S. JAFARI, K. VISWANATHAN AND M. RAJAMANI

A DECOMPOSITION OF α -CONTINUITY AND αgs -CONTINUITY

ABSTRACT. The main purpose of this paper is to introduce the concepts of η^* -sets, η^{**} -sets, η^* -continuity and η^{**} -continuity and to obtain decomposition of α -continuity and αgs -continuity in topological spaces.

KEY WORDS: αgs -closed set, η^* -sets, η^{**} -sets, η^* -continuity, η^{**} -continuity.

AMS Mathematics Subject Classification: 54C08, 54C10, 54C05.

1. Introduction and preliminaries

Tong [16] introduced the notions of A-sets and A-continuity in topological spaces and established a decomposition of continuity. In[17], he also introduced the notions of B-sets and B-continuity and used them to obtain a new decomposition of continuity and Ganster and Reilly [3] improved Tong's decomposition result. Quit recently, Noiri and Sayed [10] introduced the notions of η -sets and obtained some decompositions of continuity.

In this paper, we introduce the notions of η^* -sets, η^{**} -sets, η^* -continuity and η^{**} -continuity and obtain decompositions of α -continuity and αgs -continuity.

Throughout the present paper, spaces mean topological spaces on which no separation axioms are assumed unless explicitly stated. Let A be a subset of a space X, the closure, the interior, the pre-closure, the pre-interior, the α -closure and the α -interior of A in X are denoted by Cl(A), Int(A), pCl(A), pInt(A), $\alpha Cl(A)$ and $\alpha Int(A)$, respectively.

Definition 1. A subset A of a space X is called:

- a) a pre-open set [6] if $A \subset Int(Cl(A))$ and a pre-closed set if $Cl(Int(A)) \subset A$,
- b) a semi-open set [5] if $A \subset Cl(Int(A))$ and a semi-closed set if $Int(Cl(A)) \subset A$,
- c) an α -open set [8] if $A \subset Int(Cl(Int(A)))$ and an α -closed set if $Cl(Int(Cl(A))) \subset A$,

- d) a t-set [11] if Int(Cl(A)) = Int(A),
- e) an α^* set [4] if Int(A) = Int(Cl(Int(A))),
- f) an A-set [16] if $A = V \cap T$ where V is open and T is a regular-closed set,
- g) a B-set [12] if $A = V \cap T$ where V is open and T is a t-set,
- h) an αB -set [1] if $A = V \cap T$ where V is α -open and T is a t-set,
- i) an η -set [10] if $A = V \cap T$ where V is open and T is an α -closed set,
- j) an α generalized semi-open [13] (written as αgs -open) set in X if $U \subset \alpha Int(A)$ whenever $U \subset A$ and U is semi-closed in X,
- k) a pre generalized semi-open [15] (written as pgs-open) set in X if $U \subset pInt(A)$ whenever $U \subset A$ and U is semi-closed in X.

Remark 1.

- 1) Every αgs -closed set is pgs-closed but not conversely [15].
- 2) Every αgs -continuous map is pgs-continuous but not conversely [15].

2. η^* -sets and η^{**} -sets

In this section, we introduce and study the notions of η^* -sets and η^{**} -sets in topological spaces.

Definition 2. A subset A of a space X is said to be

- a) an η^* -set if $A = U \cap T$ where U is semi-open and T is α -closed in X.
- b) an η^{**} -set if $A = U \cap T$ where U is αgs -open and T is a t-set in X.

The collection of all η^* -sets (resp. η^{**} -sets) in X will be denoted by $\eta^*(X)$ (resp. $\eta^{**}(X)$).

Theorem 1. For a subset A of a space X, the following are equivalent: a) A is an η^* -set.

b) $A = U \cap \alpha Cl(A)$ for some semi-open set U.

Proof. $a) \to b$). Since A is an η^* -set, then $A = U \cap T$, where U is semi-open and T is α -closed. So, $A \subset U$ and $A \subset T$. Hence $\alpha Cl(A) \subset \alpha Cl(T)$. Therefore, $A \subset U \cap \alpha Cl(A) \subset U \cap \alpha Cl(T) = U \cap T = A$. Thus, $A = U \cap \alpha Cl(A)$.

 $b) \rightarrow a$). It is obvious because $\alpha Cl(A)$ is α -closed.

Remark 2. In a space X, the intersection of two η^{**} -sets is an η^{**} -set.

Remark 3. Observe that since the union of *t*-sets need not be a *t*-set, then the union of two η^{**} -sets need not be an η^{**} -set as seen from the following example.

Example 1. Let $X = \{a, b, c\}, \tau = \{\emptyset, \{a, b\}, X\}$. The sets $\{a\}, \{c\}$ are η^{**} -sets in (X, τ) , but their union $\{a, c\}$ is not an η^{**} -set in (X, τ) .

Remark 4. We have the following implications.

where none of these implications is reversible as shown by [10] and the following examples.

Example 2. Let $X = \{a, b, c\}$ and $\tau = \{\emptyset, \{a\}, X\}$. Then $\{a, b\}$ is an η^* -set but not an η -set in (X, τ) . Let $X = \{a, b, c\}$ and $\tau = \{\emptyset, \{a, b\}, X\}$. Then $\{c\}$ is an η^{**} -set but not an αgs -open set and the set $\{a\}$ is an η^{**} -set but not an αB -set in (X, τ) .

Remark 5.

- 1. The notions of η^* -sets and αgs -closed sets are independent.
- 2. The notions of η^{**} -sets and pqs-closed sets are independent.

Example 3. Let $X = \{a, b, c\}$ and $\tau = \{\emptyset, \{a, b\}, X\}$. Then $\{b, c\}$ is αgs -closed but not an η^* -set in (X, τ) .

Let $X = \{a, b, c\}$ and $\tau = \{\emptyset, \{a\}, \{b\}, \{a, b\}, X\}$. Then $\{a, b\}$ is an η^* -set but not αgs -closed in (X, τ) .

Example 4. Let $X = \{a, b, c\}$ and $\tau = \{\emptyset, \{a, b\}, X\}$. Then the set $\{c\}$ is an η^{**} -set but not a *pgs*-open set and also the set $\{a, c\}$ is a *pgs*-open set but not an η^{**} -set in (X, τ) .

Theorem 2. For a subset A of a space X, the following are equivalent: a) A is α -closed.

b) A is an η^* -set and αgs -closed.

Proof. $a \rightarrow b$: Obvious.

 $b) \to a)$: Since A is an η^* -set, then $A = U \cap \alpha cl(A)$, where U is semi-open in X. So, $A \subset U$ and since A is αgs -closed, then $\alpha cl(A) \subset U$. Therefore, $\alpha Cl(A) \subset U \cap \alpha Cl(A) = A$. Hence A is α -closed.

Proposition 1 ([9]). Let A and B are subsets of a space X. If B is an α^* - set, then $\alpha Int(A \cap B) = \alpha Int(A) \cap Int(B)$.

Theorem 3. For a subset S of a space X, the following are equivalent:

a) S is $\alpha gs-open$.

b) S is an η^{**} -set and pgs-open.

Proof. Necessity: Trivial.

Sufficiency: Assume that S is pgs-open and an η^{**} -set in X.

Then $S = A \cap B$, where A is αqs - open and B is a t-set in X.

Let $F \subset S$, where F is semi-closed in X. Since S is pgs-open in X, $F \subset pInt(S) = S \cap Int(Cl(S)) = (A \cap B) \cap Int(Cl(A \cap B)) \subset A \cap B \cap Int(Cl(A)) \cap Int(Cl(B)) = A \cap B \cap Int(Cl(A)) \cap Int(B)$, since B is a t-set. This implies, $F \subset Int(B)$. Note that A is αgs -open and that $F \subset A$. So, $F \subset \alpha Int(A)$. Therefore, $F \subset \alpha Int(A) \cap Int(B) = \alpha Int(S)$ by Proposition 1. Hence S is αgs -open.

3. η^* -continuity and η^{**} -continuity

Definition 3. A function $f : X \to Y$ is said to be η^* -continuous (resp. η^{**} -continuous) if $f^{-1}(V)$ is an η^* -set (resp. an η^{**} -set) in X for every open subset V of Y.

Definition 4. A function $f : X \to Y$ is said to be $C\eta^*$ -continuous if $f^{-1}(V)$ is an η^* -set in X for every closed subset V of Y.

We shall recall the definitions of some functions used in the sequel.

Definition 5. A function f : X → Y is said to be
a) A-continuous [16] if f⁻¹(V) is an A-set in X for every open set V of Y,
b) B-continuous [12] if f⁻¹(V) is a B-set in X for every open set V of Y,
c) α-continuous [7] if f⁻¹(V) is an α-open set in X for every open set V of Y,
d) LC-continuous [2] (resp. αB-continuous [1]) if f⁻¹(V) is an LC-set (resp. αB-set) in X for every open set V of Y,
e) η-continuous [10] if f⁻¹(V) is an η- set in X for every open set V

f) αgs -continuous [14] (resp. pgs-continuous [15]) if $f^{-1}(V)$ is an αgs - open set (resp. pgs- open set) in X for every open set V of Y.

Remark 6. It is clear that, a function $f : X \to Y$ is α -continuous if and only if $f^{-1}(V)$ is an α -closed set in X for every closed set V of Y,

From the definitions stated above, we obtain the following diagram.

$$\begin{array}{c} A-continuity \longrightarrow LC-continuity \\ \downarrow \qquad \qquad \downarrow \\ \eta-continuity \longrightarrow \eta^*-continuity \\ B-continuity \longrightarrow \alpha B-continuity \longrightarrow \eta^{**}-continuity \\ \uparrow \\ \alpha gs-continuity \longrightarrow pgs-continuity \end{array}$$

Remark 7. None of the implications is reversible as shown by the following examples.

Example 5. Let $X = Y = \{a, b, c\}, \tau = \{\emptyset, \{a\}, X\}$ and $\sigma = \{\emptyset, \{a\}, \{b\}, \{a, b\}, Y\}$. Then the identity function $f : X \to Y$ is η^* -continuous but not η -continuous.

Example 6. Let $X = Y = \{a, b, c\}, \tau = \{\emptyset, \{c\}, \{b, c\}, X\}$ and $\sigma = \{\emptyset, \{a\}, \{a, b\}, \{a, c\}, Y\}$. Then the identity function $f : X \to Y$ is η^{**} -continuous but not αB -continuous.

Example 7. Let $X = Y = \{a, b, c\}, \tau = \{\emptyset, \{a, b\}, X\}$ and $\sigma = \{\emptyset, \{a\}, \{c\}, \{a, b\}, Y\}$. Then the identity function $f : X \to Y$ is η^{**} -continuous but not αgs -continuous.

Remark 8. The following examples show that the concept of

- 1. αgs -continuity and η^* -continuity are independent.
- 2. αgs -continuity and $C\eta^*$ -continuity are independent.

3. η^* -continuity and $C\eta^*$ -continuity are independent.

Example 8. Let $X = Y = \{a, b, c\}, \tau = \{\emptyset, \{a, b\}, X\}$ and $\sigma = \{\emptyset, \{a\}, Y\}$. Let $f : X \to Y$ be the identity function on X. Then f is αgs -continuous but not η^* -continuous.

Example 9. Let $X = Y = \{a, b, c\}, \tau = \{\emptyset, \{a\}, \{b\}, \{a, b\}, X\}$ and $\sigma = \{\emptyset, \{a\}, \{b\}, \{a, b\}, Y\}$. Let $f : X \to Y$ be the identity function on X. Then f is η^* -continuous but not αgs -continuous.

Example 10. Let $X = Y = \{a, b, c\}, \tau = \{\emptyset, \{a, b\}, X\}$ and $\sigma = \{\emptyset, \{a\}, Y\}$. Then the identity function $f : X \to Y$ is αgs -continuous but not $C\eta^*$ -continuous.

Example 11. Let $X = Y = \{a, b, c\}, \tau = \{\emptyset, \{a\}, \{c\}, \{a, c\}, X\}$ and $\sigma = \{\emptyset, \{a\}, \{b, c\}, Y\}$. Then the identity function $f : X \to Y$ is $C\eta^*$ -continuous but not αgs -continuous.

Example 12. Let X, Y, τ as in Example 10 and $\sigma = \{\emptyset, \{b\}, \{c\}, \{b, c\}, Y\}$. Let $f: X \to Y$ be the identity function on X. Then f is $C\eta^*$ -continuous but not η^* -continuous.

Example 13. Let X, Y, τ as in Example 10 and $\sigma = \{\emptyset, \{a, c\}, Y\}$. Let $f: X \to Y$ be the identity function on X. Then f is η^* -continuous but not $C\eta^*$ -continuous.

Remark 9. The following examples show that the concept of pgs-continuity and η^{**} -continuity are independent.

Example 14. Let $X = Y = \{a, b, c\}, \tau = \{\emptyset, \{a, b\}, X\}$ and $\sigma = \{\emptyset, \{a\}, \{b\}, \{a, b\}, \{a, c\}, Y\}$. Then the identity function $f : X \to Y$ is pgs-continuous. But it is not η^{**} -continuous.

Example 15. Let $X = Y = \{a, b, c\}, \tau = \{\emptyset, \{c\}, X\}$ and $\sigma = \{\emptyset, \{a\}, \{b\}, \{a, b\}, Y\}$. Let $f : X \to Y$ be defined by f(a) = c, f(b) = b and f(c) = a. Then f is η^{**} -continuous but it is not pgs-continuous.

Theorem 4. For a function $f : X \to Y$, the following are equivalent: a) f is α -continuous.

b) f is $C\eta^*$ -continuous and αgs -continuous.

Proof. The proof follows from Definitions 4, 5f), Remark 6 and Theorem 2.

Theorem 5. For a function $f : X \to Y$, the following are equivalent: a) f is αgs -continuous. b) f is η^{**} -continuous and pgs-continuous.

Proof. The proof follows from Theorem 3.

Acknowledgment. The authors are grateful to the referee for his remarkable comments which improved the quality of this paper.

References

- AL-NASHEF B., A decomposition of α-continuity and semi-continuity, Acta Math. Hungar., 97(1-2)(2002), 115-120.
- [2] GANSTER M., REILLY I.L., Locally closed sets and LC-continuous functions, Internat. J. Math. Math. Sci., 12(1989), 417-424.
- [3] GANSTER M., REILLY I.L., A decomposition of continuity, Acta Math. Hungar., 56(1990), 299-301.
- [4] HATIR E., NOIRI T., YUKSEL S., A decomposition of continuity, Acta Math. Hungar., 70(1996), 145-150.
- [5] LEVINE N., Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly, 70(1963), 36-41.

- [6] MASHHOUR A.S., ABD. ED-MONSEF M.E., EL-DEEP S.N., On pre-continuous mappings and weak pre-continuous mappings, *Proc. Math. Phys. Soc. Egypt.*, 53(1982), 47-53.
- [7] MASHHOUR A.S., HASANEIN I.A., EL-DEEP S.N., α-continuous and α-open mappings, Acta Math. Hungar., 41(1983), 213-218.
- [8] NJASTAD O., On some classes of nearly open sets, *Pacific J. Math.*, 15(1965), 961-970.
- [9] NOIRI T., RAJAMANI M., SUNDARAM P., A decomposition of a weaker form of continuity, Acta Math. Hungar., 93(1-2)(2001), 109 - 114.
- [10] NOIRI T., SAYED O.R., On decomposition of continuity, Acta Math. Hungar., 111(1-2)(2006), 1-8.
- [11] PIPITONE V., RUSSO G., Spazi semiconnessi e spazi semiaperti, Rend. Circ. Mat. Palermo, 24(2)(1975), 273-285.
- [12] REILLY I.L., VAMANAMURTHY M.R., On α-continuity in topological spaces, Acta Math Hungar., 45(1985), 27-32.
- [13] RAJAMANI M., VISWANATHAN K., On αgs-closed sets in topological spaces, Acta Ciencia Indica, XXXM(3)(2004), 21-25.
- [14] RAJAMANI M., VISWANATHAN K., On αgs-continuous maps in topological spaces, Acta Ciencia Indica, XXXI M (1)(2005), 293-303.
- [15] RAJAMANI M., VISWANATHAN K., A decomposition of a weaker form of continuity in topology, Proc. of the National conference on The Emerging Trends in Pure and Applied Mathematics, St.Xavier's college, Palayamkottai (2005).
- [16] TONG J., A decomposition of continuity, Acta Math. Hungar., 48(1986), 11-15.
- [17] TONG J., A decomposition of continuity in topological spaces, Acta Math. Hungar., 54(1989), 51-55.

SAEID JAFARI COLLEGE OF VESTSJAELLAND SOUTH HERRESTRAEDE 11 4200 SLAGELSE, DENMARK *e-mail:* jafari@stofanet.dk

Kuppusamy Viswanathan Department of Mathematics N G M College Pollachi - 642 001, Tamil Nadu, INDIA *e-mail:* visu_ngm@yahoo.co.in

Mylsamy Rajamani Department of Mathematics N G M College Pollachi - 642 001, Tamil Nadu, INDIA *e-mail:* rajkarthy@yahoo.com

Received on 14.04.2008 and, in revised form, on 30.07.2008.