$\frac{F A S C I C U L I M A T H E M A T I C I}{Nr 41}$

Metin Başarır and Selma Altundağ

SOME GENERALIZED DIFFERENCE SEQUENCE SPACES DEFINED BY A SEQUENCE OF ORLICZ FUNCTIONS

ABSTRACT. In this paper, we define and examine some new difference sequence spaces combining with de la Vallee-Poussin mean and a sequence of Orlicz functions which completes the gap of the literature. We also introduce the concept of $S_{\lambda}^{u\Delta^m}$ -statistical convergent sequences and give some inclusion relations between these defined spaces with the space of $S_{\lambda}^{u\Delta^m}$ -statistical convergent sequences.

KEY WORDS: difference sequence, Orlicz function, dela Vallee-Poussin means, statistical convergence.

AMS Mathematics Subject Classification: 40D25, 40A05, 40D05.

1. Introduction

Let w be the set of all sequences of real or complex numbers and l_{∞} , c and c_0 be, respectively, the Banach spaces of bounded, convergent and null sequences $x = (x_k)$ with the usual norm $||x|| = \sup_k |x_k|$.

Let $\lambda = (\lambda_n)$ be a non-decreasing sequence of positive numbers tending to ∞ and $\lambda_{n+1} \leq \lambda_n + 1$, $\lambda_1 = 1$.

The generalized de la Vallee-Poussin mean is defined by

$$t_n(x) = \frac{1}{\lambda_n} \sum_{k \in I_n} x_k$$

where $I_n = [n - \lambda_n + 1, n]$.

A sequence $x = (x_k)$ is said to be (V, λ) -summable to a number l [1] if $t_n(x) \to l$ as $n \to \infty$. If $\lambda_n = n$, then (V, λ) -summability and strongly (V, λ) -summability reduce to (C, 1)-summability and [C, 1]-summability, respectively.

An Orlicz function is a function $M : [0, \infty) \to [0, \infty)$, which is continuous, non-decreasing and convex with M(0) = 0, M(x) > 0 for x > 0 and $M(x) \to \infty$ as $x \to \infty$. If the convexity of an Orlicz function M is replaced by

$$M(x+y) \leq M(x) + M(y)$$

then this function is called modulus function, defined and discussed by Ruckle [2] and Maddox [3].

Lindenstrauss and Tzafriri [4] used the idea of Orlicz function to construct the sequence space

$$l_M = \left\{ x \in w : \sum_{k=1}^{\infty} M\left(\frac{|x_k|}{\rho}\right) < \infty, \text{ for some } \rho > 0 \right\}.$$

The space l_M becomes a Banach space with the norm

$$||x|| = \inf\left\{\rho > 0 : \sum_{k=1}^{\infty} M\left(\frac{|x_k|}{\rho}\right) \le 1\right\}$$

which is called an Orlicz sequence space. The space l_M is closely related to the space l_p which is an Orlicz sequence space with $M(x) = x^p$ for $1 \leq p < \infty$. Orlicz sequence spaces were introduced and studied by Parashar and Choudhary [5], Nuray and Gulcu [6], Bhardwaj and Singh [7] and many others.

It is well known that if M is a convex function and M(0) = 0, then $M(tx) \le tM(x)$ for all t with 0 < t < 1.

An Orlicz function M is said to satisfy Δ_2 -condition for all values of u, if there exists constant K > 0, such that $M(2u) \leq KM(u)$ $(u \geq 0)$. The Δ_2 -condition is equivalent to the inequality $M(Lu) \leq K.L.M(u)$ for all values of u and for L > 1 being satisfied [8].

The difference sequence space $X(\Delta)$ was introduced by Kızmaz [9] as follows:

$$X(\Delta) = \{x = (x_k) \in w : (\Delta x_k) \in X\}$$

for $X = l_{\infty}$, c and c_0 ; where $\Delta x_k = x_k - x_{k+1}$ for all $k \in \mathbb{N}$.

The notion of difference sequence spaces was further generalized by Et and Colak [10] as follows:

$$X(\Delta^m) = \{x = (x_k) \in w : (\Delta^m x_k) \in X\}$$

for $X = l_{\infty}$, c and c_0 , where $\Delta^m x_k = \Delta^{m-1} x_k - \Delta^{m-1} x_{k+1}$ and $\Delta^0 x_k = x_k$ for all $k \in$. Taking $X = l_{\infty}(p)$, c(p) and $c_0(p)$, these sequence spaces has been generalized by Et and Basarır [11].

The generalized difference has the following binomial representation:

$$\Delta^m x_k = \sum_{v=0}^m (-1)^v \begin{pmatrix} m \\ v \end{pmatrix} x_{k+v}$$

for all $k \in \mathbb{N}$.

Subsequently, difference sequence spaces have been discussed by several authors [12], [13] and [14].

The following inequality will be used throughout this paper. Let $p = (p_k)$ be a sequence of positive real numbers with $0 < p_k \leq \sup p_k = G$, and let $D = \max(1, 2^{G-1})$. Then for $a_k, b_k \in \mathbb{C}$, the set of complex numbers for all $k \in \mathbb{N}$, we have [15]

(1)
$$|a_k + b_k|^{p_k} \leq D\{|a_k|^{p_k} + |b_k|^{p_k}\}.$$

Now we introduce the following sequence spaces.

Let $M = (M_i)$ be a sequence of Orlicz functions, m be a positive integer and $u = (u_i)$ be any sequence such that $u_i \neq 0$ for all i, then we define:

$$w_0(\lambda, M_i, p, u, s)_{\Delta^m} = \{ x \in w : \lim_{n \to \infty} \frac{1}{\lambda_n} \sum_{i \in I_n} i^{-s} M_i \left(\frac{|u_i \Delta^m x_i|}{\rho} \right)^{p_i} = 0,$$

for some $\rho > 0, \ s \ge 0 \}$

$$w(\lambda, M_i, p, u, s)_{\Delta^m} = \{ x \in w : \lim_{n \to \infty} \frac{1}{\lambda_n} \sup_{i \in I_n} i^{-s} M_i (\frac{|u_i \Delta^m x_i - le|}{\rho})^{p_i} = 0,$$

for some $l, \rho > 0, s \ge 0 \}$

and

$$w_{\infty}(\lambda, M_i, p, u, s)_{\Delta^m} = \{ x \in w : \sup_{n} \frac{1}{\lambda_n} \sup_{i \in I_n} i^{-s} M_i (\frac{|u_i \Delta^m x_i|}{\rho})^{p_i} < \infty,$$
for some $\rho > 0, \ s \ge 0 \}$

where $u_i \Delta^m x_i = (u_i \Delta^{m-1} x_i - u_{i+1} \Delta^{m-1} x_{i+1})$ such that $u_i \Delta^m x_i = \sum_{n=0}^m (-1)^n \times mnu_{i+n} x_{i+n}, u_i \Delta^0 x_i = (u_i x_i)$ and $u_i \Delta x_i = (u_i x_i - u_{i+1} x_{i+1}).$ Here for convenience, we put $M_i (\frac{|u_i \Delta^m x_i - le|}{\rho})^{p_i}$ instead of $[M_i (\frac{|u_i \Delta^m x_i - le|}{\rho})]^{p_i}$.

We get the following sequence spaces from the above sequence spaces on giving particular values to $s, m, M = (M_i), p = (p_i), u = (u_i)$ for all i.

(i) If $M_i(x) = x$ for all *i*, then we write $w_0(\lambda, p, u, s)_{\Delta^m}$, $w(\lambda, p, u, s)_{\Delta^m}$ and $w_{\infty}(\lambda, p, u, s)_{\Delta^m}$, respectively.

(*ii*) If $M_i(x) = x$ and $p = (p_i) = 1$ for all i, u = e, s = 0 and m = 1 then we write $w_0(\lambda)_{\Delta}, w_0(\lambda)_{\Delta}$ and $w_{\infty}(\lambda)_{\Delta}$, respectively.

2. Main results

In this section, we examine some topological properties of $w_0(\lambda, M_i, p, u, s)_{\Delta^m}$, $w(\lambda, M_i, p, u, s)_{\Delta^m}$ and $w_{\infty}(\lambda, M_i, p, u, s)_{\Delta^m}$ spaces and investigate some inclusion relations between these spaces.

Theorem 1. Let (M_i) be a sequence of Orlicz functions, m be a positive integer and $p = (p_i)$ be a bounded sequence of strictly positive real numbers. Then $w_0(\lambda, M_i, p, u, s)_{\Delta^m}$, $w(\lambda, M_i, p, u, s)_{\Delta^m}$ and $w_{\infty}(\lambda, M_i, p, u, s)_{\Delta^m}$ are linear spaces over the set of complex numbers.

Proof. It is easy to prove this theorem using (1).

Theorem 2. Let (M_i) be a sequence of Orlicz functions and m be a positive integer. If $\sup(M_i(x))^{p_i} < \infty$ for all fixed x > 0 then

$$w(\lambda, M_i, p, u, s)_{\Delta^m} \subset w_\infty(\lambda, M_i, p, u, s)_{\Delta^m}$$

Proof. Let $x \in w(\lambda, M_i, p, u, s)_{\Delta^m}$. Then there exists some positive ρ_1 such that

$$\lim_{n \to \infty} \frac{1}{\lambda_n} \sum_{i \in I_n} i^{-s} M_i \left(\frac{|u_i \Delta^m x_i - le|}{\rho_1} \right)^{p_i} = 0.$$

Define $\rho = 2\rho_1$. Since M_i is non-decreasing and convex, for each *i*, by using (1), we have

$$\sup_{n} \frac{1}{\lambda_{n}} \sum_{i \in I_{n}} i^{-s} M_{i} \left(\frac{|u_{i} \Delta^{m} x_{i}|}{\rho} \right)^{p_{i}}$$

$$= \sup_{n} \frac{1}{\lambda_{n}} \sum_{i \in I_{n}} i^{-s} M_{i} \left(\frac{|u_{i} \Delta^{m} x_{i}| - le + le}{\rho} \right)^{p_{i}}$$

$$\leq D \left\{ \sup_{n} \frac{1}{\lambda_{n}} \sum_{i \in I_{n}} i^{-s} \frac{1}{2^{p_{i}}} M_{i} \left(\frac{|u_{i} \Delta^{m} x_{i}| - le}{\rho_{1}} \right)^{p_{i}}$$

$$+ \sup_{n} \frac{1}{\lambda_{n}} \sum_{i \in I_{n}} i^{-s} \frac{1}{2^{p_{i}}} M_{i} \left(\frac{|le|}{\rho_{1}} \right)^{p_{i}} \right\} < \infty.$$

Hence $x \in w_{\infty}(\lambda, M_i, p, u, s)_{\Delta^m}$. This completes the proof.

Theorem 3. Let (M_i) be a sequence of Orlicz functions, m be a positive integer and $0 < h = \inf p_i$. Then $w_{\infty}(\lambda, M_i, p, u, s)_{\Delta^m} \subset w_0(\lambda, p, u, s)_{\Delta^m}$ if and only if

(2)
$$\lim_{n \to \infty} \frac{1}{\lambda_n} \sum_{i \in I_n} i^{-s} M_i(t)^{p_i} = \infty$$

for some t > 0.

Proof. Let $x \in w_{\infty}(\lambda, M_i, p, u, s)_{\Delta^m} \subset w_0(\lambda, p, u, s)_{\Delta^m}$. Suppose that (2) does not hold. Therefore there is a subinterval $I_{n(k)}$ of the set of interval I_n and a number $t_0 > 0$, where $t_0 = \frac{|u_i \Delta^m x_i|}{\rho}$ for all i such that

(3)
$$\frac{1}{\lambda_{n(k)}} \sum_{i \in I_{n(k)}} i^{-s} M_i(t_0)^{p_i} \leq K < \infty, \qquad k = 1, 2, 3, \dots$$

Let us define $x = (x_i)$ as following

$$u_i \Delta^m x_i = \begin{cases} \rho t_0, & i \in I_{n(k)}, \\ 0, & i \notin I_{n(k)}. \end{cases}$$

Thus by (3), $x \in w_{\infty}(\lambda, M_i, p, u, s)_{\Delta^m}$. But $x \notin w_0(\lambda, p, u)_{\Delta}$. Hence (2) must hold.

Conversely, suppose that (2) holds and that $x \in w_{\infty}(\lambda, M_i, p, u, s)_{\Delta^m}$. Then for each n

(4)
$$\frac{1}{\lambda_n} \sum_{i \in I_n} i^{-s} M_i \left(\frac{|u_i \Delta^m x_i|}{\rho} \right)^{p_i} \leq K < \infty.$$

Suppose that $x \notin w_0(\lambda, p, u, s)_{\Delta^m}$. Then for some number $0 < \varepsilon < 1$, there is a number i_0 such that for a subinterval I_{n_1} of the set of interval I_n , $\frac{|u_i \Delta^m x_i|}{\rho} > \varepsilon$ for $i \ge i_0$. From properties of the Orlicz function, we can write $M_i(\frac{|u_i \Delta^m x_i|}{\rho})^{p_i} \ge M_i(\varepsilon)^{p_i}$ which contradicts (2), by using (4). Hence we get $x \in w_{\infty}(\lambda, M_i, p, u, s)_{\Delta^m} \subset w_0(\lambda, p, u, s)_{\Delta^m}$. This completes the proof.

Theorem 4. Let $0 < h = \inf p_i \leq p_i \leq \sup p_i = H < \infty$. Then for a sequence of Orlicz functions (M_i) which satisfies the Δ_2 -condition, we have $w_0(\lambda, p, u, s)_{\Delta^m} \subset w_0(\lambda, M_i, p, u, s)_{\Delta^m}, w(\lambda, p, u, s)_{\Delta^m} \subset w(\lambda, M_i, p, u, s)_{\Delta^m}$ and $w_{\infty}(\lambda, p, u, s)_{\Delta^m} \subset w_{\infty}(\lambda, M_i, p, u, s)_{\Delta^m}$.

Proof. Let $x \in w(\lambda, p, u, s)_{\Delta^m}$. Then we have

$$\frac{1}{\lambda_n} \sum_{i \in I_n} i^{-s} M_i \left(\frac{|u_i \Delta^m x_i - le|}{\rho} \right)^{p_i} \to 0 \text{ as } n \to \infty, \text{ for some } l.$$

Let $\varepsilon > 0$ and choose δ with $0 < \delta < 1$ such that $M_i(t) < \varepsilon$ for $0 \le t \le \delta$. Then we can write

$$\frac{1}{\lambda_n} \sum_{i \in I_n} i^{-s} M_i \left(\frac{|u_i \Delta^m x_i - le|}{\rho} \right)^{p_i} = \frac{1}{\lambda_n} \sum_{\substack{i \in I_n \\ \frac{|u_i \Delta^m x_i - le|}{\rho} \le \delta}} i^{-s} M_i \left(\frac{|u_i \Delta^m x_i - le|}{\rho} \right)^{p_i} = \sum_1 + \sum_2.$$

For the first summation above, we immediately write

$$\sum_{1} = \frac{1}{\lambda_{n}} \sum_{\substack{i \in I_{n} \\ \frac{|u_{i}\Delta^{m}x_{i} - le|}{\rho} \le \delta}} i^{-s} M_{i} \left(\frac{|u_{i}\Delta^{m}x_{i} - le|}{\rho}\right)^{p_{i}} < \max(\varepsilon, \varepsilon^{H})$$

by using continuity of M_i . For the second summation, we will make the following procedure. We have

$$\left(\frac{|u_i\Delta^m x_i - le|}{\rho}\right) \ < \ 1 + \frac{\left(\frac{|u_i\Delta^m x_i - le|}{\rho}\right)}{\delta}$$

Since M_i is non-decreasing and convex, it follows that

$$\begin{split} M_i\left(\frac{|u_i\Delta^m x_i - le|}{\rho}\right) &< M_i\left\{1 + \frac{\left(\frac{|u_i\Delta^m x_i - le|}{\rho}\right)}{\delta}\right\} \\ &\leq \frac{1}{2}M_i(2) + \frac{1}{2}M_i\left\{2\frac{\left(\frac{|u_i\Delta^m x_i - le|}{\rho}\right)}{\delta}\right\}. \end{split}$$

Since M_i satisfies the Δ_2 -condition, we can write

$$M_{i}\left(\frac{|u_{i}\Delta^{m}x_{i}-le|}{\rho}\right) \leq \frac{1}{2}L\left\{\frac{\left(\frac{|u_{i}\Delta^{m}x_{i}-le|}{\rho}\right)}{\delta}\right\}M_{i}(2) + \frac{1}{2}L\left\{\frac{\left(\frac{|u_{i}\Delta^{m}x_{i}-le|}{\rho}\right)}{\delta}\right\}M_{i}(2) = L\left\{\frac{\left(\frac{|u_{i}\Delta^{m}x_{i}-le|}{\rho}\right)}{\delta}\right\}M_{i}(2).$$

In this way, we write

$$\sum_{2} = \max\left\{1, \left[\frac{LM_{i}(2)}{\delta}\right]^{H}\right\} \frac{1}{\lambda_{n}} \sum_{i \in I_{n}} i^{-s} \left(\frac{|u_{i}\Delta^{m}x_{i} - le|}{\rho}\right)^{p_{i}}$$

Taking the limit as $\varepsilon \to 0$ and $n \to \infty$, it follows that $x \in w(\lambda, M_i, p, u, s)_{\Delta^m}$. Following similar arguments, we can prove that $w_0(\lambda, p, u, s)_{\Delta^m} \subset w_0(\lambda, M_i, p, u, s)_{\Delta^m}$ and $w_{\infty}(\lambda, p, u, s)_{\Delta^m} \subset w_{\infty}(\lambda, M_i, p, u, s)_{\Delta^m}$.

Theorem 5. Let (M_i) be a sequence of Orlicz functions. Then the following statements are equivalent:

(i) $w_{\infty}(\lambda, p, u, s)_{\Delta^m} \subset w_{\infty}(\lambda, M_i, p, u, s)_{\Delta^m},$ (ii) $w_0(\lambda, p, u, s)_{\Delta^m} \subset w_{\infty}(\lambda, M_i, p, u, s)_{\Delta^m},$ (iii) $\sup_n \frac{1}{\lambda_n} \sum_{i \in I_n} i^{-s} M_i(t)^{p_i} < \infty \text{ for all } t > 0.$ **Proof.** $(i) \Rightarrow (ii)$: Let (i) holds. To verify (ii), it is enough to prove $w_0(\lambda, p, u, s)_{\Delta^m} \subset w_{\infty}(\lambda, p, u, s)_{\Delta^m}$. Let $x \in w_0(\lambda, p, u, s)_{\Delta^m}$. Then there exists $n \ge n_0$, for $\varepsilon > 0$, such that

$$\frac{1}{\lambda_n} \sum_{i \in I_n} i^{-s} \left(\frac{|u_i \Delta^m x_i|}{\rho} \right)^{p_i} < \varepsilon.$$

Hence there exists K > 0 such that

$$\sup_{n} \frac{1}{\lambda_{n}} \sum_{i \in I_{n}} i^{-s} \left(\frac{|u_{i} \Delta^{m} x_{i}|}{\rho} \right)^{p_{i}} < K.$$

So we get $x \in w_{\infty}(\lambda, p, u, s)_{\Delta^m}$.

 $(ii) \Rightarrow (iii)$: Let (ii) holds. Suppose (iii) does not hold. Then for some t > 0

$$\sup_{n} \frac{1}{\lambda_n} \sum_{i \in I_n} i^{-s} M_i(t)^{p_i} = \infty$$

and we can find a subinterval $I_{n(k)}$ of the set of interval I_n such that

(5)
$$\frac{1}{\lambda_{n(k)}} \sum_{i \in I_{n(k)}} i^{-s} M_i \left(\frac{1}{r}\right)^{p_i} > r, \qquad r = 1, 2, 3, \dots$$

Let us define $x = (x_i)$ as following

$$u_i \Delta^m x_i = \begin{cases} \frac{\rho}{r}, & i \in I_{n(k)}, \\ 0, & i \notin I_{n(k)}. \end{cases}$$

Then $x \in w_0(\lambda, p, u, s)_{\Delta^m}$, but by (5) $x \notin w_{\infty}(\lambda, M_i, p, u, s)_{\Delta^m}$, which contradicts (*ii*). Hence (*iii*) must holds.

 $(iii) \Rightarrow (i)$: Let (iii) holds and $x \in w_{\infty}(\lambda, p, u, s)_{\Delta^m}$. Suppose that $x \notin w_{\infty}(\lambda, M_i, p, u, s)_{\Delta^m}$. Then for $x \in w_{\infty}(\lambda, p, u, s)_{\Delta^m}$

(6)
$$\sup_{n} \frac{1}{\lambda_{n}} \sum_{i \in I_{n}} i^{-s} M_{i} \left(\frac{|u_{i} \Delta^{m} x_{i}|}{\rho} \right)^{p_{i}} = \infty.$$

Let $t = \frac{|u_i \Delta^m x_i|}{\rho}$ for each i, then by (6)

$$\sup_{n} \frac{1}{\lambda_{n}} \sum_{i \in I_{n}} i^{-s} M_{i}(t)^{p_{i}} = \infty$$

which contradicts (iii). Hence (i) must holds.

Theorem 6. Let (M_i) be a sequence of Orlicz functions. Then the following statements are equivalent:

(i) $w_0(\lambda, M_i, p, u, s)_{\Delta^m} \subset w_0(\lambda, p, u, s)_{\Delta^m},$ (ii) $w_0(\lambda, M_i, p, u, s)_{\Delta^m} \subset w_{\infty}(\lambda, p, u, s)_{\Delta^m},$ (iii) $\inf_n \frac{1}{\lambda_n} \sum_{i \in I_n} i^{-s} M_i(t)^{p_i} < \infty \text{ for all } t > 0.$

Proof. $(i) \Rightarrow (ii)$: It is obvious.

 $(ii) \Rightarrow (iii)$: Let (ii) holds. Suppose (iii) does not hold. Then

$$\inf_{n} \frac{1}{\lambda_{n}} \sum_{i \in I_{n}} i^{-s} M_{i}(t)^{p_{i}} = 0 \quad \text{for some } t > 0$$

and we can find a subinterval $I_{n(k)}$ of the set of interval I_n such that

(7)
$$\frac{1}{\lambda_{n(k)}} \sum_{i \in I_{n(k)}} i^{-s} M_i(r)^{p_i} < \frac{1}{r}, \qquad r = 1, 2, 3, \dots$$

Let us define $x = (x_i)$ as following

$$u_i \Delta^m x_i = \begin{cases} \rho r, & i \in I_{n(k)}, \\ 0, & i \notin I_{n(k)}. \end{cases}$$

Thus by (7), $x \in w_0(\lambda, p, u, s)_{\Delta^m}$, but $x \notin w_{\infty}(\lambda, p, u, s)_{\Delta^m}$ which contradicts (*ii*). Hence (*iii*) must holds.

 $(iii) \Rightarrow (i)$: Let (iii) holds. Suppose that $x \in w_0(\lambda, M_i, p, u, s)_{\Delta^m}$. Then

(8)
$$\frac{1}{\lambda_n} \sum_{i \in I_n} i^{-s} M_i \left(\frac{|u_i \Delta^m x_i|}{\rho} \right)^{p_i} \to 0 \text{ as } n \to \infty.$$

Again suppose that $x \notin w_0(\lambda, p, u, s)_{\Delta^m}$. Then for some number $\varepsilon > 0$ and a subinterval $I_{n(k)}$ of the set of interval I_n , we have $\frac{|u_i \Delta^m x_i|}{\rho} > \varepsilon$ for all *i*. From properties of the Orlicz function, we can write $M_i(\frac{|u_i \Delta^m x_i|}{\rho})^{p_i} \ge M_i(\varepsilon)^{p_i}$.

Consequently by (8), we have

$$\lim_{n \to \infty} \frac{1}{\lambda_n} \sum_{i \in I_n} i^{-s} M_i(\varepsilon)^{p_i} = 0$$

which contradicts (iii). Hence (i) must holds.

Theorem 7. Let (p_i) be any bounded sequences of strictly positive real numbers. Then

(i) If
$$0 < \inf p_i \le p_i \le 1$$
 for all i , then
 $w(\lambda, M_i, u, s)_{\Delta^m} \subseteq w(\lambda, M_i, p, u, s)_{\Delta^m}$,
(ii) If $1 \le p_i \le \sup p_i = H < \infty$ then
 $w(\lambda, M_i, p, u, s)_{\Delta^m} \subseteq w(\lambda, M_i, u, s)_{\Delta^m}$.

Proof. (i) Let $x \in w(\lambda, M_i, u, s)$. Then since $0 < \inf p_i \le p_i \le 1$, we get

$$\frac{1}{\lambda_n} \sum_{i \in I_n} i^{-s} M_i \left(\frac{|u_i \Delta^m x_i|}{\rho} \right)^{p_i} \le \frac{1}{\lambda_n} \sum_{i \in I_n} i^{-s} M_i \left(\frac{|u_i \Delta^m x_i|}{\rho} \right)$$

and hence $x \in w(\lambda, M_i, p, u, s)_{\Delta^m}$.

(*ii*) Let $1 \leq p_i \leq \sup p_i = H < \infty$ and $x \in w(\lambda, M_i, p, u, s)_{\Delta^m}$. Then for each $0 < \varepsilon < 1$, there exists a positive integer n_0 such that

$$\frac{1}{\lambda_n} \sum_{i \in I_n} i^{-s} M_i\left(\frac{|u_i \Delta^m x_i|}{\rho}\right) \le \varepsilon < 1$$

for all $n \ge n_0$. This implies that

$$\frac{1}{\lambda_n} \sum_{i \in I_n} i^{-s} M_i \left(\frac{|u_i \Delta^m x_i|}{\rho} \right) \leq \frac{1}{\lambda_n} \sum_{i \in I_n} i^{-s} M_i \left(\frac{|u_i \Delta^m x_i|}{\rho} \right)^{p_i}$$

Therefore $x \in w(\lambda, M_i, u, s)$.

Theorem 8. Let $0 < p_i \leq q_i$ for all i and let $(\frac{p_i}{q_i})$ be bounded. Then $w(\lambda, M_i, q, u, s)_{\Delta^m} \subseteq w(\lambda, M_i, p, u, s)_{\Delta^m}$.

Proof. Let $x \in w(\lambda, M_i, q, u, s)_{\Delta^m}$. Write $t_i = \left[M_i(\frac{|u_i\Delta^m x_i - le|}{\rho})\right]^{q_i}$ and $\mu_i = \frac{p_i}{q_i}$ for all $i \in \mathbb{N}$. Then $0 < \mu_i \le 1$ for all $i \in \mathbb{N}$. Take $0 < \mu < \mu_i$ for all $i \in \mathbb{N}$. Define the sequences (u_i) and (v_i) as follows:

For $t_i \ge 1$, let $u_i = t_i$ and $v_i = 0$ and for $t_i < 1$, let $u_i = 0$ and $v_i = t_i$.

Then clearly for all $i \in \mathbb{N}$ we have $t_i = u_i + v_i$, $t_i^{\mu_i} = u_i^{\mu_i} + v_i^{\mu_i}$. Now it follows that $u_i^{\mu_i} \leq u_i \leq t_i$ and $v_i^{\mu_i} \leq v_i^{\mu}$.

Therefore

$$\frac{1}{\lambda_n}\sum_{i\in I_n}t_i^{\mu_i} = \frac{1}{\lambda_n}\sum_{i\in I_n}(u_i^{\mu_i}+v_i^{\mu_i}) \leq \frac{1}{\lambda_n}\sum_{i\in I_n}t_i + \frac{1}{\lambda_n}\sum_{i\in I_n}v_i^{\mu}.$$

Now for each i,

$$\frac{1}{\lambda_n} \sum_{i \in I_n} v_i^{\mu} = \sum_{i \in I_n} \left(\frac{1}{\lambda_n} v_i \right)^{\mu} \left(\frac{1}{\lambda_n} \right)^{1-\mu} \\
\leq \left(\sum_{i \in I_n} \left[\left(\frac{1}{\lambda_n} v_i \right)^{\mu} \right]^{\frac{1}{\mu}} \right)^{\mu} \left(\sum_{i \in I_n} \left[\left(\frac{1}{\lambda_n} \right)^{1-\mu} \right]^{\frac{1}{1-\mu}} \right)^{1-\mu} \\
= \left(\frac{1}{\lambda_n} \sum_{i \in I_n} v_i \right)^{\mu}$$

and so

$$\frac{1}{\lambda_n} \sum_{i \in I_n} t_i^{\mu_i} \leq \frac{1}{\lambda_n} \sum_{i \in I_n} t_i + \left(\frac{1}{\lambda_n} \sum_{i \in I_n} v_i\right)^{\mu}.$$

Hence $x \in w(\lambda, M_i, p, u, s)_{\Delta^m}$.

3. $S_{\lambda}^{u\Delta^{m}}$ -statistical convergence

In this section, we introduce the concept of $S_{\lambda}^{u\Delta^m}$ -statistical convergence and give some inclusion relations related to these sequence spaces.

The notion of statistical convergence was introduced by Fast [16] and was studied by [17], [18], [19] and [20].

Definition 1. A sequence is said to be $S_{\lambda}^{u\Delta^m}$ -statistically convergent to l, if for any $\varepsilon > 0$

$$\lim_{n \to \infty} \frac{1}{\lambda_n} |\{i \in I_n : |u_i \Delta^m x_i - le| \ge \varepsilon\}| = 0.$$

In this case, we write $S_{\lambda}^{u\Delta^m} - \lim x$ or $x_i \to L(S_{\lambda}^{u\Delta^m})$ and $S_{\lambda}^{u\Delta^m} = \{x = (x_i) : S_{\lambda}^{u\Delta^m} - \lim x = l, \text{ for some } l\}.$

If $\lambda_n = n$, we shall write $S^{u\Delta^m}$ instead of $S^{u\Delta^m}_{\lambda}$.

Let Λ denote the set of all non-decreasing sequences $\lambda = (\lambda_n)$ of positive numbers tending to ∞ such that $\lambda_{n+1} \leq \lambda_n + 1$ and $\lambda_1 = 1$.

The proof of Theorem 9 and Theorem 10 are obtained by using the same techniques of Mursaleen [19].

Theorem 9. Let $\lambda \in \Lambda$ and $u = (u_i) \in l_{\infty}$, then (i) $x_i \to L(w(\lambda, u)_{\Delta^m}) \Rightarrow x_i \to L(S_{\lambda}^{u\Delta^m})$ and the inclusion is strict, (ii) If $x \in l_{\infty}(\Delta^m)$ and $x_i \to L(S_{\lambda}^{u\Delta^m})$ then $x_i \to L(w(\lambda, u)_{\Delta^m})$ and hence $x_i \to L(w(u)_{\Delta^m})$ provided $x = (x_i)$ is not eventually constant, (iii) $\{S_{\lambda}^{u\Delta^m} \cap l_{\infty}(\Delta^m)\} = \{w(\lambda, u)_{\Delta^m} \cap l_{\infty}(\Delta^m)\}$ where $l_{\infty}(\Delta^m) = \{x \in w : (\Delta^m x_i) \in l_{\infty}, m \in \mathbb{N}\}.$

Proof. (i) Let $\varepsilon > 0$ be given and $(x_i) \in w(\lambda, u)_{\Delta^m}$. Then we can write

$$\frac{1}{\lambda_n} \sum_{i \in I_n} |u_i \Delta^m x_i - le| \geq \frac{1}{\lambda_n} \sum_{\substack{i \in I_n \\ |u_i \Delta^m x_i - le| \ge \varepsilon}} |u_i \Delta^m x_i - le| \\
\geq \frac{1}{\lambda_n} |\{i \in I_n : |u_i \Delta^m x_i - le| \ge \varepsilon\}| \varepsilon$$

Hence $x_i \to L(S^{u\Delta^m}_{\lambda})$.

(*ii*) Let $x \in l_{\infty}(\Delta^m)$, $u \in l_{\infty}$, $x_i \to L(S_{\lambda}^{u\Delta^m})$ and say $|u_i\Delta^m x_i - le| \le M$ for all i. Given $\varepsilon > 0$, we have

$$\begin{aligned} \frac{1}{\lambda_n} \sum_{i \in I_n} |u_i \Delta^m x_i - le| &= \frac{1}{\lambda_n} \sum_{\substack{i \in I_n \\ |u_i \Delta^m x_i - le| \ge \varepsilon}} |u_i \Delta^m x_i - le| \\ &+ \frac{1}{\lambda_n} \sum_{\substack{i \in I_n \\ |u_i \Delta^m x_i - le| < \varepsilon}} |u_i \Delta^m x_i - le| \\ &\leq \frac{M}{\lambda_n} |\{i \in I_n : |u_i \Delta^m x_i - le| \ge \varepsilon\}| + \varepsilon \end{aligned}$$

which implies that $x_i \to L(w(\lambda, u)_{\Delta^m})$.

Further, we have

$$\begin{aligned} \frac{1}{n} \sum_{i=1}^{n} |u_i \Delta^m x_i - le| &\leq \frac{1}{n} \sum_{i=1}^{n-\lambda_n} |u_i \Delta^m x_i - le| + \frac{1}{n} \sum_{i \in I_n} |u_i \Delta^m x_i - le| \\ &\leq \frac{1}{\lambda_n} \sum_{i=1}^{n-\lambda_n} |u_i \Delta^m x_i - le| + \frac{1}{\lambda_n} \sum_{i \in I_n} |u_i \Delta^m x_i - le| \\ &\leq \frac{2}{\lambda_n} \sum_{i \in I_n} |u_i \Delta^m x_i - le| \,. \end{aligned}$$

Hence $x_i \to L(w(u)_{\Delta^m})$, since $x_i \to L(w(\lambda, u)_{\Delta^m})$.

(iii) This immediately follows from (i) and (ii).

It is easily seen that $S_{\lambda}^{u\Delta^m} \subset S^{u\Delta^m}$ for all λ , since $\frac{\lambda_n}{n}$ is bounded. Now, we prove the following relation.

Theorem 10. If $\liminf_{n} \frac{\lambda_n}{n} > 0$ then $S^{u\Delta^m} \subset S^{u\Delta^m}_{\lambda}$.

Proof. For given $\varepsilon > 0$ we have

$$\{i \le n : |u_i \Delta^m x_i - le| \ge \varepsilon\} \supset \{i \in I_n : |u_i \Delta^m x_i - le| \ge \varepsilon\}.$$

Therefore

$$\frac{1}{n} \left| \{ i \le n : |u_i \Delta^m x_i - le| \ge \varepsilon \} \right| \ge \frac{1}{n} \left| \{ i \in I_n : |u_i \Delta^m x_i - le| \ge \varepsilon \} \right| \\ = \frac{\lambda_n}{n} \frac{1}{\lambda_n} \left| \{ i \in I_n : |u_i \Delta^m x_i - le| \ge \varepsilon \} \right|.$$

Taking the limit as $n \to \infty$ and using $\liminf_n \frac{\lambda_n}{n} > 0$, we get

$$x_i \to L\left(S^{u\Delta^m}\right) \Rightarrow x_i \to L\left(S^{u\Delta^m}_\lambda\right).$$

Theorem 11. Let (M_i) be a sequence of Orlicz functions, $0 < h = \inf p_i \leq p_i \leq \sup p_i = H < \infty$ and $u = (u_i) \in l_{\infty}$. Then $w(\lambda, M_i, p, u)_{\Delta^m} \subset S_{\lambda}^{u\Delta^m}$.

Proof. Let $x \in w(\lambda, M_i, p, u)_{\Delta^m}$. Then there exists $\rho > 0$ such that

$$\lim_{n \to \infty} \frac{1}{\lambda_n} \sum_{i \in I_n} M_i \left(\frac{|u_i \Delta^m x_i - le|}{\rho} \right)^{p_i} = 0.$$

Then

$$\begin{split} \frac{1}{\lambda_n} \sum_{i \in I_n} &M_i \left(\frac{|u_i \Delta^m x_i - le|}{\rho} \right)^{p_i} = \frac{1}{\lambda_n} \sum_{\substack{i \in I_n \\ |u_i \Delta^m x_i - le| \ge \varepsilon}} &M_i \left(\frac{|u_i \Delta^m x_i - le|}{\rho} \right)^{p_i} \\ &+ \frac{1}{\lambda_n} \sum_{\substack{i \in I_n \\ |u_i \Delta^m x_i - le| < \varepsilon}} &M_i \left(\frac{|u_i \Delta^m x_i - le|}{\rho} \right)^{p_i} \\ &\ge \frac{1}{\lambda_n} \sum_{\substack{i \in I_n \\ |u_i \Delta^m x_i - le| \ge \varepsilon}} &M_i \left(\frac{|u_i \Delta^m x_i - le|}{\rho} \right)^{p_i} \\ &\ge \frac{1}{\lambda_n} \sum_{\substack{i \in I_n \\ |u_i \Delta^m x_i - le| \ge \varepsilon}} &M_i (\varepsilon_1)^{p_i} \quad (\text{where} \frac{\varepsilon}{\rho} = \varepsilon_1) \\ &\ge \frac{1}{\lambda_n} \sum_{\substack{i \in I_n \\ |u_i \Delta^m x_i - le| \ge \varepsilon}} &\min \left\{ M_i (\varepsilon_1)^{\inf p_i}, M_i (\varepsilon_1)^H \right\} \\ &\ge \frac{1}{\lambda_n} |\{i \in I_n : |u_i \Delta^m x_i - le| \ge \varepsilon\}| \min \left\{ M_i (\varepsilon_1)^{\inf p_i}, M_i (\varepsilon_1)^H \right\}. \end{split}$$

Hence $x \in S_{\lambda}^{u\Delta^m}$.

Theorem 12. Let $0 < h = \inf p_i \leq p_i \leq \sup p_i = H < \infty$ and $u = (u_i) \in l_{\infty}$. Then

$$\left\{S_{\lambda}^{u\Delta^m} \cap l_{\infty}(\Delta^m)\right\} = \left\{w(\lambda, M_i, p, u)_{\Delta^m} \cap l_{\infty}(\Delta^m)\right\}.$$

Proof. By Theorem 11, we need only show that

$$\left\{S_{\lambda}^{u\Delta^{m}} \cap l_{\infty}(\Delta^{m})\right\} \subset \left\{w(\lambda, M_{i}, p, u)_{\Delta^{m}} \cap l_{\infty}(\Delta^{m})\right\}.$$

Let $y_i = |u_i \Delta^m x_i - le| \to \theta(S_\lambda).$

Since $x \in l_{\infty}(\Delta^m)$ and $u \in l_{\infty}$, so there exists K > 0 such that

$$M_i\left(\frac{y_i}{\rho}\right) \leq K.$$

Then for a given $\varepsilon > 0$ and for each $n \in \mathbb{N}$, we have

$$\frac{1}{\lambda_n} \sum_{i \in I_n} M_i \left(\frac{|u_i \Delta^m x_i - le|}{\rho} \right)^{p_i} = \frac{1}{\lambda_n} \sum_{\substack{i \in I_n \\ |u_i \Delta^m x_i - le| \ge \varepsilon}} M_i \left(\frac{|u_i \Delta^m x_i - le|}{\rho} \right)^{p_i} \\ + \frac{1}{\lambda_n} \sum_{\substack{i \in I_n \\ |u_i \Delta^m x_i - le| < \varepsilon}} M_i \left(\frac{|u_i \Delta^m x_i - le|}{\rho} \right)^{p_i} \\ \le \max \left(K^h K^H \right) \frac{1}{\lambda_n} \left| \{i \in I_n : |u_i \Delta^m x_i - le| \ge \varepsilon\} \right| \\ + \max \left(\left[M_i \left(\frac{\varepsilon}{\rho} \right) \right]^h, \left[M_i \left(\frac{\varepsilon}{\rho} \right) \right]^H \right).$$

Hence $x \in \{w(\lambda, M_i, p, u)_{\Delta^m} \cap l_{\infty}(\Delta^m)\}.$

Acknowledgement. We would like to express our gratitude to the reviewer for his/her careful reading and valuable suggestions which is improved the presentation of the paper.

References

- LEINDLER L., Über de la Vale Pounsische Summierbarkeit allgemeiner Orthogonalreihen, Acta Math. Acad. Sci. Hung., 16(1965), 375-378.
- [2] RUCKLE W.H., FK spaces in which the sequence of coordinate vectors in bounded, Can. J. Math., 25(1973), 973-978.
- [3] MADDOX I.J., Sequence spaces defined y a modulus, Math. Proc. Cambridge Philos. Soc., 100(1986), 161-166.
- [4] LINDENSTRAUSS J., TZAFRIRI L., On Orlicz sequence spaces, Isr. J. Math., 10(1971), 379-390.
- [5] PARASHAR S.D., CHOUDHARY B., Sequence spaces defined by Orlicz functions, Indian J. Pure Appl. Math., 25(4)(1994), 419-428.
- [6] NURAY F., GÜLCÜ A., Some new sequence spaces defined by Orlicz functions, Indian J. Pure Appl. Math., 26(1995), 1169-1176.
- [7] BHARDWAJ V.K., SINGH N., Some sequence spaces defined by Orlicz functions, *Demonstra. Math.*, 33(3)(2000), 571-582.
- [8] KRASNOSELSKII M.A., RUTITSKY Y.B., Convex function and Orlicz spaces, Noordhoff, Groningen, 1961.
- [9] KIZMAZ H., On certain sequence spaces, Canad. Math. Bull., 24(1981), 169-176.

- [10] ET M., ÇOLAK R., On some generalized difference sequence spaces, Soochow Journal of Math., 21(4)(1995), 377-386.
- [11] ET M., BAŞARIR M., On some new generalized difference sequence spaces, *Period. Math. Hung.*, 35(1997), 169-175.
- [12] AHMAD H., BATAINEH A., LAITH E. AZAR, On new difference sequence spaces defined by a sequence of Orlicz functions, J. Inst. Math. Comput. Sci. Math. Ser., 16(2003), 51-56.
- [13] BILGIN T., Some new difference sequence spaces defined by an Orlicz functions, *Filomat*, 17(2003), 1-8.
- [14] MALKOWSKY E., PARASHAR S.D., Matrix transformations inspaces of bounded and convergent difference sequences of order *m*, *Analysis*, 17(1997), 87-97.
- [15] MADDOX I.J., Spaces of strongly summable sequences, Quart. J. Math., 18(2)(1967), 345-355.
- [16] FAST H., Sur la convergence statistique, Colloq. Math., 2(1951), 241-244.
- [17] CONNOR J.S., The statistical and strong *p*-Cesaro convergence of sequences, *Analysis*, 8(1988), 47-63.
- [18] SALAT T., On statistically convergent sequences of real numbers, Math. Slovaca, 30(1980), 139-150.
- [19] MURSALEEN, λ -statistical convergence, Math. Slovaca, 50(1)(2000), 111-115.
- [20] ET M., NURAY F., Δ^m -statistical convergence, Indian J. Pure Appl. Math., 32(6)(2001), 961-969.

Metin Başarır Department of Mathematics Faculty of Science and Arts Sakarya University 54187, Sakarya, Turkey *e-mail:* basarir@sakarya.edu.tr

Selma Altundağ Department of Mathematics Faculty of Science and Arts Sakarya University 54187, Sakarya, Turkey *e-mail:* scaylan@sakarya.edu.tr

Received on 11.10.2007 and, in revised form, on 17.12.2008.