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ON SOME CLASSES OF DIFFERENCE DOUBLE

SEQUENCE SPACES

Abstract. In this article we introduce the difference double se-
quence spaces 2`∞(∆, q), 2c(∆, q), 2c0(∆, q), 2c

B(∆, q), 2c
B
0 (∆, q),

2c
R(∆, q) and 2c

R
0 (∆, q) defined over a seminormed space (X, q),

seminormed by q. We examine some topological and algebraic
properties of these spaces like symmetricity, solidness, monotonoc-
ity, convergence free, nowhere densenes etc. We prove some inclu-
sion results too.
Key words: difference sequence, completeness, solid space, sym-
metric space, convergence free.
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1. Introduction

Throughout w, c, c0 and `∞ denote the classes of all, convergent, null
and bounded scalar valued single sequences respectively.

Some initial works on double sequence spaces is found in Bromwich [2].
Later on the classes of double sequences were investigated by Hardy [3],
Moricz [6], Moricz and Rhoades [7], Basarir and Solancan [1], Tripathy [9],
Turkmenoglu [12] and many others.

Let (X, q) be a seminormed space, seminormed by q. Throughout the
article 2w(X), 2`∞(X), 2c(X), 2c

R(X), 2c
B(X), 2c0(X), 2c

R
0 (X), 2c

B
0 (X)

denote the spaces of all, bounded, convergent in Pringsheim’s sense, regularly
convergent, bounded convergent in Pringsheim’s sense, null in Pringsheims
sense, regularly null and bounded null in Pringsheim’s sense double sequence
spaces respectively defined over (X, q). For X = C, the field of complex
numbers these represent the corresponding scalar valued sequence spaces.

Throughout a double sequence will be denoted as A = < ank > i.e. a
double infinite array of elements ank, for n, k ∈ N .

A double sequence < ank > is said to converge in Pringsheim’s sense if

lim
n,k→∞

ank = L exists,
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where n and k tend to infinity independent of each other.
The notion of regular convergence for double sequences was introduced

by Hardy [3].
A double sequence < ank > is said to converge regularly if it converges

in the pringsheim’s sense and the following limits hold:

lim
n→∞

ank = Lk, exist for each k ∈ N.

and
lim

k→∞
ank = Mn, exist for each n ∈ N.

When L = Lk = Mn = θ, for all n, k ∈ N , we say that < ank > is
regularly null.

Hence the definition is equivalent to the following single statement:

lim
max{n,k}→∞

ank = θ.

The notion of difference sequence spaces (for single sequences) was intro-
duced by Kizmaz [5] as follows:

Z(∆) = {(xk) ∈ w : (∆xk) ∈ Z} ,

for Z = c, c0 and `∞, where ∆xk = xk − xk+1 for all k ∈ N .
The above spaces are Banach spaces normed by

||(xk)|| = |x1|+ sup
k≥1

|∆xk|

Later on the notion was further investigated by Tripathy [13] and many
others.

2. Definitions and preliminaries

Definition 1. A double sequence space E is said to be solid (or normal)
if < αnkank > ∈ E whenever < ank > ∈ E for all double sequences < αnk >
of scalars with |αnk| ≤ 1 for all n, k ∈ N .

Definition 2. Let K = {(ni, kj) : i, j ∈ N ; n1 < n2 < . . . . and
k1 < k2 < . . . .} ⊆ N × N and E be a double sequence space. A K-step
space of E is a sequence space

λE
K = {< aniki

> ∈ 2w : < ank > ∈ E}.

A canonical pre-image of a sequence < aniki
> ∈ E is a sequence < bnk >

∈ E defined as follows:

bnk =

{
ank if (n, k) ∈ K,

θ otherwise.
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A canonical pre-image of a step space λE
K is a set of canonical pre-images

of all elements in λE
K .

Definition 3. A double sequence space E is said to be monotone if it
contains the canonical pre-images of all its step spaces.

Remark 1. From the above notions, it follows that ”If a sequence space
E solid then E is monotone”.

Definition 4. A double sequence space E is said to be symmetric if
< ank > ∈ E implies < aπ(n)π(k) > ∈ E, where π is a permutation of N .

Definition 5. A double sequence space E is said to be convergence free
if < bnk > ∈ E whenever < ank > ∈ E and bnk = θ, whenever ank = θ,
where θ is the zero element of X.

We introduce the following difference double sequence spaces defined over
the seminormed space (X, q).

Z(∆, q) = {< ank > ∈ 2w(q) : < ∆ank > ∈ Z(q)},

where Z = 2`∞, 2c, 2c0, 2c
R, 2c

R
0 , 2c

B, 2c
B
0 and ∆ank = ank − an+1,k −

an,k+1 + an+1,k+1 for all n, k ∈ N .

3. Main results

The proof of the following two results are routine works.

Theorem 1. The classes Z(∆, q) where Z = 2`∞, 2c, 2c0, 2c
R, 2c

R
0 ,

2c
B, 2c

B
0 are linear spaces.

Theorem 2. The sequence spaces Z(∆, q) where Z = 2`∞, 2c
R, 2c

R
0 ,

2c
B, 2c

B
0 are seminormed spaces, seminormed by

f(< ank >) = sup
n

q(an1) + sup
k

q(a1k) + sup
n,k

q(∆ank)

Remark 2. Theorem 2 holds good if we consider the function:

g(< ank >) = sup
n,k

q(∆ank),

instead of f .
Theorem 3. Let (X, q) be a complete seminormed space, then Z(∆, q)

for Z = 2`∞, 2c
R, 2c

R
0 , 2c

B, 2c
B
0 are complete.

Proof. We establish the result for the space 2`∞(∆, q).
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Let (Ai) = (< ai
nk >) be a Cauchy sequence in 2`∞(∆, q). Thus for a

given ε > 0, there exists n0 ∈ N such that

f(Ai −Aj) < ε, for all i, j ≥ n0.

Then
(1) sup

n
q(ai

n1 − aj
n1) + sup

k
q(ai

1k − aj
1k) + sup

n,k
q(∆(< ai

nk − aj
nk >)) < ε,

for all i, j ≥ n0.
⇒< ai

n1 > is a Cauchy sequences in X, for each n ∈ N .
⇒< ai

n1 > converges in X for each n ∈ N .
(2) Let lim

i→∞
ai

n1 = an1, for each n ∈ N.

(3) Similarly lim
i→∞

ai
1k = a1k, for each k ∈ N .

(4) and lim
i→∞

∆ai
nk = xnk, for all n, k ∈ N .

From (2), (3) and (4) we have lim
i→∞

ai
nk = ank ∈ X, for each n, k ∈ N .

From (1) we have for all i, j ≥ n0,
q(ai

n1 − aj
n1) < ε for each n ∈ N ; q(ai

1k − aj
1k) < ε, for each k ∈ N,

and q(∆(< ai
nk − aj

nk >)) < ε, for all n, k ∈ N .
⇒ lim

j→∞
q(ai

n1 − aj
n1) < ε for each n ∈ N ; lim

j→∞
q(ai

1k − aj
1k) < ε,

for each k ∈ N ,
and lim

j→∞
q(∆ai

nk −∆aj
nk) < ε, for all n, k ∈ N .

⇒ q(ai
n1 − an1) < ε for each n ∈ N ; q(ai

1k − a1k) < ε, for each k ∈ N,
and q(∆ai

nk −∆ank) < ε, for all n, k ∈ N .
Since the right hand side is free from n and k so we have for all i ≥ n0,
sup

n
q(ai

n1−an1) < ε; sup
k

q(ai
1k−a1k) < ε and sup

n,k
q(∆ai

nk−∆ank) < ε

⇒ f(Ai −A) = sup
n

q(ai
n1 − an1) + sup

k
q(ai

1k − a1k)

+ sup
n,k

q(∆ai
nk −∆ank) < 3ε

Hence Ai −A ∈ 2`∞(∆, q), for all i ≥ n0.
Since 2`∞(∆, q) is linear space, so we have

A = Ai − (Ai −A) ∈ 2`∞(∆, q), for all i ≥ n0.

Hence 2`∞(∆, q) is complete. �

Proposition 1. The spaces Z(∆, q) where Z = 2`∞, 2c, 2c0, 2c
R, 2c

R
0 ,

2c
B, 2c

B
0 are not symmetric.

Proof. The result follows from the following examples.



On some classes of difference double . . . 139

Example 1. Let X = `∞; q(x) = sup
i
|xi|, for x = (xi) ∈ `∞ and

consider the sequence < ank > defined by

ank =

{
e, for n = 1 and all k ∈ N,

θ, otherwise.

Then < ank > ∈ Z(∆, q) for Z = 2c, 2c0, 2c
R, 2c

R
0 , 2c

B, 2c
B
0 . Consider the

rearranged sequence < bnk > of < ank > defined by

bnk =

{
e, for n = k,

θ, otherwise.

Then < bnk > /∈ 2c(∆, q). Hence the spaces Z(∆, q) for Z = 2c, 2c0,
2c

R, 2c
R
0 , 2c

B and 2c
B
0 are not symmetric.

Example 2. Let X = C, the field of complex numbers, q(x) = |x| and
consider the sequence < ank > defined by

ank =

{
n, for k = 1 and all n ∈ N,

0, otherwise.

Then < ank > ∈ 2`∞(∆). Let < bnk > be a rearrangement of < ank >
defined by

bnk =

{
i, for n = k, and n = i2, i ∈ N,

θ, otherwise.

�
Then < bnk > /∈ 2`∞(∆). Hence 2`∞(∆) is not symmetric.

Proposition 2. Z(q) ⊂ Z0(∆, q), for Z = 2c, 2c
R and 2c

B and the
inclusions are strict.

Proof. Let < ank > ∈ 2c(q). Then for a given ε > 0 there exists
n0, k0 ∈ N such that

(5) q(ank − L) <
ε

4
for all n ≥ n0, k ≥ k0.

Hence for all n ≥ n0, k ≥ k0,

q(∆ank) ≤ q(ank − L) + q(an+1,k − L) + q(an,k+1 − L)
+ q(an+1,k+1 − L)

< ε, by (5).

Thus < ank > ∈ 2c0(∆, q). The other cases can be proved similarly. �
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The inclusions are strict follows from the following example:

Example 3. Let X = C, and consider the sequence < ank > be defined
by

ank = n + k − 1, for all n, k ∈ N.

Then ∆ank = 0, for all n, k ∈ N . Hence < ank > ∈ 2c
R
0 (∆, q) ⊂ 2c0(∆, q)

but < ank > /∈ 2c(q).

Theorem 4. The spaces Z(∆, q) for Z = 2`∞, 2c, 2c0, 2c
R, 2c

R
0 , 2c

B

and 2c
B
0 are not monotone and as such are not solid.

Proof. The spaces are not monotone follows from the following exam-
ples. Since the spaces are not monotone, are not solid is clear from the
Remark 1. �

Example 4. Let X = C, and consider the sequence < ank > defined by

ank = 1, for all n, k ∈ N.

Consider the sequence < bnk > in the pre-image space defined by

bnk =

{
ank, for n = k = i2, i ∈ N,

0, otherwise.

Then < ank > ∈ Z(∆, q) for Z = 2c0, 2c
R, 2c

R
0 , 2c

B and 2c
B
0 but

< bnk > /∈ 2c(∆). Hence Z(∆) for Z = 2c, 2c0, 2c
R, 2c

R
0 , 2c

B and 2c
B
0 are

not monotone.

Example 5. For the space 2`∞(∆, q), let X = C and q(x) = |x|. Con-
sider the sequence < ank > defined by

ank = n + k, for all n, k ∈ N.

Consider the sequence < bnk > in the pre-image space, defined as in
Example 4. Then < ank > ∈ 2`∞(∆, q), but < bnk > /∈ 2`∞(∆, q). Thus
2`∞(∆, q) is not monotone.

The proof of the following result is a routine verification.

Proposition 3. (a) Z(q) ⊂ Z(∆, q) where Z = 2`∞, 2c, 2c0, 2c
R, 2c

R
0 ,

2c
B and 2c

B
0 , and the inclusions are strict.

(b) Z(∆, q) ⊂ 2`∞(∆, q) for Z = 2c
R, 2c

R
0 , 2c

B and 2c
B
0 , and the inclu-

sions are strict.

The following result follows from Proposition 3 and Theorem 3.

Proposition 4. The spaces Z(∆, q), for Z = 2c
R, 2c

R
0 , 2c

B and 2c
B
0 are

nowhere dense subsets of 2`∞(∆, q).
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Remark 3. If we consider a normed linear space (X, ||.||) then the spaces
Z(X, ||.||) for Z = 2`∞, 2c

R, 2c
R
0 , 2c

B and 2c
B
0 will be normed linear spaces,

normed by

||A||∆ = sup
k
||a1k||+ sup

n
||an1||+ sup

n,k
||∆ank||.

Remark 4. When (X, ||.||) will be a Banach space, the spaces Z(X, ||.||)
for Z = 2`∞, 2c

R, 2c
R
0 , 2c

B and 2c
B
0 will be Banach spaces, normed by

||A||∆.
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