng such that

i€ln P

for all n > ng. This implies that

A AT | Pi
%Zi_sMi (’mA x2]> < %Zi_sMi (’mA x1]> .

ict, p ich, P
Therefore z € w(\, M;,u, s). [ ]

Theorem 8. Let 0 < p; < ¢; for all i and let (%) be bounded. Then
w()\7Mi,q,U,8)Am g w()‘a Mi7p7u7 S)Am.

A qi
Proof. Let z € w(\, M;,q,u,s)am. Write t; = [MZ(M)

ui:%foralliEN. Then 0 < p; <1 for all 2 € N. Take 0 < p < p; for all
i € N. Define the sequences (u;) and (v;) as follows:
For t; > 1, let u; = t; and v; = 0 and for t; < 1, let u; = 0 and v; = ¢;.
Then clearly for all ¢ € N we have t; = u; + v, té‘ = uf "+ vl Now it
follows that u}" < u; <t; and v} <ol

and

Therefore
iztlﬁ — iZ(qu‘_i_,UHi) < izt._i_izvﬂ'
Ap &= An ! D !
i€l i€l i€l i€l

Now for each 1,

A

" iel, icl,
Ny 1\ l-p
1 S 1 1—p| T=p
- (Z KAH ) 2 !(A) ]
Zeln leln

(23

1€ln
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and so
1 1 1 g
i . il .
Lyestye(iya)
icl, icl, i€ly
Hence = € w(\, M;, p,u, $)am. |

3. SyA"_statistical convergence

In this section, we introduce the concept of S;‘Am-statistical convergence
and give some inclusion relations related to these sequence spaces.
The notion of statistical convergence was introduced by Fast [16] and was

studied by [17], [18], [19] and [20].

Definition 1. A sequence is said to be S}fAm -statistically convergent to
l, if for any e > 0

1
lim — [{i € I, : |w;A™x; —le| > e}| = 0.
n—oo )\n

In this case, we write S¥A™ — limz or x; — L(S¥A™) and S¥A™ =
{z = (2;) : S2" —limz = [, for some [}.

If )\, = n, we shall write S*4™ instead of S}Am.

Let A denote the set of all non-decreasing sequences A = (\,,) of positive
numbers tending to oo such that Ap4+1 < Ay +1 and A = 1.

The proof of Theorem 9 and Theorem 10 are obtained by using the same
techniques of Mursaleen [19].

Theorem 9. Let A € A and u = (u;) € lo, then
(i) x; — L(w(\, u)am) = x; — L(SY¥2™) and the inclusion is strict,
(i) If x € loo(A™) and z; — L(S¥A™) then z; — L(w(\,u)am) and
hence x; — L(w(u)am) provided x = (x;) is not eventually constant,
(i11) {S¥2" Nlso(A™)} = {w(X, u)am N leo(A™)}
where loo(A™) = {z € w: (A™z;) € loo, m € N}.

Proof. (i) Let € > 0 be given and (x;) € w(A, u)am. Then we can write
L Z |wi Az — le| > S Z |lu; A™x; — le|
An ' ' T A ‘ ’
’LEI’n ZEI’rL
|uiAmzi—le|2€

1
> 7)\ |{1/ S In : |U1Amﬂjl — l€| > g}‘ €.
n

Hence x; — L(S¥A™).
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(i1) Let o € loo(A™), u € loo, ¥, — L(SYA™) and say |w;A™z; —le| < M
for all i. Given € > 0, we have

—ZIUZA x; —le|] = )\i Z lu; A"y — lel

"iel, n icl,

|uiAmz,L'7le|ZE

1 m
+ o Z |ui Ay — le|

which implies that z; — L(w(\, u)am).
Further, we have

1 & 1" 1
i=1 i=1 i€l
n—>An
< X Z lu; A x; — le| + —Z |u; A" x; — lel
ZEIn
< —Z u; A w; — le] .
ZEI'IL
Hence x; — L(w(u)am), since x; — L(w(\, u)am).
(7i7) This immediately follows from (i) and (7). [ |

It is easily seen that S“Am SUA™ for all A, since ’\#is bounded.
Now, we prove the following relation.

Theorem 10. If lin%linf ’\7" > 0 then S"A™ C Sf\LAm.
Proof. For given € > 0 we have
{i <n:|uAMx; —le| > e} D{iel,: |y A"x; —le| > €}.
Therefore
Ll < A e 2 e} > i € T jush™a — le] > <)
_ %i i € L [usA™; — le| > €}

Taking the limit as n — oo and using lim inf ’\7" > 0, we get
n

x; — L (S“Am) = x; — L (S“Am) .
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Theorem 11. Let (M;) be a sequence of Orlicz functions, 0 < h =
infp; < p; <supp; = H < 00 and u = (u;) € loo. Then w(A, M;, p,u)am C
SuA™,

Proof. Let x € w(\, M;,,p,u)am. Then there exists p > 0 such that

.1 lu; A™x; — le| \ P
k()

icl, P
Then
Di Di
1 lu; A™ax; — le| 1 lu; A™ax; — le|
N D BT Lt
"iel, " iel,
|uiAmaci7le|Zs
1 Z lu; A" x; — le| o
b (e
An i€l P
|uiAmzifle‘<a
Di
. Z M <|ulAme — le|>
- A
n iel, P
‘uiAmzifle|Zs
> LS M) (whereS =2
= €1 where— = ¢
n iel, P
‘uiAmzifle|Zs
1 .
> = Z min{Mi(El)mfpl,Mi(&)H}
n iel,
‘uiAmxi—le|ZE
1 .
> )\7 H:Z S In : |U1Am$z — le\ > €}| min {Mi(€1)mfp’,Mi(€1)H} .
n
Hence x € Sf{Am. [ |

Theorem 12. Let 0 < h = infp; < p; < supp; = H < 00 and u =
(u;) € loo. Then

{S;\LAW N loo(Am)} = {w()‘a Miapa U)Am n loo(Am)} ’
Proof. By Theorem 11, we need only show that
{337 Nlso(A™)} © {w(X My, p,u)am Nloo(A™)}

Let y; = |u;A™x; — le| — 6(Sy).
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Since x € loo(A™) and u € I, so there exists K > 0 such that

M, <y> < K.
p

Then for a given € > 0 and for each n € N, we have

. i
1 |ui A™z; — le| \ P 1 |u; A™z; — lel
5?7253 ‘ <) W > M (

" iel, P P

pi

1 |ui A™x; — le|>
Loy
N p
1
< max (KhKH> o {i eI : |wiA™z; —le| > e}

s ([ ()] ()]
Hence & € {w(\, My, p,u)am N loo(A™)}. |
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