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1. Introduction

Let Rn denotes the real n-dimensional Euclidean space with appropriate
norm denoted by | · |. Let R+ = [0,∞), N0 = {0, 1, 2, ...} be the given sub-
sets of R, the set of real numbers and E1 =

{
(n, σ) ∈ N2

0 : 0 ≤ σ ≤ n < ∞
}
,

E2 =
{
(m,n, σ, τ) ∈ N4

0 : 0 ≤ σ ≤ m < ∞, 0 ≤ τ ≤ n < ∞
}
. For the func-

tions z(m), w(m,n), m,n ∈ N0 we define the operators ∆, ∆1, ∆2 by
∆z (m) = z (m + 1)− z (m), ∆1w (m,n) = w (m + 1, n)−w (m,n), ∆2w(m,
n) = w (m,n + 1) − w (m, n) and ∆2∆1w (m,n) = ∆2(∆1w(m,n)). Let
D (S1, S2) denotes the class of functions from the set S1 to the set S2. We
use the usual conventions that the empty sums and products are taken to be
0 and 1 respectively. Consider the Volterra type sum-difference equations
in one variable of the forms:

(1) x (n) = f

(
n, x (n) ,

n−1∑
σ=0

k (n, σ, x (σ))

)
,

and

(2) ∆x (n) = g

(
n, x (n) ,

n−1∑
σ=0

k (n, σ, x (σ))

)
, x (0) = x0,
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for n ∈ N0, where k ∈ D (E1 ×Rn, Rn), f, g ∈ D (N0 ×Rn ×Rn, Rn), and
also consider the Volterra type sum-difference equations in two variables of
the forms:

(3) u (m,n) = F

(
m,n, u (m,n) ,

m−1∑
σ=0

n−1∑
τ=0

L (m,n, σ, τ, u (σ, τ))

)
,

and

(4) ∆2∆1u (m,n) = G

(
m,n, u (m,n) ,

m−1∑
σ=0

n−1∑
τ=0

L (m,n, σ, τ, u (σ, τ))

)
,

with the given initial boundary conditions

(5) u (m, 0) = σ (m) , u (0, n) = τ (n) , u (0, 0) = 0,

for m, n ∈ N0, where L ∈ D (E2 ×Rn, Rn), F,G ∈ D
(
N2

0 ×Rn ×Rn, Rn
)
,

σ, τ ∈ D (N0, R
n).

The theory of finite difference equations, the methods used in their so-
lutions and their wide applications in numerical analysis has drawn much
attention in recent years, see [1, 2, 4-7, 9, 10] and the references cited therein.
In [3] Kwapisz has studied the existence of solutions for certain finite dif-
ference equations by using fixed point techniques employed in the theory
of ordinary differential equations. One can formulate existence results for
the solutions of the above equations by modifying the idea employed in [3],
see also [8]. The main purpose of this paper is to study the boundedness,
uniqueness and continuous dependence of solutions of the above equations
under various assumptions on the functions involved therein. The main tool
employed in the analysis is based on the application of the finite difference
inequalities with explicit estimates given in [6, 7]. We believe that the results
obtained here present some useful basic results for future reference, by using
elementary analysis.

2. Statement of results

In this section we state our results to be proved in this paper. We need
the following versions of the inequalities given in [6, 7]. We shall state them
here for completeness.

Lemma 1 (6, Theorem 1.3.4, p. 21 or 7, Theorem 4.3.1, p. 206).
Let z (n) ∈ D (N0, R+), r (n, s) ,∆1r (n, s) ∈ D (E1, R+) and c ≥ 0 is a real
constant. If

(6) z (n) ≤ c +
n−1∑
s=0

r (n, s) z (s) ,
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for n ∈ N0, then

(7) z (n) ≤ c

n−1∏
s=0

[1 + A (s)] ,

for n ∈ N0, where

(8) A (n) = r (n + 1, n) +
n−1∑
σ=0

∆1r (n, σ).

Lemma 2 (7, Theorem 4.4.1, part (a1), p. 214). Let z (n) , p (n) ∈
D (No, R+), r (n, s) ,∆1r (n, s) ∈ D (E1, R+) and c ≥ 0 is a real constant.
If

(9) z (n) ≤ c +
n−1∑
s=0

p (s)

[
z (s) +

s−1∑
σ=0

r (s, σ) z (σ)

]
,

for n ∈ N0, then

(10) z (n) ≤ c

[
1 +

n−1∑
s=0

p (s)
s−1∏
τ=0

[1 + p (τ) + A (τ)]

]
,

for n ∈ N0, where A(n) is given by (8).

Lemma 3 (6, Theorem 4.2.6, p. 304 or 7, Theorem 5.2.2, part
(b1), p.246). Let w (m,n) ∈ D

(
N2

0 , R+

)
, e (m,n, σ, τ), ∆1e (m,n, σ, τ),

∆2e (m,n, σ, τ), ∆2∆1e (m,n, σ, τ) ∈ D (E2, R+) and c ≥ 0 is a real con-
stant. If

(11) w (m,n) ≤ c +
m−1∑
σ=0

n−1∑
τ=0

e (m, n, σ, τ) w (σ, τ),

for m,n ∈ N0, then

(12) w (m,n) ≤ c

m−1∏
s=0

[
1 +

n−1∑
t=0

E (s, t)

]
,

for m,n ∈ N0, where

E (m,n) = e (m + 1, n + 1,m, n) +
m−1∑
σ=0

∆1e (m,n + 1, σ, n)(13)

+
n−1∑
τ=0

∆2e (m + 1, n,m, τ) +
m−1∑
σ=0

n−1∑
τ=0

∆2∆1e (m,n, σ, τ).
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Lemma 4 (7, Theorem 5.3.2 part (b1), p. 258). Let w (m,n),
p(m,n) ∈ D

(
N2

0 , R+

)
, e (m,n, σ, τ), ∆1e (m,n, σ, τ), ∆2e (m,n, σ, τ), ∆2∆1

e (m,n, σ, τ) ∈ D (E2, R+) and c ≥ 0 is a real constant. If

(14) w (m,n) ≤ c +
m−1∑
s=0

n−1∑
t=0

p (s, t)

[
w (s, t) +

s−1∑
σ=0

t−1∑
τ=0

e (s, t, σ, τ) w (σ, τ)

]
,

for m,n ∈ N0, then

w (m,n) ≤ c

[
1 +

m−1∑
s=0

n−1∑
t=0

p (s, t)(15)

×
s−1∏
ξ=0

1 +
t−1∑
η=0

[p (ξ, η) + E (ξ, η)]

,

for m,n ∈ N0, where E(m,n) is given by (13).

Our main results are given in the following theorems.

Theorem 1. (a1) Suppose that the functions f , k in equation (1) satisfy
the conditions

(16) |f (n, u, v)− f (n, ū, v̄)| ≤ N [|u− ū|+ |v − v̄|] ,

(17) |k (n, σ, u)− k (n, σ, v)| ≤ r (n, σ) |u− v| ,

where 0 ≤ N < 1 is a constant and r (n, σ) ,∆1r (n, σ) ∈ D (E1, R+). Let

(18) c1 = sup
n∈N0

∣∣∣∣∣f
(

n, 0,
n−1∑
σ=0

k (n, σ, 0)

)∣∣∣∣∣ < ∞,

(19) B (n) =
N

1−N
A (n) ,

in which A(n) is given by (8) and assume that

(20)
∞∏

s=0

[1 + B (s)] < ∞.

Then any solution x(n), n ∈ N0 of equation (1) is bounded and

(21) |x (n)| ≤
(

c1

1−N

) n−1∏
s=0

[1 + B (s)] ,
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for n ∈ N0.
(a2) Suppose that the function g in equation (2) satisfies the condition

(22) |g (n, u, v)− g (n, ū, v̄)| ≤ p (n) [|u− ū|+ |v − v̄|] ,

where p (n) ∈ D (N0, R+) and the function k in equation (2) satisfies the
condition (17). Let

(23) c2 = sup
n∈N0

∣∣∣∣∣x0 +
n−1∑
s=0

g

(
s, 0,

s−1∑
σ=0

k (s, σ, 0)

)∣∣∣∣∣ < ∞,

and assume that

(24)
∞∑

s=0

p (s)
s−1∏
τ=0

[1 + p (τ) + A (τ)] < ∞,

where A(n) is given by (8). Then any solution u(n), n ∈ N0 of equation (2)
is bounded and

(25) |x (n)| ≤ c2

[
1 +

n−1∑
s=0

p (s)
s−1∏
τ=0

[1 + p (τ) + A (τ)]

]
,

for n ∈ N0.

Theorem 2. (a3) Suppose that the functions f , k in equation (1) satisfy
the conditions (16), (17) respectively. Assume that the condition (20) holds.
Then the equation (1) has at most one solution on N0.

(a4) Suppose that the functions g ,k in equation (2) satisfy the conditions
(22), (17) respectively. Assume that the condition (24) holds. Then the
equation (2) has at most one solution on N0.

In order to study the continuous dependence of solutions of equations
(1) and (2) on the functions involved therein, we consider the following
corresponding equations

(26) y (n) = f̄

(
n, y (n) ,

n−1∑
σ=0

k̄ (n, σ, y (σ))

)
,

and

(27) ∆y (n) = ḡ

(
n, y (n) ,

n−1∑
σ=0

k̄ (n, σ, y (σ))

)
, y (0) = y0,

for n ∈ N0, where k̄ ∈ D (E1 ×Rn, Rn), f̄ , ḡ ∈ D (N0 ×Rn ×Rn, Rn).
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Theorem 3. (a5) Suppose that the functions f and k in equation (1)
satisfy the conditions (16) and (17) respectively. Furthermore, suppose that∣∣∣∣∣f

(
n, y (n) ,

n−1∑
σ=0

k (n, σ, y (σ))

)
(28)

− f̄

(
n, y (n) ,

n−1∑
σ=0

k̄ (n, σ, y (σ))

)∣∣∣∣∣ ≤ ε1,

where f , k and f̄ , k̄ are the functions involved in equations (1) and (26),
ε1 > 0 is an arbitrary small constant and y(n) is a solution of equation (26).
Then the solution x(n), n ∈ N0 of equation (1) depends continuously on the
functions involved on the right hand side of equation (1).

(a6) Suppose that the functions g and k in equation (2) satisfy the con-
ditions (22) and (17) respectively. Furthermore, suppose that

|x0 − y0|+
n−1∑
s=0

∣∣∣∣∣g
(

s, y (s) ,
s−1∑
σ=0

k (s, σ, y (σ))

)
(29)

− ḡ

(
s, y (s) ,

s−1∑
σ=0

k̄ (s, σ, y (σ))

)∣∣∣∣∣ ≤ ε2,

where x0, g, k and y0, ḡ, k̄ are the functions involved in equations (2) and
(27), ε2 > 0, is an arbitrary small constant and y(n) is a solution of equation
(27). Then the solution x(n), n ∈ N0 of equation (2) depends continuously
on the functions involved on the right hand side of equation (2).

Next, in order to study the continuous dependence of solutions on pa-
rameters, we consider the following systems of Volterra type sum-difference
equations

(30) z (n) = h

(
n, z (n) ,

n−1∑
σ=0

q (n, σ, z (σ)) , µ

)
,

(31) z (n) = h

(
n, z (n) ,

n−1∑
σ=0

q (n, σ, z (σ)) , µ0

)
,

and

(32) ∆z (n) = h

(
n, z (n) ,

n−1∑
σ=0

q (n, σ, z (σ)) , µ

)
, z (0) = z0,
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(33) ∆z (n) = h

(
n, z (n) ,

n−1∑
σ=0

q (n, σ, z (σ)) , µ0

)
, z (0) = z0,

for n ∈ N0, where q ∈ D (E1 ×Rn, Rn), h ∈ D (N0 ×Rn ×Rn ×R, Rn) and
µ, µ0 are parameters.

Theorem 4. (a7) Suppose that the functions h, q in equations (30), (31)
satisfy the conditions

(34) |h (n, u, v, µ)− h (n, ū, v̄, µ)| ≤ N̄ [|u− ū|+ |v − v̄|] ,

(35) |h (n, u, v, µ)− h (n, u, v, µ0)| ≤ α (n) |µ− µ0| ,

(36) |q (n, σ, u)− q (n, σ, v)| ≤ r̄ (n, σ) |u− v| ,

where 0 ≤ N̄ < 1 is a constant, α (n) ∈ D (N0, R+) such that α (n) ≤
Q < ∞, Q is a constant and r̄ (n, σ) , ∆1r̄ (n, σ) ∈ D (E1, R+). Let z1 (n)
and z2 (n) be the solutions of equations (30) and (31) respectively. Then

(37) |z1 (n)− z2 (n)| ≤
(

Q |µ− µ0|
1− N̄

) n−1∏
s=0

[
1 + B̄ (s)

]
,

for n ∈ N0, where

(38) B̄ (n) =
N̄

1− N̄
Ā (n) ,

in which

(39) Ā (n) = r̄ (n + 1, n) +
n−1∑
σ=0

∆1r̄ (n, σ) .

(a8) Suppose that the functions h, q in equations (32), (33) satisfy the
conditions (34)-(36) with p̄ (n) in place of N̄ in (34), where p̄ (n) ∈ D (N0, R+)

and the function α (n) in (35) be such that
n−1∑
s=0

α (s) ≤ Q̄ < ∞, Q̄ is a con-

stant. Let z1 (n) and z2 (n) be the solutions of equations (32) and (33)
respectively. Then

|z1 (n)− z2 (n)| ≤
(
Q̄ |µ− µ0|

) [
1 +

n−1∑
s=0

p̄ (s)(40)

×
s−1∏
τ=0

[
1 + p̄ (τ) + Ā (τ)

]]
,

for n ∈ N0, where Ā (n) is given by (39).
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The following theorems deal with the boundedness, uniqueness and con-
tinuous dependence of solutions of equations (3) and (4)-(5).

Theorem 5. (b1) Suppose that the functions F , L in equation (3) satisfy
the conditions

(41) |F (m,n, u, v)− F (m, n, ū, v̄)| ≤ M [|u− ū|+ |v − v̄|] ,

(42) |L (m,n, σ, τ, u)− L (m,n, σ, τ, v)| ≤ e (m, n, σ, τ) |u− v| ,

where 0 ≤ M < 1 is a constant and e (m,n, σ, τ), ∆1e (m,n, σ, τ), ∆2e(m,n,
σ, τ), ∆2∆1e (m, n, σ, τ) ∈ D (E2, R+). Let

(43) d1 = sup
(m,n)∈N2

0

∣∣∣∣∣F
(

m,n, 0,
m−1∑
σ=0

n−1∑
τ=0

L (m,n, σ, τ, 0)

)∣∣∣∣∣ < ∞,

(44) Ē (m, n) =
M

1−M
E (m,n) ,

in which E(m,n) is given by (13) and suppose that

(45)
∞∏

s=0

[
1 +

∞∑
t=0

Ē (s, t)

]
< ∞.

Then any solution u(m,n), m,n ∈ N0 of equation (3) is bounded and

(46) |u (m, n)| ≤
(

d1

1−M

)m−1∏
s=0

[
1 +

n−1∑
t=0

Ē (s, t)

]
,

for m,n ∈ N0.
(b2) Suppose that the function G in equation (4) satisfies the condition

(47) |G (m,n, u, v)−G (m, n, ū, v̄)| ≤ p (m,n) [|u− ū|+ |v − v̄|] ,

where p (m,n) ∈ D
(
N2

0 , R+

)
and the function L in equation (4) satisfies the

condition (42). Let

d2 = sup
(m,n)∈N2

0

∣∣∣∣∣∣ σ (m) + τ (n)(48)

+
m−1∑
s=0

n−1∑
t=0

G

(
s, t, 0,

s−1∑
σ=0

t−1∑
τ=0

L (s, t, σ, τ, 0)

)∣∣∣∣∣ < ∞,
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and suppose that

(49)
∞∑

s=0

∞∑
t=0

p (s, t)
s−1∏
ξ=0

1 +
t−1∑
η=0

[p (ξ, η) + E (ξ, η)]

 < ∞,

where E(m, n) is given by (13). Then any solution u(m, n), m, n ∈ N0, of
equations (4)-(5) is bounded and

|u (m,n)| ≤ d2

1 +
m−1∑
s=0

n−1∑
t=0

p (s, t)(50)

×
s−1∏
ξ=0

1 +
t−1∑
η=0

[p (ξ, η) + E (ξ, η)]

 ,

for m,n ∈ N0.

Theorem 6. (b3) Suppose that the functions F , L in equation (3) satisfy
the conditions (41), (42) respectively. Assume that the condition (45) holds.
Then the equation (3) has at most one solution on N2

0

(b4) Suppose that the functions G, L in equation (4) satisfy the conditions
(47), (42) respectively. Assume that the condition (49) holds. Then the
equations (4)-(5) has at most one solution on N2

0 .
Consider the equations (3) and (4)-(5) and the corresponding equations

(51) v (m,n) = F̄

(
m,n, v (m,n) ,

m−1∑
σ=0

n−1∑
τ=0

L̄ (m,n, σ, τ, v (σ, τ))

)
,

and

(52) ∆2∆1v (m,n) = Ḡ

(
m,n, v (m,n) ,

m−1∑
σ=0

n−1∑
τ=0

L̄ (m,n, σ, τ, v (σ, τ))

)
,

with the given initial boundary conditions

(53) v (m, 0) = σ̄ (m) , v (0, n) = τ̄ (n) , v (0, 0) = 0,

for m,n ∈ N0 where L̄ ∈ D (E2 ×Rn, Rn), F̄ , Ḡ ∈ D
(
N2

0 ×Rn ×Rn, Rn
)
,

σ̄, τ̄ ∈ D (N0, R
n).

Theorem 7. (b5) Suppose that the functions F , L in equation (3) satisfy
the conditions (41), (42) respectively. Furthermore suppose that∣∣∣∣∣F

(
m,n, v (m,n) ,

m−1∑
σ=0

n−1∑
τ=0

L (m,n, σ, τ, v (σ, τ))

)
(54)

−F̄

(
m,n, v (m,n) ,

m−1∑
σ=0

n−1∑
τ=0

L̄ (m, n, σ, τ, v (σ, τ))

)∣∣∣∣∣ ≤ ε3,
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where F , L and F̄ , L̄ are the functions involved in equations (3) and (51),
ε3 > 0 is an arbitrary small constant and v(m,n) is a solution of equa-
tion (51). Then the solution u(m, n), m,n ∈ N0 of equation (3) depends
continuously on the functions involved on the right hand side of equation
(3).

(b6) Suppose that the functions G, L in equation (4) satisfy the conditions
(47), (42) respectively. Furthermore, suppose that

|σ (m) + τ (n)− σ̄ (m)− τ̄ (n)|(55)

+
m−1∑
s=0

n−1∑
t=0

∣∣∣∣∣G
(

s, t, v (s, t) ,
s−1∑
σ=0

t−1∑
τ=0

L (s, t, σ, τ, v (σ, τ))

)

− Ḡ

(
s, t, v (s, t) ,

s−1∑
σ=0

t−1∑
τ=0

L̄ (s, t, σ, τ, v (σ, τ))

)∣∣∣∣∣ ≤ ε4,

where σ, τ , F , L and σ̄, τ̄ , F̄ , L̄ are the functions involved in equations
(4)-(5) and (52)-(53), ε4 > 0 is an arbitrary small constant and v(m,n)
is a solution of equations (52)-(53). Then the solution u(m,n), m,n ∈
N0 of equations (4)-(5) depends continuously on the functions involved in
equations (4)-(5).

We next consider the following systems of Volterra sum-difference equa-
tions

(56) z (m, n) = H

(
m,n, z (m,n) ,

m−1∑
σ=0

n−1∑
τ=0

P (m,n, σ, τ, z (σ, τ)) , µ

)
,

(57) z (m,n) = H

(
m,n, z (m,n) ,

m−1∑
σ=0

n−1∑
τ=0

P (m,n, σ, τ, z (σ, τ)) , µ0

)
,

and

(58) ∆2∆1z (m,n) = H

(
m,n, z (m,n) ,

m−1∑
σ=0

n−1∑
τ=0

P (m,n, σ, τ, z (σ, τ)) , µ

)
,

(59) ∆2∆1z (m,n) = H

(
m,n, z (m,n) ,

m−1∑
σ=0

n−1∑
τ=0

P (m,n, σ, τ, z (σ, τ)) , µ0

)
,

with the given initial boundary conditions

(60) z (m, 0) = σ0 (m) , z (0, n) = τ0 (n) , z (0, 0) = 0,

for m, n ∈ N0, where P ∈ D (E2 ×Rn, Rn), H ∈ D
(
N2

0 ×Rn ×Rn ×R,Rn
)
,

σ0, τ0 ∈ D (N0, R
n) and µ, µ0 are parameters.
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Theorem 8. (b7) Suppose that the functions H,P in equations (56),
(57) satisfy the conditions

(61) |H (m,n, u, v, µ)−H (m,n, ū, v̄, µ)| ≤ N̄ [|u− ū|+ |v − v̄|] ,

(62) |H (m,n, u, v, µ)−H (m, n, u, v, µ0)| ≤ β (m,n) |µ− µ0| ,

(63) |P (m,n, σ, τ, u)− P (m,n, σ, τ, v)| ≤ e (m,n, σ, τ) |u− v| ,

where 0 ≤ N̄ < 1 is a constant, β (m,n) ∈ D
(
N2

0 , R+

)
such that β (m, n) ≤

M0 < ∞, M0 is a constant and e (m, n, σ, τ), ∆1e (m,n, σ, τ), ∆2e (m,n, σ, τ),
∆2∆1e (m, n, σ, τ) ∈ D (E2, R+). Let z1 (m,n) and z2 (m,n) be the solutions
of equations (56) and (57) respectively. Then

(64) |z1 (m, n)− z2 (m,n)| ≤
(

M0 |µ− µ0|
1− N̄

)m−1∏
s=0

[
1 +

n−1∑
t=0

Ē (s, t)

]
,

for m,n ∈ N0, where Ē (m,n) is given by (44).
(b8) Suppose that the functions H, P in equations (58), (59) satisfy the

conditions (61)-(63) with p̄ (m,n) in place of N̄ in (61), where p̄ (m,n) ∈

D
(
N2

0 , R+

)
and the function β (m,n) in (62) be such that

m−1∑
s=0

n−1∑
t=0

β (s, t) ≤

M̄0 < ∞, M̄0 is a constant. Let z1 (m,n) and z2 (m,n) be the solutions of
equations (58), (60) and (59), (60) respectively. Then

|z1 (m, n)− z2 (m,n)| ≤
(
M̄0 |µ− µ0|

)1 +
m−1∑
s=0

n−1∑
t=0

p̄ (s, t)(65)

×
s−1∏
ξ=0

1 +
t−1∑
η=0

[p̄ (ξ, η) + E (ξ, η)]

,

for m,n ∈ N0, where E(m,n) is given by (13).

3. Proofs of theorems 1-8

Since the proofs resemble one another, we give the details for (a1), (a3),
(a5), (a7) and (b2), (b4), (b6), (b8) only. The proofs of (a2), (a4), (a6) , (a8)
and (b1), (b3), (b5), (b7) can be completed by following the proofs of the
above mentioned results, by making use of Lemmas 2 and 3.

(a1) Using the fact that x(n) is a solution of equation (1) and the hy-
potheses we have
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|x (n)| ≤

∣∣∣∣∣f
(

n, x (n) ,
n−1∑
σ=0

k (n, σ, x (σ))

)
(66)

− f

(
n, 0,

n−1∑
σ=0

k (n, σ, 0)

)∣∣∣∣∣+
∣∣∣∣∣f
(

n, 0,
n−1∑
σ=0

k (n, σ, 0)

)∣∣∣∣∣
≤ c1 + N

[
|x (n)|+

n−1∑
σ=0

r (n, σ) |x (σ)|

]
.

From (66) and using the assumption 0 ≤ N < 1, we observe that

(67) |x (n)| ≤
(

c1

1−N

)
+

N

1−N

n−1∑
σ=0

r (n, σ) |x (σ)|.

Now an application of Lemma 1 to (67) yields (21), which in view of the
assumption (20) implies the boundedness of solution x(n) of equation (1)
on N0.

(a3) Let x1 (n) and x2 (n) be two solutions of equation (1) on N0. Using
this fact and the hypotheses we have

|x1 (n)− x2 (n)| ≤

∣∣∣∣∣f
(

n, x1 (n) ,
n−1∑
σ=0

k (n, σ, x1 (σ))

)
(68)

− f

(
n, x2 (n) ,

n−1∑
σ=0

k (n, σ, x2 (n))

)∣∣∣∣∣
≤ N

[
|x1 (n)− x2 (n)|+

n−1∑
σ=0

r (n, σ) |x1 (σ)− x2 (σ)|

]
.

From (68) we observe that

(69) |x1 (n)− x2 (n)| ≤ N

1−N

n−1∑
σ=0

r (n, σ) |x1 (σ)− x2 (σ)|.

Now a suitable application of Lemma 1 to (69) yields |x1 (n)− x2 (n)| ≤ 0,
which implies x1 (n) = x2 (n) for n ∈ N0. Thus there is at most one solution
to equation (1) on N0.

(a5) Let u (n) = |x (n)− y (n)|, n ∈ N0. Using the facts that x(n) and
y(n) are the solutions of equations (1) and (26) and hypotheses we have

u (n) ≤

∣∣∣∣∣f
(

n, x (n) ,
n−1∑
σ=0

k (n, σ, x (σ))

)
(70)

−f

(
n, y (n) ,

n−1∑
σ=0

k (n, σ, y (σ))

)∣∣∣∣∣
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+

∣∣∣∣∣f
(
n, y (n) ,

n−1∑
σ=0

k (n, σ, y (σ))

)

− f̄

(
n, y (n) ,

n−1∑
σ=0

k̄ (n, σ, y (σ))

)∣∣∣∣∣
≤ ε1 + N

[
u (n) +

n−1∑
σ=0

r (n, σ) u (σ)

]
.

From (70) we observe that

(71) u (n) ≤ ε1

1−N
+

N

1−N

n−1∑
σ=0

r (n, σ) u (σ).

Now an application of Lemma 1 to (71) yields

(72) |x (n)− y (n)| ≤
(

ε1

1−N

) n−1∏
s=0

[1 + B (s)] ,

where B(n) is given by (19). From (72) it follows that the solution of
equation (1) depends continuously on the functions involved on the right
hand side of equation (1).

(a7) Let z (n) = |z1 (n)− z2 (n)|, n ∈ N0. Using the facts that z1 (n) and
z2 (n) are the solutions of equations (30) and (31) and hypotheses we have

z (n) ≤

∣∣∣∣∣h
(

n, z1 (n) ,

n−1∑
σ=0

q (n, σ, z1 (σ)) , µ

)
(73)

− h

(
n, z2 (n) ,

n−1∑
σ=0

q (n, σ, z2 (σ)) , µ

)∣∣∣∣∣
+

∣∣∣∣∣h
(

n, z2 (n) ,
n−1∑
σ=0

q (n, σ, z2 (σ)) , µ

)

−h

(
n, z2 (n) ,

n−1∑
σ=0

q (n, σ, z2 (σ)) , µ0

)∣∣∣∣∣
≤ N̄

[
z (n) +

n−1∑
σ=0

r̄ (n, σ) z (σ)

]
+ Q |µ− µ0| .

From (73) we observe that

(74) z (n) ≤ Q |µ− µ0|
1− N̄

+
N̄

1− N̄

n−1∑
σ=0

r̄ (n, σ) z (σ).
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Now an application of Lemma 1 to (74) yields (37), which shows the depen-
dency of solutions of equations (30), (31) on parameters.

(b2) Using the fact that u(m,n) is a solution of equations (4)-(5) and the
hypotheses we have

|u (m,n)| ≤

∣∣∣∣∣∣σ (m) + τ (n)(75)

+
m−1∑
s=0

n−1∑
t=0

G

(
s, t, 0,

s−1∑
σ=0

t−1∑
τ=0

L (s, t, σ, τ, 0)

)∣∣∣∣∣
+

m−1∑
s=0

n−1∑
t=0

∣∣∣∣∣G
(

s, t, u (s, t) ,
s−1∑
σ=0

t−1∑
τ=0

L (s, t, σ, τ, u (σ, τ))

)

− G

(
s, t, 0,

s−1∑
σ=0

t−1∑
τ=0

L (s, t, σ, τ, 0)

)∣∣∣∣∣
≤ d2 +

m−1∑
s=0

n−1∑
t=0

p (s, t)

[
|u (s, t)|+

s−1∑
σ=0

t−1∑
τ=0

e (s, t, σ, τ) |u (σ, τ)|

]
.

Now an application of Lemma 4 to (75) yields (50), which in view of the
assumption (49) implies the boundedness of solution of equations (4)-(5) on
N2

0 .
(b4) Let u1 (m,n) and u2 (m,n) be two solutions of equations (4)-(5).

Using this fact and hypotheses we have

|u1 (m,n)− u2 (m,n)|(76)

≤
m−1∑
s=0

n−1∑
t=0

∣∣∣∣∣ G

(
s, t, u1 (s, t) ,

s−1∑
σ=0

t−1∑
τ=0

L (s, t, σ, τ, u1 (σ, τ))

)

− G

(
s, t, u2 (s, t) ,

s−1∑
σ=0

t−1∑
τ=0

L (s, t, σ, τ, u2 (σ, τ))

)∣∣∣∣∣
≤

m−1∑
s=0

n−1∑
t=0

p (s, t)

|u1 (s, t)− u2 (s, t)|

+
s−1∑
σ=0

t−1∑
τ=0

e (s, t, σ, τ) |u1 (σ, τ)− u2 (σ, τ)|

]
.

Now a suitable application of Lemma 4 to (76) yields |u1 (m,n)− u2 (m,n)|
≤ 0, which implies u1 (m,n) = u2 (m,n) for m, n ∈ N0. Thus there is at
most one solution to equations (4)-(5).
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(b6) Let z (m,n) = |u (m,n)− v (m,n)|, m,n ∈ N0. Using the facts that
u(m,n) and v(m,n) are the solutions of equations (4)-(5) and (52)-(53) and
the hypotheses we have

z (m, n) ≤ |σ (m) + τ (n)− σ̄ (m)− τ̄ (n)|(77)

+
m−1∑
s=0

n−1∑
t=0

∣∣∣∣∣G
(

s, t, u (s, t) ,

s−1∑
σ=0

t−1∑
τ=0

L (s, t, σ, τ, u (σ, τ))

)

− G

(
s, t, v (s, t) ,

s−1∑
σ=0

t−1∑
τ=0

L (s, t, σ, τ, v (σ, τ))

)∣∣∣∣∣
+

m−1∑
s=0

n−1∑
t=0

∣∣∣∣∣G
(

s, t, v (s, t) ,
s−1∑
σ=0

t−1∑
τ=0

L (s, t, σ, τ, v (σ, τ))

)

− Ḡ

(
s, t, v (s, t) ,

s−1∑
σ=0

t−1∑
τ=0

L̄ (s, t, σ, τ, v (σ, τ))

)∣∣∣∣∣
≤ ε4 +

m−1∑
s=0

n−1∑
t=0

p (s, t)

[
z (s, t) +

s−1∑
σ=0

t−1∑
τ=0

e (s, t, σ, τ) z (σ, τ)

]
.

Now an application of Lemma 4 to (77) yields

|u (m,n)− v (m,n)|(78)

≤ ε4

1 +
m−1∑
s=0

n−1∑
t=0

p (s, t)
s−1∏
ξ=0

1 +
t−1∑
η=0

[p (ξ, η) + E (ξ, η)]

 ,

for m,n ∈ N0, where E(m,n) is given by (13). From (78) it follows that the
solution of equations (4)-(5) depends continuously on the functions involved
therein.

(b8) Let w (m,n) = |z1 (m,n)− z2 (m,n)|, m,n ∈ N0. Using the facts
that z1 (m,n) and z2 (m,n) are the solutions of equations (58), (60) and
(59), (60) and the hypotheses we have

w (m,n) ≤
m−1∑
s=0

n−1∑
t=0

∣∣∣∣∣H
(

s, t, z1 (s, t) ,
s−1∑
σ=0

t−1∑
τ=0

P (s, t, σ, τ, z1 (σ, τ)) , µ

)
(79)

− H

(
s, t, z2 (s, t) ,

s−1∑
σ=0

t−1∑
τ=0

P (s, t, σ, τ, z2 (σ, τ)) , µ

)∣∣∣∣∣
+

m−1∑
s=0

n−1∑
t=0

∣∣∣∣∣H
(

s, t, z2 (s, t) ,

s−1∑
σ=0

t−1∑
τ=0

P (s, t, σ, τ, z2 (σ, τ)) , µ

)

− H

(
s, t, z2 (s, t) ,

s−1∑
σ=0

t−1∑
τ=0

P (s, t, σ, τ, z2 (σ, τ)) , µ0

)∣∣∣∣∣
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≤
m−1∑
s=0

n−1∑
t=0

p̄ (s, t)

[
w (s, t) +

s−1∑
σ=0

t−1∑
τ=0

e (s, t, σ, τ) w (σ, τ)

]

+
m−1∑
σ=0

n−1∑
τ=0

β (s, t) |µ− µ0|

≤ M̄0 |µ− µ0|+
m−1∑
s=0

n−1∑
t=0

p̄ (s, t)

[
w (s, t) +

s−1∑
σ=0

t−1∑
τ=0

e (s, t, σ, τ) w (σ, τ)

]
.

Now an application of Lemma 4 to (79) yields (65), which shows the depen-
dency of solutions of equations (58), (60) and (59), (60) on parameters.
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