F A S C I C U L I M A T H E M A T I C I

Nr 41

Ayşegül Erençin and Fatma Taşdelen

ON CERTAIN KANTOROVICH TYPE OPERATORS

> AbStract. In the present paper, we introduce a generalization of the Kantorovich type operators $K_{n}^{*}(f ; x)$ defined in $[1]$. We give approximation properties of these operators with the help of Bohman-Korovkin Theorem. We also compute rate of convergence by means of modulus of continuity, the elements of local Lipschitz class and Peetre's K-functional.
> KEY words: Kantorovich type operators, modulus of continuity, local Lipschitz class, Peetre's K-functional.
> AMS Mathematics Subject Classification: 41A25, 41A36.

1. Introduction

In [7], Lupaş proposed the linear positive operators

$$
\begin{equation*}
L_{n}(f ; x)=2^{-n x} \sum_{k=0}^{\infty} \frac{(n x)_{k}}{2^{k} k!} f\left(\frac{k}{n}\right), \quad x \geq 0, \quad n \in \mathbb{N} \tag{1}
\end{equation*}
$$

with the help of the identity

$$
\frac{1}{(1-a)^{\alpha}}=\sum_{k=0}^{\infty} \frac{(\alpha)_{k}}{k!} a^{k}, \quad|a|<1
$$

where $(\alpha)_{0}=1,(\alpha)_{k}=\alpha(\alpha+1) \ldots(\alpha+k-1), k \geq 1$.
Agratini [1], studied the rate of convergence on a finite interval and established a Voronovskaja type formula for these operators. The author also introduced Kantorovich type generalization of the operators (1) as follows:

$$
\begin{equation*}
K_{n}^{*}(f ; x)=n 2^{-n x} \sum_{k=0}^{\infty} \frac{(n x)_{k}}{2^{k} k!} \int_{\frac{k}{n}}^{\frac{k+1}{n}} f(t) d t, \quad x \geq 0, \quad n \in \mathbb{N} \tag{2}
\end{equation*}
$$

In [5], we presented the modification of the operators (1)

$$
L_{n}^{*}(f ; x)=2^{-a_{n} x} \sum_{k=0}^{\infty} \frac{\left(a_{n} x\right)_{k}}{2^{k} k!} f\left(\frac{k}{b_{n}}\right), \quad x \geq 0, \quad n \in \mathbb{N}
$$

where a_{n}, b_{n} are increasing and unbounded sequences of positive numbers such that

$$
\frac{a_{n}}{b_{n}}=1+O\left(\frac{1}{b_{n}}\right), \quad \lim _{n \rightarrow \infty} \frac{1}{b_{n}}=0
$$

and we studied the convergence properties of these operators in weighted spaces of continuous functions on positive semi-axis.

In this paper, we consider the generalization of the Kantorovich type operators $K_{n}^{*}(f ; x)$ given by (2) as follows:
(3) $\quad K_{n}(f ; x)=b_{n} 2^{-a_{n} x} \sum_{k=0}^{\infty} \frac{\left(a_{n} x\right)_{k}}{2^{k} k!} \int_{\frac{k}{b_{n}}}^{\frac{k+1}{b_{n}}} f(t) d t, \quad x \geq 0, \quad n \in \mathbb{N}$
where $a_{n} \geq b_{n}$ are increasing and unbounded sequences of positive numbers such that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=1, \quad \lim _{n \rightarrow \infty} \frac{1}{b_{n}}=0 \tag{4}
\end{equation*}
$$

and f is an integrable function on $[0, \infty)$ and bounded on every compact subinterval of $[0, \infty)$.

2. Main results

In [5], we proved that

$$
L_{n}^{*}(1 ; x)=1, \quad L_{n}^{*}(t ; x)=\frac{a_{n}}{b_{n}} x, \quad L_{n}^{*}\left(t^{2} ; x\right)=\frac{a_{n}^{2}}{b_{n}^{2}} x^{2}+\frac{2 a_{n}}{b_{n}^{2}} x
$$

By using these relations we can state
Lemma 1. The operators K_{n} defined by (3) verify

$$
\begin{aligned}
K_{n}(1 ; x) & =1 \\
K_{n}(t ; x) & =\frac{a_{n}}{b_{n}} x+\frac{1}{2 b_{n}} \\
K_{n}\left(t^{2} ; x\right) & =\frac{a_{n}^{2}}{b_{n}^{2}} x^{2}+\frac{3 a_{n}}{b_{n}^{2}} x+\frac{1}{3 b_{n}^{2}}
\end{aligned}
$$

for all $x \geq 0$.
Lemma 2. The operators K_{n} defined by (3) verify

$$
K_{n}\left((t-x)^{2} ; x\right)=\left(\frac{a_{n}}{b_{n}}-1\right)^{2} x^{2}+\left(\frac{3 a_{n}}{b_{n}^{2}}-\frac{1}{b_{n}}\right) x+\frac{1}{3 b_{n}^{2}}
$$

for all $x \geq 0$.

Proof. Since K_{n} is linear, we can get

$$
K_{n}\left((t-x)^{2} ; x\right)=K_{n}\left(t^{2} ; x\right)-2 x K_{n}(t ; x)+x^{2} K_{n}(1 ; x)
$$

We note that throughout this paper $[a, b]$ defines any subinterval of $[0, \infty)$. Now, we can give the following theorem for the convergence of the operators K_{n}.

Theorem 1. If $f \in C[a, b]$, then the operators $K_{n}(f ; x)$ defined by (3) converges to $f(x)$ uniformly on $[a, b]$.

Proof. By using Lemma 1 and conditions (4) we can apply the well known Bohman-Korovkin Theorem (see [3], [6]) to obtain the required result.

Now, we study rate of convergence for the sequence of linear positive operators K_{n} with the help of modulus of continuity. Let us recall that if $I \subset \mathbb{R}$ is a given interval and f is a bounded real valued function defined on I the modulus of continuity $\omega(f ; \delta)$ of f denoted by

$$
\omega(f ; \delta)=\sup \{|f(t)-f(x)| ; x, t \in I,|t-x|<\delta\}
$$

for any $\delta>0$.
Theorem 2. Let f be an integrable function on $[0, \infty)$ and bounded on every compact subinterval of $[0, \infty)$. Then any $x \geq 0$, the operators K_{n} defined by (3) satisfies the inequality

$$
\left|K_{n}(f ; x)-f(x)\right| \leq 2 \omega\left(f ; \delta_{n, x}\right)
$$

where

$$
\delta_{n, x}=\left[\left(\frac{a_{n}}{b_{n}}-1\right)^{2} x^{2}+\left(\frac{3 a_{n}}{b_{n}^{2}}-\frac{1}{b_{n}}\right) x+\frac{1}{3 b_{n}^{2}}\right]^{\frac{1}{2}}
$$

Proof. From the linearity and monotonicity of the operators K_{n} we can write

$$
\begin{equation*}
\left|K_{n}(f ; x)-f(x)\right| \leq b_{n} 2^{-a_{n} x} \sum_{k=0}^{\infty} \frac{\left(a_{n} x\right)_{k}}{2^{k} k!} \int_{\frac{k}{b_{n}}}^{\frac{k+1}{b_{n}}}|f(t)-f(x)| d t \tag{5}
\end{equation*}
$$

On the other hand, by using well known properties of the modulus of continuity $\omega(f ; \delta)$

$$
|f(t)-f(x)| \leq \omega(f ;|t-x|)
$$

and

$$
\omega(f ; \lambda \delta) \leq\left(1+\lambda^{2}\right) \omega(f ; \delta)
$$

we have

$$
\begin{equation*}
|f(t)-f(x)| \leq\left(\frac{(t-x)^{2}}{\delta^{2}}+1\right) \omega(f ; \delta) \tag{6}
\end{equation*}
$$

for every $\lambda>0$ and $\delta>0$. Thus substituting (6) in (5), from Lemma 2 we find
(7) $\left|K_{n}(f ; x)-f(x)\right|$

$$
\begin{aligned}
& \leq \omega(f ; \delta)\left\{\frac{1}{\delta^{2}}\left[b_{n} 2^{-a_{n} x} \sum_{k=0}^{\infty} \frac{\left(a_{n} x\right)_{k}}{2^{k} k!} \int_{\frac{k}{b_{n}}}^{\frac{k+1}{b_{n}}}(t-x)^{2} d t\right]+1\right\} \\
& =\omega(f ; \delta)\left[\frac{1}{\delta^{2}} K_{n}\left((t-x)^{2} ; x\right)+1\right] \\
& =\omega(f ; \delta)\left\{\frac{1}{\delta^{2}}\left[\left(\frac{a_{n}}{b_{n}}-1\right)^{2} x^{2}+\left(\frac{3 a_{n}}{b_{n}^{2}}-\frac{1}{b_{n}}\right) x+\frac{1}{3 b_{n}^{2}}\right]+1\right\}
\end{aligned}
$$

Thus if we take $\delta=\delta_{n, x}$ in (7) then we obtain the desired result.
Theorem 3. If f is differentiable on $[a, b]$ and $f \in C^{1}[a, b]$, then for each $x \in[a, b]$ the operators K_{n} defined by (3) satisfies the inequality

$$
\left|K_{n}(f ; x)-f(x)\right| \leq\left|f^{\prime}(x)\right|\left[\left(\frac{a_{n}}{b_{n}}-1\right) x+\frac{1}{2 b_{n}}\right]+2 \delta_{n, x} \omega\left(f^{\prime} ; \delta_{n, x}\right)
$$

where $\delta_{n, x}$ defined as in Theorem 2.
Proof. Since $K_{n}(1 ; x)=1$, from the well known result of O. Shisha and B. Mond (see[8], [9]), it follows that

$$
\begin{align*}
\left|K_{n}(f ; x)-f(x)\right| \leq & \left|f^{\prime}(x)\right|\left|K_{n}(t ; x)-x\right|+\sqrt{K_{n}\left((t-x)^{2} ; x\right)} \tag{8}\\
& \times\left[1+\frac{1}{\delta} \sqrt{K_{n}\left((t-x)^{2} ; x\right)}\right] \omega\left(f^{\prime} ; \delta\right)
\end{align*}
$$

In (8), using Lemma 1 and Lemma 2, we can get

$$
\left|K_{n}(f ; x)-f(x)\right| \leq\left|f^{\prime}(x)\right|\left[\left(\frac{a_{n}}{b_{n}}-1\right) x+\frac{1}{2 b_{n}}\right]+\delta_{n, x}\left(1+\frac{1}{\delta} \delta_{n, x}\right) \omega\left(f^{\prime} ; \delta\right)
$$

If we choose $\delta=\delta_{n, x}$ we obtain the required result.
Theorem 4. Let K_{n} defined by (3). If f is local $\operatorname{Lip}(\alpha)$ on $[a, b]$, i.e.,

$$
|f(t)-f(x)| \leq M|t-x|^{\alpha}
$$

for all $(x, t) \in[a, b] \times[0, \infty)$ with $M>0$ and $0<\alpha \leq 1$, then we have

$$
\left|K_{n}(f ; x)-f(x)\right| \leq M \delta_{n, x}^{\alpha}
$$

where $\delta_{n, x}$ defined as in Theorem 2.
Proof. Let f be local $\operatorname{Lip}(\alpha)$ on $[a, b]$. By linearity and monotonicity of the operators K_{n}, we can get

$$
\begin{align*}
\left|K_{n}(f ; x)-f(x)\right| & \leq b_{n} 2^{-a_{n} x} \sum_{k=0}^{\infty} \frac{\left(a_{n} x\right)_{k}}{2^{k} k!} \int_{\frac{k}{b_{n}}}^{\frac{k+1}{b_{n}}}|f(t)-f(x)| d t \tag{9}\\
& \leq M b_{n} 2^{-a_{n} x} \sum_{k=0}^{\infty} \frac{\left(a_{n} x\right)_{k}}{2^{k} k!} \int_{\frac{k}{b_{n}}}^{\frac{k+1}{b_{n}}}|t-x|^{\alpha} d t
\end{align*}
$$

Applying the Hölder inequality for space of integrable functions with $p=\frac{2}{\alpha}$ and $q=\frac{2}{2-\alpha}$ we write (9) as follows:

$$
\left|K_{n}(f ; x)-f(x)\right| \leq M b_{n}^{\frac{\alpha}{2}} 2^{-a_{n} x} \sum_{k=0}^{\infty} \frac{\left(a_{n} x\right)_{k}}{2^{k} k!}\left[\int_{\frac{k}{b_{n}}}^{\frac{k+1}{b_{n}}}(t-x)^{2} d t\right]^{\frac{\alpha}{2}}
$$

We apply the Hölder inequality for L^{p} space again with $p=\frac{2}{\alpha}$ and $q=\frac{2}{2-\alpha}$ and take into consideration $L_{n}^{*}(1 ; x)=1$ to obtain

$$
\left|K_{n}(f ; x)-f(x)\right| \leq M\left[K_{n}\left((t-x)^{2} ; x\right)\right]^{\frac{\alpha}{2}}=M \delta_{n, x}^{\alpha}
$$

Thus the proof is completed.
Now we recall the following space and norm: $C^{2}[a, b]:=$ the space of the functions f for which $f, f^{\prime}, f^{\prime \prime} \in C[a, b]$ and the norm on the space $C^{2}[a, b]$ can be defined as

$$
\|f\|_{C^{2}[a, b]}=\|f\|_{C[a, b]}+\left\|f^{\prime}\right\|_{C[a, b]}+\left\|f^{\prime \prime}\right\|_{C[a, b]} .
$$

We consider the Peetre's K-functional (similarly as in [2], [4])

$$
\begin{equation*}
K\left(f ; \delta_{n}\right)=\inf _{g \in C^{2}[a, b]}\left\{\|f-g\|_{C[a, b]}+\delta_{n}\|g\|_{C^{2}[a, b]}\right\} . \tag{10}
\end{equation*}
$$

Theorem 5. Let K_{n} be given by (3). Then for all $f \in C[0, b]$ with fixed $b(1 \leq b<\infty)$ we have

$$
\left\|K_{n}(f ; x)-f(x)\right\|_{C[0, b]} \leq 2 K\left(f ; \delta_{n}\right)
$$

where $K\left(f ; \delta_{n}\right)$ is Peetre's K-functional defined by (10) and

$$
\delta_{n}=\frac{1}{2}\left[\left(\frac{a_{n}^{2}}{2 b_{n}^{2}}+\frac{a_{n}}{b_{n}}-\frac{3}{2}\right) b^{2}+\left(\frac{3 a_{n}}{2 b_{n}^{2}}+\frac{1}{2 b_{n}}\right) b+\frac{1}{6 b_{n}^{2}}\right] .
$$

Proof. Assume that $g \in C^{2}[0, b]$. Thus from the Taylor expansion we can get

$$
\begin{align*}
\left|K_{n}(g ; x)-g(x)\right| \leq & \left|g^{\prime}(x)\right|\left|K_{n}((t-x) ; x)\right| \tag{11}\\
& +\frac{1}{2}\left|g^{\prime \prime}(x)\right|\left|K_{n}\left((t-x)^{2} ; x\right)\right|
\end{align*}
$$

Since

$$
\left|K_{n}\left((t-x)^{2} ; x\right)\right| \leq\left|K_{n}\left(t^{2} ; x\right)-x^{2}\right|+2 x\left|K_{n}(t ; x)-x\right|
$$

by using Lemma 1 , we can write inequality (11) as

$$
\begin{aligned}
&\left|K_{n}(g ; x)-g(x)\right| \leq\left|g^{\prime}(x)\right|\left[\left(\frac{a_{n}}{b_{n}}-1\right) x+\frac{1}{2 b_{n}}\right] \\
&+\left|g^{\prime \prime}(x)\right|\left[\left(\frac{a_{n}^{2}}{2 b_{n}^{2}}+\frac{a_{n}}{b_{n}}-\frac{3}{2}\right) x^{2}+\left(\frac{3 a_{n}}{2 b_{n}^{2}}+\frac{1}{2 b_{n}}\right) x+\frac{1}{6 b_{n}^{2}}\right]
\end{aligned}
$$

and consequently

$$
\begin{align*}
& \left\|K_{n}(g ; x)-g(x)\right\|_{C[0, b]} \leq\left(\left\|g^{\prime}\right\|_{C[0, b]}+\left\|g^{\prime \prime}\right\|_{C[0, b]}\right) \tag{12}\\
& \times\left[\left(\frac{a_{n}^{2}}{2 b_{n}^{2}}+\frac{a_{n}}{b_{n}}-\frac{3}{2}\right) b^{2}+\left(\frac{3 a_{n}}{2 b_{n}^{2}}+\frac{1}{2 b_{n}}\right) b+\frac{1}{6 b_{n}^{2}}\right] \\
& \leq\|g\|_{C^{2}[0, b]}\left[\left(\frac{a_{n}^{2}}{2 b_{n}^{2}}+\frac{a_{n}}{b_{n}}-\frac{3}{2}\right) b^{2}+\left(\frac{3 a_{n}}{2 b_{n}^{2}}+\frac{1}{2 b_{n}}\right) b+\frac{1}{6 b_{n}^{2}}\right]
\end{align*}
$$

On the other hand, since K_{n} is a linear operator, we have

$$
\left|K_{n}(f ; x)-f(x)\right| \leq\left|K_{n}(f-g ; x)\right|+|f(x)-g(x)|+\left|K_{n}(g ; x)-g(x)\right|
$$

and so
(13) $\left\|K_{n}(f ; x)-f(x)\right\|_{C[0, b]} \leq 2\|f-g\|_{C[0, b]}+\left\|K_{n}(g ; x)-g(x)\right\|_{C[0, b]}$.

Combining (13) with (12), we can write

$$
\begin{align*}
\| K_{n}(f ; x)- & f(x) \|_{C[0, b]} \leq 2\left\{\|f-g\|_{C[0, b]}+\|g(x)\|_{C^{2}[0, b]}\right. \tag{14}\\
& \left.\times \frac{1}{2}\left[\left(\frac{a_{n}^{2}}{2 b_{n}^{2}}+\frac{a_{n}}{b_{n}}-\frac{3}{2}\right) b^{2}+\left(\frac{3 a_{n}}{2 b_{n}^{2}}+\frac{1}{2 b_{n}}\right) b+\frac{1}{6 b_{n}^{2}}\right]\right\}
\end{align*}
$$

If we take infimum over $g \in C^{2}[0, b]$ from both sides of (14) by choosing

$$
\delta_{n}=\frac{1}{2}\left[\left(\frac{a_{n}^{2}}{2 b_{n}^{2}}+\frac{a_{n}}{b_{n}}-\frac{3}{2}\right) b^{2}+\left(\frac{3 a_{n}}{2 b_{n}^{2}}+\frac{1}{2 b_{n}}\right) b+\frac{1}{6 b_{n}^{2}}\right] .
$$

the proof is completed. Note that $\delta_{n} \rightarrow 0$ when $n \rightarrow \infty$.

References

[1] Agratini O., On a sequence of linear positive operators, Facta Universitatis (Niš), Ser. Math. Inform., 14(1999), 41-48.
[2] Bleimann G., Butzer P.L., Hahn L., A Bernstein-type operator approximating continuous functions on the semi-axis, Nederl. Akad. Wetensch Indag. Math., 42(3)(1980), 255-262.
[3] Bohman H., On approximation of continuous and analytic functions, Ark. Mat., 2(1952), 43-56.
[4] Doğru O., Özarslan M.A., Tabdelen F., On positive operators involving a certain class of generating functions, Stud. Sci. Math. Hung., 41(4)(2004), 415-429.
[5] Erençin A., Taşdelen F., On a family of linear and positive operators in weighted spaces, J. Inequal. Pure Appl. Math., 8(2), article 39, 6pp. (2007).
[6] Korovkin P.P., On convergence of linear positive operators in the space of continuous functions (Russian), Dokl. Akad. Nauk. SSSR (N.S.), 90(1953), 961-964.
[7] Lupaş A., The approximation by some positive linear operators, In: Proceedings of the International Dortmund Meeting on Approximation Theory (M.W. Müller et al., eds.), Akademie Verlag, Berlin (1995), 201-229.
[8] Pop O.T., The Kantorovich form of Stancu operators, Miskolc Mathematical Notes, 7(2)(2006), 161-168.
[9] Shisha O., Mond B., The degree of convergence of linear positive operators, Proc. Nat. Acad. Sci. U.S.A., 60(1968), 1196-2000.

Ayşegül Erençin
Abant İzzet Baysal University
Faculty of Arts and Sciences
Department of Mathematics
14280 Bolu, Turkey
e-mail: erencina@hotmail.com
Fatma Taşdelen
Ankara University
Faculty of Science
Department of Mathematics
06100 Ankara, Turkey
e-mail: tasdelen@science.ankara.edu.tr

Received on 16.04.2008 and, in revised form, on 23.05.2008.

