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Gülen Başcanbaz-Tunca and Yalcin Tuncer

SOME PROPERTIES OF MULTIVARIATE

BETA OPERATOR

Abstract. This work relates to multivariate beta operator which
is expressed shortly as Bn. We show that the operator pre-
serves Lipschitz constant of a Lipschitz continuous function and
semi-additivity of the relevant operand. Furthermore, we provide
an r-th order generalisation, B

[r]
n , of Bn.
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1. Introduction

The univariate linear positive beta operator is given by

(1) B∗
n (f ;x) =

1∫
0

tnx−1 (1− t)n(1−x)−1

B (nx, n (1− x))
f (t) dt,

whose kernel is the well-known beta probability density function with the
support (0, 1) such that t denotes a value of the generic (random) variable
T , where n∈N, 0 < x < 1 and f is any real measurable, Lebesgue inte-
grable function defined on [0, 1]. Corresponding to x = 0 and x = 1, we set
B∗

n (f ;x) = f (x) for all n. Khan [8] considers the beta operator B∗
n (f ;x) for

f ∈ C[0, 1], C[0, 1] := {f : f is real valued, continuous and defined on [0, 1]}.
Various results related to beta operator can be found in [2], [10] and ref-
erences therein. Another form of beta operator which is slightly different
from (1) can be found in [13], and yet a different type of beta operator is due
to Upreti [15]. The kernel of the latter consists of the probability density
function of the well-known F distribution of Probability Theory.

We can interpret and express (1) alternately in probabilistic terms. In
fact, the operator (1) corresponds to mathematical expectation operator
usually denoted as E[f ] for f ∈ C[0, 1] in Probability Theory (see, Feller
[7, p.107]). Provided it exists, the operator E[f ] applies actually to all
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probability distributions irrespective of their types and dimensions. We shall
not however follow this line of approach in this work any further.

We give first some notation which will be used throughout the paper.
Let x =(x1, ..., xk), t = (t1, ..., tk) ∈ Rk, k ∈ N, m = (m1, ...,mk) ∈ Nk

0 and
n∈N. For α = (α1, ..., αk) < β = (β1, ..., βk) ∈ Rk,

β∫
α

dξ =

β1∫
α1

...

βk∫
αk

dξk ... dξ1,

stands for the k-fold integration, where, for α = (α1, ..., αk), β =(β1, ..., βk)

∈ Rk, α ≤ β means αi ≤ βi, i = 1, ..., k. Furthermore, we set xm =
k∏

i=1
xmi

i

and |x| =
k∑

i=1
xi.

Let Sk ⊂ Rk, k ∈ N, be the standard simplex defined as

Sk =
{

ξ = (ξ1, ..., ξk) ∈ Rk : ξi ≥ 0, i = 1, ..., k, |ξ| ≤ 1
}

.

We also refer below to an open simplex which will be denoted by S0
k and

defined as

S0
k :=

{
ξ =(ξ1, ..., ξk) ∈ Rk : ξi > 0, i = 1, ..., k, |ξ| < 1

}
.

We consider next a linear positive multivariate beta operator for f ∈ C (Sk),
i.e., the set of all rel valued, continuous functions on Sk. This operator is
defined as

(2) Bn (f ;x) =

1∫
0

1−t1∫
0

...

1−t1−...−tk−1∫
0

Ψn,x (t) f (t1, ..., tk) dtk...dt2dt1,

where

(3) Ψn,x (t) =
Γ (n) tnx1−1

1 ...tnxk−1
k (1− t1 − ...− tk)

n(1−x1−...−xk)−1

Γ (nx1) ...Γ (nxk) Γ (n (1− x1 − ...− xk))

is the k-variate Dirichlet distribution with parameters.

(n, x1, ..., xk, 1− |x|) ,

n ∈ N, x∈S0
k , and t ∈Sk. Similar to the univariate case, we shall let

Bn (f ;x) := f (x). Note that if k = 1, then the Dirichlet distribution
reduces to the beta distribution. It must be noted further at this point
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that (2) is not a natural tensor product generalisation of the univariate beta
operator given by (1). With the notation given above, a compact form of
(3) can be expressed as

(4) Ψn,x (t) =
tnx−1 (1− |t|)n(1−|x|)−1

B (nx, n (1− |x|))
,

where B is the multinomial beta function. Hence, for simplicity, the multi-
variate beta operator defined in (2) can be represented as

(5) Bn (f ;x) =
∫
Sk

Ψn,x (t) f (t)dt.

On the other hand, it is hardly difficult to show that

(6) Bn (1;x) =
∫
Sk

Ψn,x (t)dt =1

(see [17], p. 177-178). Moreover, it is likewise easy to show that

(7) Bn (ti;x) = xi, Bn

(
t2i ;x

)
=

nx2
i + xi

n + 1

for i = 1, ..., k.
By virtue of the multivariate extension of the Bohman-Korovkin theorem

(see [16]) it readily follows that

Theorem 1. For f ∈ C (Sk), ‖Bn − f‖C(Sk) → 0 as n →∞.

Recall that a continuous function f from A ⊆ Rk into R is said to be
Lipschitz continuous of order µ, µ ∈ (0, 1], if there exists a constant M > 0
such that for every x = (x1, ..., xk), y = (y1, ..., yk) ∈ A, f satisfies

|f (x)− f (y)| ≤ M

k∑
i=1

|xi − yi|µ .

The set of Lipschitz continuous functions defined above is denoted by
LipM (µ,A).

Also, a continuous non-negative function ω (u) defined in Sk is called the
modulus of continuity type function, if it satisfies the following conditions
([14]):

1. ω (0) = 0, here 0 = (0, 0, ..., 0),
2. ω (u) is non-decreasing in u, i.e.; ω (u) ≥ ω (v) for u ≥ v,
3. ω (u) is semi-additive, i.e.; ω (u + v) ≤ ω (u) + ω (v).
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In this work we show that the multivariate beta operator Bn preserves
the properties of the modulus of continuity type function and Lipschitz
condition for a given function. We design a generalisation B

[r]
n that extends

the idea of Kirov and Popova in [11] to the multivariate beta operator. We
also investigate the approximation of B

[r]
n .

2. Preservation of some properties by Bn

As it is known, the bearing of the modulus of continuity of a continuous
function shows the global smoothness properties of the function. Hence,
the problem whether the approximation operator is able to preserve the
Lipschitz constant of a given Lipschitz continuous function arises naturally.
Briefly, the first elementary proof related to this problem was given by
Brown, Elliott and Paget for the univariate Bernstein polynomials in their
elegant work [4]. Their work is a continuation of the work of Bloom and
Elliott [3]. The same problem was also investigated for some classes of uni-
variate and multivariate operators by Khan and Peters in [9] by probabilistic
point of view. For more information concerning this subject we refer to the
book of Anastassiou and Gal [1]. Cal and Valle obtained best constants in
global smoothness preservation inequalities for multivariate beta operator
also some other multivariate operators by probabilistic approach [5-6].

We should note here that the preservation of the modulus of continuity
function by Bernstein polynomials is proved by Li in [12]. Also preservation
of Lipschitz constant for univariate beta operator is shown by Khan in [8].

To show that multivariate beta operator preserves similarly the modulus
of continuity type function and Lipschitz condition, let D be a set defined
by

D :=
{

(α,β) : α ≥ 0, β ≥ 0, |α|+ |β| ≤ 1, α,β ∈ Rk
}

,

α = (α1, ..., αk), β = (β1, ..., βk) and x < y, x,y ∈ S0
k . We then have an

auxillary function

hn,x,y (α,β) :=
Γ (n) αnx1−1

1 ...αnxk−1
k β

n(y1−x1)−1
1 ....

Γ (nx1) ...Γ (nxk) Γ (ny1 − nx1) ...
(8)

×
β

n(yk−xk)−1
k (1− |α| − |β|)n(1−|y|)−1

Γ (nyk − nxk) Γ (n (1− |y|))
,

if (α,β) ∈ D and zero otherwise.
Related to hn,x,y (α,β), we need the following lemma which will be used

in a subsequent theorem.
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Lemma 1. For any t ∈ S0
k we have

a) Ψn,y (t) =

t∫
0

hn,x,y (u, t− u)du(9)

b) Ψn,x (t) =

1−|t|∫
0

1−|t|−v1∫
0

...

1−|t|−v1−...−vk−1∫
0

hn,x,y (t,v) dvk...dv2dv1,

c) Ψn,y−x (t) =

1−|t|∫
0

1−|t|−u1∫
0

...

1−|t|−u1−...−uk−1∫
0

hn,x,y (u, t) duk...du2du1,

where Ψn,. is probability density function of the Dirichlet distribution in (3)
and (4).

Proof. a) By (8),

t∫
0

hn,x,y (u, t− u)du

=
Γ (n) (1− |t|)n(1−|y|)−1

Γ (nx1) ...Γ (nxk) Γ (ny1 − nx1) ...Γ (nyk − nxk) Γ (n (1− |y|))

×
t1∫

0

...

tk∫
0

unx1−1
1 ...unxk−1

k

× (t1 − u1)
n(y1−x1)−1 ... (tk − uk)

n(yk−x1)−1 duk...du1.

Straightforward computation for each iterated integral gives the result.

b) Again from (8), we have

1−|t|∫
0

1−|t|−v1∫
0

...

1−|t|−v1−...−vk−1∫
0

hn,x,y (t,v) dvk...dv2dv1(10)

=
Γ (n) tnx−1 (1− |t|)n(1−|x|)−1

Γ (nx1) ...Γ (nxk) Γ (ny1 − nx1) ...Γ (nyk − nxk) Γ (n (1− |y|))

×
1−|t|∫
0

1−|t|−v1∫
0

...

1−|t|−v1−...−vk−1∫
0

(
v

1− |t|

)n(y−x)−1

×
(

1− |v|
1− |t|

)n(1−|y|)−1 dvk

1− |t|
...

dv2

1− |t|
dv1

1− |t|
,
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where(
v

1− |t|

)n(y−x)−1

=
(

v1

1− |t|

)n(y1−x1)−1 (
v2

1− |t|

)n(y2−x2)−1

...

×
(

vk

1− |t|

)n(yk−xk)−1

.

Let us make the following transformation in (10).

v1

1− |t|
= ϕ1,

v2

1− |t|
= ϕ2

(
1− v1

1− |t|

)
, ...,

vk

1− |t|
= ϕk

(
1− v1

1− |t|
− ...− vk−1

1− |t|

)
,

where 0 ≤ ϕi ≤ 1, i = 1, 2, ..., k. Therefore, (10) yields

1−|t|∫
0

1−|t|−v1∫
0

...

1−|t|−v1−...−vk−1∫
0

hn,x,y (t,v) dvk...dv2dv1(11)

=
Γ (n) tnx−1 (1− |t|)n(1−|x|)−1

Γ (nx1) ...Γ (nxk) Γ (ny1 − nx1) ...Γ (nyk − nxk) Γ (n (1− |y|))

×
1∫

0

ϕ
n(y1−x1)−1
1 (1− ϕ1)

n(y2−x2)+...+n(yk−xk)+n(1−|y|)−1 dϕ1

×
1∫

0

ϕ
n(y2−x2)−1
2 (1− ϕ2)

n(y3−x3)+...+n(yk−xk)+n(1−|y|)−1 dϕ2

× · · ·

×
1∫

0

ϕ
n(yk−xk)−1
k (1− ϕk)

n(1−|y|)−1 dϕk.

Making use of the familiar beta function, the right hand side of (11) reduces
to Ψn,x (t) given in (4). Finally, (c) can be proved similarly. �

For modulus of continuity type function, we have:

Theorem 2. Let f be a modulus of continuity type function. Then Bn,
n ∈ N, have the same property.
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Proof. Let x = (x1, ..., xk), y = (y1, ..., yk) ∈ S0
k , and x ≤ y. Using (a)

and (b) of (9), we have

Bn (f ;y)−Bn (f ;x) =
∫
Sk

[Ψn,y (t)−Ψn,x (t)] f (t)dt

=

1∫
0

1−t1∫
0

...

1−t1−...−tk−1∫
0

t1∫
0

t2∫
0

...

tk∫
0

f (t)

× hn,x,y (u, t− u) duk...du2du1dtk...dt2dt1

−
1∫

0

1−t1∫
0

...

1−t1−...−tk−1∫
0

1−|t|∫
0

1−|t|−v1∫
0

...

1−|t|−v1−...−vk−1∫
0

f (t)

× hn,x,y (t,v) dvk...dv2dv1dtk...dt2dt1.

Interchanging the order of integration in the first 2k−fold integration, then
the above formula boils down to

Bn (f ;y)−Bn (f ;x) =

1∫
0

1∫
u1

1−t1∫
0

1−t1∫
u2

...

1−t1−...−tk−1∫
0

1−t1−...−tk−1∫
uk

f (t)

× hn,x,y (u, t− u) dtkduk...dt2du2dt1du1

−
1∫

0

1−t1∫
0

...

1−t1−...−tk−1∫
0

1−|t|∫
0

1−|t|−v1∫
0

...

1−|t|−v1−...−vk−1∫
0

f (t)

× hn,x,y (t,v) dvk...dv2dv1dtk...dt2dt1.

Letting ti = ui + vi, i = 1, 2, ..., k in the first expression and replace ti = ui,
i = 1, 2, ..., k in the second, this difference becomes

Bn (f ;y)−Bn (f ;x)

=

1∫
0

1−t1∫
0

...

1−t1−...−tk−1∫
0

1−|u|∫
0

1−|u|−v1∫
0

...

1−|u|−v1−...−vk−1∫
0

f (u + v)

× hn,x,y (u,v) dvk...dv2dv1duk...du2du1

−
1∫

0

1−t1∫
0

...

1−t1−...−tk−1∫
0

1−|u|∫
0

1−|u|−v1∫
0

...

1−|u|−v1−...−vk−1∫
0

f (u)

× hn,x,y (u,v) dvk...dv2dv1duk...du2du1,
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which gives that

Bn (f ;y)−Bn (f ;x)(12)

=
∫
Sk

1−|u|∫
0

1−|u|−v1∫
0

...

1−|u|−v1−...−vk−1∫
0

hn,x,y (u,v)

× [f (u + v)− f (u)] dvk...dv2dv1duk...du2du1

Since f is semi-additive, then (12) reduces to

Bn (f ;y)−Bn (f ;x) ≤
∫
Sk

1−|u|∫
0

1−|u|−v1∫
0

...

1−|u|−v1−...−vk−1∫
0

hn,x,y (u,v)

× f (v) dvk...dv2dv1duk...du2du1

or

Bn (f ;y)−Bn (f ;x) ≤
∫
Sk

1−|v|∫
0

1−|v|−u1∫
0

...

1−|v|−u1−...−uk−1∫
0

hn,x,y (u,v)

× f (v) duk...du2du1dvk...dv2dv1

=
∫
Sk

Ψn,y−x (v) f (v) dvk...dv2dv1 = Bn (f ;y − x) ,

by (c) of (9). Last inequality shows the semi-additivity of Bn. From (8)
and (12) we get that Bn (f ;y) − Bn (f ;x) ≥ 0 for y ≥ x. Finally we have
Bn (f ;0) = f (0) = 0 by the definition of the multivariate beta operator.
The proof is complete. �

Next result is about preservation of the Lipschitz condition for the mul-
tivariate beta operator.

Theorem 3. If f ∈ LipM (µ;Sk), 0 < µ ≤ 1, then Bn (f ;x) ∈ LipM (µ;Sk).

Proof. Assume that x = (x1, ..., xk), y = (y1, ..., yk) ∈ S0
k and x ≤ y.

From (12) we have

|Bn (f ;y)−Bn (f ;x)| ≤
∫
Sk

1−|u|∫
0

1−|u|−v1∫
0

...

1−|u|−v1−...−vk−1∫
0

hn,x,y (u,v)

× |f (u + v)− f (u)| dvk...dv2dv1duk...du2du1.
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Using the fact that f ∈ LipM (µ;Sk), (c) of (9) and Jensen’s inequality, then
the last inequality yields

|Bn (f ;y)−Bn (f ;x)|(13)

≤ M

∫
Sk

1−|u|∫
0

1−|u|−v1∫
0

...

1−|u|−v1−...−vk−1∫
0

hn,x,y (u,v)

×
[
vµ
1 + vµ

2 + ... + vµ
k

]
dvk...dv2dv1duk...du2du1

= M

∫
Sk

1−|v|∫
0

1−|v|−u1∫
0

...

1−|v|−u1−...−uk−1∫
0

hn,x,y (u,v)

×
[
vµ
1 + vµ

2 + ... + vµ
k

]
duk...du2du1dvk...dv2dv1

≤ M


∫

Sk

v1Ψn,y−x (v)dv


µ

+

∫
Sk

v2Ψn,y−x (v)dv


µ

+ ... +

∫
Sk

vkΨn,y−x (v)dv


µ .

With a view to (13) takes the following form.

|Bn (f ;y)−Bn (f ;x)| ≤ M {(y1 − x1)
µ + (y2 − x2)

µ ... + (yk − xk)
µ}

which shows that Bn ∈ LipM (µ;Sk). In a similar way we can verify the
case x ≥ y. Finally if x1 ≥ y1, ..., xi−1 ≥ yi−1, xi+1 ≥ yi+1, ..., xk ≥ yk and
xi ≤ yi. Since (y1, ..., yi−1, xi, yi+1, ..., yk) ∈ S0

k , then we obtain from the
above arguments that

|Bn (f ;y)−Bn (f ;x)|
≤ |Bn (f ; (x1, ..., xk))−Bn (f ; (y1, ..., yi−1, xi, yi+1, ..., yk))|

+ |Bn (f ; (y1, ..., yk))−Bn (f ; (y1, ..., yi−1, xi, yi+1, ..., yk))|

≤ M

k∑
i=1

|xi − yi|µ .

Clearly if the last case holds for more than one components, then the result
can be reached similarly. �
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3. A generalisation of order r of Bn

This section provides an r th order generalisation of the multivariate beta
operator analogous to Kirov and Popova’s construction [11]. For convenience
of exposition, we simply take the case k = 2 into consideration. The result
will be similar for higher dimentions.

Let thus S2 = {x =(x1, x2) ∈ R, x1, x2 ≥ 0, x1 + x2 ≤ 1}, and Cr (S2),
r ∈ N0, denote the space of all functions f defined on S2 and having all
continuous partial derivatives up to order r and consider the representation
(5). By B

[r]
n , we denote the following generalisation of Bn. For x, t ∈S2,

(14) B[r]
n (f ;x) = Bn (Pr,t (∆x, f) ;x) =

∫
S2

Ψn,x (t) Pr,t (∆x, f)dt,

where ∆x := x− t =(x1 − t1, x2 − t2) = (∆x1,∆x2), ∇ :=
(

∂
∂x1

, ∂
∂x2

)
,

(15) (∆x.∇)r :=
∑

i+j=r

(
r

j

)
(∆x1)

i (∆x2)
j ∂r

∂xi
1∂xj

2

,

(
r

j

)
are binomial coefficients, and

Pr,t (∆x, f) = f (t) + (∆x.∇) f (t) +
(∆x.∇)2

2!
f (t)(16)

+ ... +
(∆x.∇)r

r!
f (t) ,

the Taylor polynomial for f (x) at t ∈S2. Now, we have the following result
for k = 2.

Theorem 4. Let f ∈ Cr (S2) and ∂rf

∂xi
1∂xj

2

∈ LipM (µ;S2), i + j = r, then

∣∣∣B[r]
n (f ;x)− f (x)

∣∣∣ ≤ M
(r − 1)!

µ

µ + r
B (µ, r) Bn

(
|x− t|r+µ ;x

)
,

where B is the familiar beta function.

Proof. From (14) and (16) we have

(17)
∣∣∣f (x)−B[r]

n (f ;x)
∣∣∣ ≤ ∫

S2

Ψn,x (t)

∣∣∣∣∣f (x)−
r∑

ν=0

1
ν!

(∆x.∇)ν f (t)

∣∣∣∣∣dt.
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The familiar formula for the remainder term in (17) can be given by

f (x)−
r∑

ν=0

1
ν!

(∆x.∇)ν f (t)(18)

=
1

(r − 1)!

1∫
0

(∆x.∇)r [f (t + z∆x)− f (t)] (1− z)r−1 dz.

Taking (15) into account, then (18) results in

f (x)−
r∑

ν=0

1
ν!

(∆x.∇)ν f (t)(19)

=
1

(r − 1)!

1∫
0

∑
i+j=r

(
r

j

)
(∆x1)

i (∆x2)
j

× ∂r

∂xi
1∂xj

2

[f (t + z∆x)− f (t)] (1− z)r−1 dz.

Using (19) and the hyphothesis, we obtain from (18) that∣∣∣∣∣f (x)−
r∑

ν=0

1
ν!

(∆x.∇)ν f (t)

∣∣∣∣∣(20)

≤ M

(r − 1)!

∑
i+j=r

(
r

j

)
|∆x1|i |∆x2|j

×
1∫

0

zµ [|∆x1|µ + |∆x2|µ] (1− z)r−1 dz

≤ M
(r − 1)!

[|∆x1|+ |∆x2|]r+µB (µ + 1, r)

=
M

(r − 1)!
|x− t|r+µ µ

µ + r
B (µ, r) .

Inserting (20) into (17), we have

(21)
∣∣∣f (x)−B[r]

n (f ;x)
∣∣∣ ≤ M

(r − 1)!
µ

µ + r
B (µ, r)

∫
S2

Ψn,x (t) |x− t|r+µ dt

which is the desired result, where Ψn,x (t) is given by (4).
Now we take a function g ∈ C (S2) which is given by g (t) = |x− t|r+µ.

Clearly g (x) = 0. In accordance with Theorem 1 that ‖Bn (g;x)‖C(S2) → 0
as n →∞. Hence, From (21) we reach to the following
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n (f ;x)− f (x)

∥∥∥
C(S2)

→ 0 as n →∞.
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