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1. Introduction

In this note we consider the second-order differential inclusion

(1) x′′ ∈ Ax+ F (t, x), x(0) = x0, x′(0) = y0,

where F : [0, T ]×X → P(X) is a set-valued map and A is the infinitesimal
generator of a strongly continuous cosine family of operators {C(t); t ∈ R}
on a separable Banach space X.

Existence of solutions and qualitative properties of the solutions of prob-
lem (1) have been obtained in [1, 2] etc. via fixed point techniques. In [5] a
Filippov type existence result is obtained by a different approach which con-
sists in the application of the contraction principle in the space of selections
of the multifunction instead of the space of solutions.

This approach allows to obtain also some qualitative properties of the
solution set. More precisely, in the present paper we study the properties of
the map that associates to a given initial condition (x0, y0) ∈ X ×X the set
of mild solutions of problem (1) starting from (x0, y0) and the main purpose
is to prove that this solution map depends Lipschitz-continuously on the
initial condition.
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Our results may be considered as extensions to second-order differential
inclusions of the form (1) of previous results ([4]) obtained for semilinear
differential inclusions of the form

x′ ∈ Ax+ F (t, x), x(0) = x0,

where A is the infinitesimal generator of a strongly continuous semigroup
{T (t); t ≥ 0} on a separable Banach space X. We note that the idea of
applying the set-valued contraction principle due to Covitz and Nadler ([6])
in the space of derivatives of the solutions belongs to Tallos ([10, 12]).

The paper is organized as follows: in Section 2 we present the notations,
definitions and the preliminary results to be used in the sequel and in Sec-
tion 3 we prove our main results.

2. Preliminaries

Let denote by I the interval [0, T ], T > 0 and let X be a real separable
Banach space with the norm | · | and with the corresponding metric d(·, ·).
Denote by B(X) the Banach space of bounded linear operators from X
into X.

We recall that a family {C(t); t ∈ R} of operators in B(X) is a strongly
continuous cosine family if the following conditions are satisfied

(i) C(0) = I, where I is the identity operator in X,
(ii) C(t+ s) + C(t− s) = 2C(t)C(s) ∀t, s ∈ R,
(iii) the map t→ C(t)y is strongly continuous ∀y ∈ X.
The strongly continuous sine family {S(t); t ∈ R} associated to a strongly

continuous cosine family {C(t); t ∈ R} is defined by

S(t)y :=
∫ t

0
C(s)yds, y ∈ X, t ∈ R.

The infinitesimal generator A : X → X of a cosine family {C(t); t ∈ R} is
defined by

Ay =
(
d2

dt2

)
C(t)y|t=0.

Fore more details on strongly continuous cosine and sine family of operators
we refer to [8, 9, 13].

In what follows A is infinitesimal generator of a cosine family {C(t); t ∈
R} and F (·, ·) : I×X → P(X) is a set-valued map with nonempty closed val-
ues, which define the following Cauchy problem associated to a second-order
differential inclusion

(2) x′′ ∈ Ax+ F (t, x), x(0) = x0, x′(0) = y0.
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A continuous mapping x(·) ∈ C(I,X) is called a mild solution of problem
(2) if there exists a (Bochner) integrable function f(·) ∈ L1(I,X) such that:

(3) f(t) ∈ F (t, x(t)) a.e. (I),

(4) x(t) = C(t)x0 + S(t)y0 +
∫ t

0
S(t− u)f(u)du ∀t ∈ I,

i.e., f(·) is a (Bochner) integrable selection of the set-valued map F (·, x(·))
and x(·) is the mild solution of the Cauchy problem

(5) x′′ = Ax+ f(t) x(0) = x0, x′(0) = y0.

We shall call (x(·), f(·)) a trajectory-selection pair of (2) if f(·) verifies
(3) and x(·) is a mild solution of (5).

We shall use the following notations for the solution sets of (2).

S(x0, y0) = {(x(·), f(·));(6)
(x(·), f(·)) is a trajectory-selection pair of (2)},

(7) S1(x0, y0) = {x(·); x(·) is a mild solution of (2)}.

In what follows the following conditions are satisfied.

Hypothesis 1. (i) A is infinitesimal generator of a given strongly con-
tinuous bounded cosine family {C(t); t ∈ R}.

(ii) F (·, ·) : I × X → P(X) has nonempty closed values and for every
x ∈ X, F (·, x) is measurable.

(iii) There exists L(·) ∈ L1(I,R+) such that for almost all t ∈ I, F (t, ·)
is L(t)-Lipschitz in the sense that

dH(F (t, x), F (t, y)) ≤ L(t)|x− y| ∀ x, y ∈ X,

where dH(A,B) is the Hausdorff distance between A,B ⊂ X

dH(A,B) = max{d∗(A,B), d∗(B,A)}, d∗(A,B) = sup{d(a,B); a ∈ A}.

(iv) d(0, F (t, 0)) ≤ L(t) a.e. (I)

Let m(t) =
∫ t
0 L(u)du and let M ≥ 0 be such that |C(t)| ≤M ∀t ∈ I.

Note that |S(t)| ≤Mt ∀t ∈ I.
Given α ∈ R we consider on L1(I,X) the following norm

|f |1 =
∫ T

0
e−αm(t)|f(t)|dt, f ∈ L1(I,X),
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which is equivalent with the usual norm on L1(I,X).
Consider the following norm on C(I,X)× L1(I,X)

|(x, f)|C×L = |x|C + |f |1 ∀ (x, f) ∈ C(I,X)× L1(I,X),

where, as usual, |x|C = supt∈I |x(t)| ∀ x ∈ C(I,X).

Finally we recall some basic results concerning set valued contractions
that we shall use in the sequel.

Let (Z, d) be a metric space and consider a set valued map T on Z with
nonempty closed values in Z. T is said to be a λ-contraction if there exists
0 < λ < 1 such that:

dH(T (x), T (y)) ≤ λd(x, y) ∀x, y ∈ Z

If Z is complete, then every set valued contraction has a fixed point, i.e.
a point z ∈ Z such that z ∈ T (z) ([6]).

We denote by Fix(T ) the set of all fixed point of the multifunction T .
Obviously, Fix(T ) is closed.

Proposition 1. ([11]) Let Z be a complete metric space and suppose
that T1, T2 are λ-contractions with closed values in Z. Then

dH(Fix(T1), F ix(T2)) ≤ 1
1− λ

sup
z∈Z

dH(T1(z), T2(z)).

3.The main results

We are ready now to show that the set of all trajectory-selection pairs of
(2) depends Lipschitz-continuously on the initial condition.

Theorem 1. Let Hypothesis 1 be satisfied and let α > MT .
Then the map (x0, y0) → S(x0, y0) is Lipschitz-continuous on X×X with

nonempty closed values in C(I,X)× L1(I,X).

Proof. Let us consider x0, y0 ∈ X, f(·) ∈ L1(I,X) and define the
following set valued maps

(8) Mx0,y0,f (t) = F

(
t, C(t)x0 + S(t)y0 +

∫ t

0
S(t− u)f(u)du

)
, t ≥ 0,

(9) Tx0,y0(f) =
{
φ(·) ∈ L1(I,X); φ(t) ∈Mx0,y0,f (t) a.e. (I)

}
.

We shall prove first that Tx0,y0(f) is nonempty and closed for every f ∈
L1(I,X). The fact that that the set valued map Mx0,y0,f (·) is measurable is
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well known. For example, the map t→ C(t)x0 +S(t)y0 +
∫ t
0 S(t−u)f(u)du

can be approximated by step functions and we can apply Theorem III. 40 in
[3]. Since the values of F are closed and X is separable with the measurable
selection theorem (Theorem III.6 in [3]) we infer that Mx0,y0,f (·) admits a
measurable selection φ. According to Hypothesis 1 one has

|φ(t)| ≤ d(0, F (t, 0)) + dH(F (t, 0), F (t, x(t)) ≤ L(t)(1 + |x(t)|)

≤ L(t)
(

1 +M |x0|+Mt|y0|+
∫ t

0
M(t− s)|f(s)|ds

)
.

Thus integrating by parts we obtain

∫ T

0
e−αm(t)|φ(t)|dt ≤

∫ T

0
e−αm(t)L(t)

(
1 +M |x0|+Mt|y0|

+
∫ t

0
M(t− s)|f(s)|ds

)
dt ≤ 1 +M |x0|

α
+
MT |y0|

α
+
MT |f |1

α
.

Hence, if φ(·) is a measurable selection of Mx0,y0,f (·), then φ(·) ∈ L1(I,X)
and thus Tx0,y0(f) 6= ∅.

The set Tx0,y0(f) is closed. Indeed, if φn ∈ Tx0,y0(f) and |φn − φ|1 → 0
then we can pass to a subsequence φnk

such that φnk
(t) → φ(t) for a.e.

t ∈ I, and we find that φ ∈ Tx0,y0(f).
The next step of the proof will show that Tx0,y0(·) is a contraction on

L1(I,X).
Let f, g ∈ L1(I,X) be given, φ ∈ Tx0,y0(f) and let ε > 0. Consider the

following set valued map

G(t) = Mx0,y0,g(t) ∩
{
x ∈ X;

|φ(t)− x| ≤ L(t)|
∫ t

0
S(t− s)(f(s)− g(s))ds|+ ε

}
.

Since

d (φ(t),Mx0,y0,g(t)) ≤ d

(
F

(
t, C(t)x0 + S(t)y0 +

∫ t

0
S(t− u)f(u)du

)
,

F

(
t, C(t)x0 + S(t)y0 +

∫ t

0
S(t− u)g(u)du

))
≤ L(t)

∣∣∣∣∫ t

0
S(t− u)(f(u)− g(u))du

∣∣∣∣
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we deduce that G(·) has nonempty closed values. Moreover, according to
Proposition III. 4 in [3], G(·) is measurable. Let ψ(·) be a measurable
selection of G(·). It follows that ψ ∈ Tx0,y0(g) and

|φ− ψ|1 =
∫ T

0
e−αm(t)|φ(t)− ψ(t)|dt

≤
∫ T

0
e−αm(t)L(t)

(∫ t

0
M(t− s)|f(s)− g(s)|ds

)
dt

+
∫ T

0
εe−αm(t)dt

≤ MT

α
|f − g|1 + ε

∫ T

0
e−αm(t)dt.

Since ε was arbitrary, we deduce that

d(φ, Tx0,y0(g)) ≤ MT

α
|f − g|1.

Replacing f by g we obtain

d(Tx0,y0(f), Tx0,y0(g)) ≤ MT

α
|f − g|1,

hence Tx0,y0(·) is a contraction on L1(I,X).
Consequently Tx0,y0(·) admits a fixed point f(·) ∈ L1(I,X). We define

x(t) = C(t)x0 + S(t)y0 +
∫ t
0 S(t− u)f(u)du.

We have that S(x0, y0) ⊂ C(I,X) × L1(I,X) is a closed subset. Let
(xn, fn) ∈ S(x0, y0), |(xn, fn)−(x, f)|C×L → 0. In particular, fn ∈ Fix(Tx0,y0),
which is a closed set, and thus f(·) ∈ Fix(Tx0,y0). We define y(t) =
C(t)x0 + S(t)y0 +

∫ t
0 S(t − u)f(u)du and we prove that y(·) = x(·). One

may write

|y − xn|C = sup
t∈I

|y(t)− xn(t)|

≤ sup
t∈I

M

∫ t

0
(t− u)|fn(u)− f(u)|du ≤ MTeαm(T )|fn − f |1

and finally we get that y(·) = x(·).
We prove next the following inequality

(10) dH(Tx1,y1(f), Tx2,y2(f)) ≤ 1
α

(M |x1 − x2|+MT |y1 − y2|)

∀f ∈ L1(I,X), x1, x2, y1, y2 ∈ X. Let us consider the set-valued map

G1(t) = Mx1,x2,f (t) ∩ {z ∈ X;
|φ(t)− z| ≤ L(t)(|C(t)||x1 − x2|+ |S(t)||y1 − y2|) + ε},
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t ∈ I, where φ(·) is a measurable selection of Mx1,y1,f (·) and ε > 0.
With the same arguments used for the set valued map G(·), we deduce

that G1(·) is measurable with nonempty closed values. Let ψ(·) be a mea-
surable selection of G1(·). It follows that ψ(·) ∈ Tx2,y2(f) and

|φ− ψ|1 =
∫ T

0
e−αm(t)|φ(t)− ψ(t)|dt

≤
∫ T

0
e−αm(t)L(t) (|C(t)| |x1 − x2|+ |S(t)| |y1 − y2|) dt

+ ε

∫ T

0
e−αm(t)dt

≤ M

α
|x1 − x2|+

MT

α
|y1 − y2|+ ε

∫ T

0
e−αm(t)dt.

Since ε was arbitrary, we deduce that

d(φ, Tx2,y2(f)) ≤ 1
α

(M |x1 − x2|+MT |y1 − y2|).

Replacing (x1, y1) by (x2, y2) we obtain (10).
From (10) and Proposition 1 we obtain

dH(Fix(Tx1,y1), F ix(Tx2,y2)) ≤ 1
α−MT

(M |x1 − x2|+MT |y1 − y2|).

Let x1, x2, y1, y2 ∈ X and (x(·), f(·)) ∈ S(x1, y1). In particular, f(·) ∈
Fix(Tx1,y1) and thus, for every ε > 0 there exists g(·) ∈ Fix(Tx2,y2) such
that

(11) |f − g|1 ≤ 1
α−MT

(M |x1 − x2|+MT |y1 − y2|) + ε.

Put z(t) = C(t)x2 + S(t)y2 +
∫ t
0 S(t− u)g(u)du. One has

|x− z|C = sup
t∈I

|x(t)− z(t)| ≤M |x1 − x2|+MT |y1 − y2|

+ sup
t∈I

∫ t

0
M(t− s)|f(s)− g(s)|ds

+ M |x1 − x2|+MT |y1 − y2|+MTeαm(t)|f − g|1

≤

(
1 +

MTeαm(t)

α−MT

)
(M |x1 − x2|+MT |y1 − y2|) +

MTeαm(t)

α−MT
ε.

If we denote k = max{M + M2Teαm(t)

α−MT ,MT + M2T 2eαm(t)

α−MT } we deduce first
that

d((x, f),S(x2, y2)) ≤ k[|x1 − x2|+ |y1 − y2|]
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and by interchanging (x1, y1) and (x2, y2) we obtain

dH(S(x1, y1),S(x2, y2)) ≤ k[|x1 − x2|+ |y1 − y2|]

and the proof is complete. �

Obviously, from Theorem 1 we also obtain

Corollary 1. Let Hypothesis 1 be satisfied and let α > MT . Then the
map (x0, y0) → S1(x0, y0) is Lipschitz continuous on X ×X with nonempty
values in C(I,X).

In general, under the hypothesis of Theorem 1 the solution set S1(x0, y0)
is not closed in C(I,X). The next result shows that if X is reflexive
and the multifunction F (·, ·) is convex valued and integrably bounded then
S1(x0, y0) ⊂ C(I,X) is closed.

Let B be the closed unit ball in X.

Proposition 2. Assume that X is reflexive, α > MT and let F (·, ·) :
I ×X → P(X) be a convex valued set valued map that satisfies Hypothesis
1. Assume that there exists k(·) ∈ L1(I,X) such that for almost all t ∈ I
and for all x ∈ X, F (t, x) ⊂ k(t)B.

Then for every x0, y0 ∈ X, the set S1(x0, y0) ⊂ C(I,X) is closed.

Proof. Let xn(·) ∈ S1(x0, y0) such that |xn − x|C → 0. There exists
hn(·) ∈ L1(I,X) such that (xn(·), hn(·)) is a trajectory-selection pair of (2)
∀n ∈ N . We define fn(t) = e−αm(t)hn(t), t ∈ I.

The set valued map F (·, ·) being integrably bounded, we have that fn(·)
is bounded in L1(I,X) and ∀ε > 0, ∃δ > 0 such that ∀E ⊂ I, µ(E) < δ
|
∫
E fn(s)ds| < ε uniformly with respect to n. Moreover, X is reflexive and

so by the Dunford-Pettis criterion ([7]), taking a subsequence and keeping
the same notations, we may assume that fn(·) converges weakly in L1(I,X)
to some f(·) ∈ L1(I,X).

We recall that for convex subsets of a Banach space the strong closure
coincides with the weak closure. We apply this result. Since fn(·) converges
weakly in L1(I,X) to f(·) ∈ L1(I,X) for all h ≥ 0, f(·) belongs to the
weak closure of the convex hull co{fn(·)}n≥h of the subset {fn(·)}n≥h. It
coincides with the strong closure of co{fn(·)}n≥h. Hence there exist λn

i > 0,
i = n, . . . k(n) such that

k(n)∑
i=1

λn
i = 1, gn(·) =

k(n)∑
i=n

λn
i fi(·) ∈ co{fn(·)}n≥h

and such that gn(·) converges strongly to f(·) in L1(I,X). Let

ln(·) =
k(n)∑
i=n

λn
i hi(·).
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Then there exists a subsequence gnj (·) that converges to f(·) almost every-
where. In particular, lnj (·) converges almost everywhere to l(·) = eαm(·)f(·) ∈
L1(I,X). Hence using the Lebesque dominated convergence theorem, for
every t ∈ I we obtain

lim
j→∞

∫ t

0
S(t− u)lnj (u)du =

∫ t

0
S(t− u)l(u)du.

We define

y(t) = C(t)x0 + S(t)y0 +
∫ t

0
S(t− u)l(u)du, t ∈ I.

and observe that

|x(t)− y(t)| ≤ |x(·)− xnj (·)|C

+
∣∣∣∣∫ t

0
S(t− u)lnj (u)du−

∫ t

0
S(t− u)l(u)du

∣∣∣∣ ,
which yields x(t) = y(t) ∀t ∈ I.

Let us observe now that for almost every t ∈ I

lnj (t) ∈
k(nj)∑
i=nj

λ
nj

i F (t, xi(t)) ⊂ F (t, x(t)) + L(t)
k(nj)∑
i=nj

λ
nj

i |x(t)− xi(t)|B.

Since limi→∞ |x(t) − xi(t)| = 0, we deduce that f(t) ∈ F (t, x(t)) a.e.(I)
and the proof is complete. �
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