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1. Introduction

Branciari [5] obtained a fixed point result for a single mapping satisfying
an analogue of Banach’s contraction principle for an integral type inequality.
The authors in [2], [3], [4], [13], [14] and [15] proved some fixed point the-
orems involving more general contractive conditions. Recently ([6]) some
fixed point theorems have been proved in non-metric setting wherein the
distance function used need not satisfying triangle inequality. The purpose
of this paper is to investigate some new result of fixed points in non-metric
settings. In the sequel, we use contractive condition of integral type on
d-complete Hausdorff topological spaces.

Let (X, τ) be a topological space and d : X × X → [0,∞) be such
that d(x, y) = 0 if and only if x = y. Then X is said to be d-complete if∑∞

n=1 d(xn, xn+1) < ∞ implies that the sequence {xn} is convergent in X. A
mapping T : X → X is w-continuous at x if xn → x implies Txn → Tx. For
details on d-complete topological spaces, we refer to Iseki [7] and Kasahara
[9]-[11].

In the sequel, we shall use the following:
A symmetric function on a set X is a real valued d on X ×X such that

for all x, y ∈ X
(i) d(x, y) ≥ 0, and d(x, y) = 0 if and only if x = y,
(ii) d(x, y) = d(y, x).
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Let d be a symmetric function on a set X, and for any ε > 0 and any
x ∈ X, let S(x, ε) = {y ∈ X : d(x, y) < ε}. From [6], we can define a
topology τd on X by U ∈ τd if and only if for each x ∈ U , some S(x, ε) ⊂ U .
A symmetric function d is a semi-metric if for each x ∈ X and for each ε > 0,
S(x, ε) is a neighborhood of x in the topology τd. A topological space X is
said to be symmetrizable (resp. semi-metrizable) if its topology is induced
by a symmetric function (resp. semi-metric) on X. The d-complete sym-
metrizable spaces form an important class of d-complete topological spaces.
Other examples of d-complete topological spaces may be found in Hicks and
Rhoades [6].

Hicks and Rhoades [6] proved the following theorem.

Theorem 1. Let (X, τ) be a Hausdorff d-complete topological space and
f, h be w-continuous self mappings on X satisfying

d(hx, hy) ≤ G(M∗(x, y))

for x, y ∈ X, where

M∗(x, y) = max{d(fx, fy), d(fx, hx), d(fy, hy)}

and G is a real-valued function satisfying the following:
(a) 0 < G(y) < y for each y > 0; G(0) = 0,
(b) g(y) = y

y−G(y) is a non-increasing function on (0,∞),
(c)

∫ y1

0 g(y)dy < ∞ for each y1 > 0,
(d) G(y) is non-decreasing.
Suppose also that
(i) f and h commute,
(ii) h(X) ⊆ f(X).
Then f and h have a unique common fixed point in X.

2. Main result

Now, we give our main theorems.

Theorem 2. Let f be self-mapping of a Hausdorff d-complete topological
space (X, τ) satisfying the following

(1)
∫ d(fx,fy)

0
ϕ(t)dt ≤ G

(∫ M(x,y)

0
ϕ(t)dt

)
for all x, y ∈ X, where ϕ : R+ → R+ is a Lebesgue integrable mapping which
is summable on each compact subset of R+, non-negative and such that

(2) ε ≤
∫ ε

0
ϕ(t)dt for each ε > 0,
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(3) M(x, y) = max{d(x, y), d(x, fx), d(y, fy)}

and G is real valued function satisfying the condition (a)-(d).
Then f has a unique fixed point in X.

Proof. Let x ∈ X and, for brevity, define xn = fnx. For each integer
n ≥ 1, from (1)

(4)
∫ d(xn,xn+1)

0
ϕ(t)dt ≤ G

(∫ M(xn−1,xn)

0
ϕ(t)dt

)
.

Using (3),

M(xn−1, xn) = max{d(xn−1, xn), d(xn, xn+1)}.

Substituting into (4), one obtains∫ d(xn,xn+1)

0
ϕ(t)dt ≤ G

(∫ max{d(xn−1,xn),d(xn,xn+1)}

0
ϕ(t)dt

)
(5)

= G

(
max

{∫ d(xn−1,xn)

0
ϕ(t)dt,

∫ d(xn,xn+1)

0
ϕ(t)dt

})
.

If
∫ d(xn−1,xn)
0 ϕ(t)dt ≤

∫ d(xn,xn+1)
0 ϕ(t)dt, then from (5) we have

∫ d(xn,xn+1)

0
ϕ(t)dt ≤ G

(∫ d(xn,xn+1)

0
ϕ(t)dt

)
<

∫ d(xn,xn+1)

0
ϕ(t)dt,

which is a contradiction. Thus
∫ d(xn−1,xn)
0 ϕ(t)dt >

∫ d(xn,xn+1)
0 ϕ(t)dt and so

from (5)

(6)
∫ d(xn,xn+1)

0
ϕ(t)dt ≤ G

(∫ d(xn−1,xn)

0
ϕ(t)dt

)
for n ≥ 1.

Next we define a sequence {Sn} of real numbers by Sn+1 = G(Sn) with
S1 =

∫ d(x,fx)
0 ϕ(t)dt > 0. By (a), we then have 0 < Sn+1 < Sn < S1, n ≥ 1.

Moreover, by (b) and (c), the series
∑∞

n=1 Sn converges (see [1]). We
shall show that

∫ d(xn,xn+1)
0 ϕ(t)dt ≤ Sn+1, n ≥ 1. From (6), we have∫ d(x1,x2)

0 ϕ(t)dt ≤ G
(∫ d(x,fx)

0 ϕ(t)dt
)

= G(S1) = S2 and the desired inequal-
ity is valid for n = 1. So, assume that it is true for some n > 1. From (6)
again, we have

∫ d(xn,xn+1)
0 ϕ(t)dt ≤ G

(∫ d(xn−1,xn)
0 ϕ(t)dt

)
≤ G(Sn) = Sn+1.
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Since
∑∞

n=1 Sn is convergent, it follows that
∑∞

n=1

∫ d(xn,xn+1)
0 ϕ(t)dt is con-

vergent too. From (2) the series
∑∞

n=1 d(xn, xn+1) converges.
Again, since X is d-complete {xn} converges to some z ∈ X.
From (1),∫ d(fz,xn+1)

0
ϕ(t)dt ≤ G

(∫ M(z,xn)

0
ϕ(t)dt

)

= G

(
max

{∫ d(z,xn)

0
ϕ(t)dt,

∫ d(z,fz)

0
ϕ(t)dt,

∫ d(xn,xn+1)

0
ϕ(t)dt

})
.

Taking the limit as n →∞, one obtains∫ d(fz,z)

0
ϕ(t)dt ≤ G

(∫ d(z,fz)

0
ϕ(t)dt

)
,

which implies that
∫ d(fz,z)
0 ϕ(t)dt = 0 which from (2) implies that d(z, fz) = 0

or z = fz.
Suppose that z and w are fixed points of f . Then from (1),∫ d(z,w)

0
ϕ(t)dt =

∫ d(fz,fw)

0
ϕ(t)dt ≤ G

(∫ d(z,w)

0
ϕ(t)dt

)

which implies that
∫ d(z,w)
0 ϕ(t)dt = 0, which from (2), implies d(z, w) = 0 or

z = w and the fixed point is unique. �

Theorem 3. Let (X, τ) be Hausdorff d-complete topological space, f , h
w-continuous self-mappings of X satisfying

(7)
∫ d(hx,hy)

0
ϕ(t)dt ≤ G

(∫ M∗(x,y)

0
ϕ(t)dt

)

for all x, y ∈ X, where ϕ and G are as in Theorem 2 and

M∗(x, y) = max{d(fx, fy), d(fx, hx), d(fy, hy)}.

Suppose also that
(i) f and h commute,
(ii) h(X) ⊆ f(X).
Then f and h have a unique common fixed point in X.
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Proof. Let x ∈ X and define T1 =
∫ d(fx0,hx0)
0 ϕ(t)dt. If T1 = 0, then∫ d(hhx0,hx0)

0
ϕ(t)dt ≤ G

(∫ M∗(hx0,x0)

0
ϕ(t)dt

)
,

where

M∗(hx0, x0) = max{d(fhx0, fx0), d(fhx0, hhx0), d(fx0, hx0)}.

Since f and h commute and fx0 = hx0, d(fhx0, fx0) = 0. Therefore
M∗(hx0, x0) = d(hhx0, hx0) and M∗(hx0, x0) must be zero. For, otherwise
we have∫ d(hhx0,hx0)

0
ϕ(t)dt ≤ G

(∫ M∗(hx0,x0)

0
ϕ(t)dt

)

= G

(∫ d(hhx0,hx0)

0
ϕ(t)dt

)
<

∫ d(hhx0,hx0)

0
ϕ(t)dt

a contradiction. Thus M∗(hx0, x0) = 0 and hx0 is a fixed point of h. But
then fhx0 = hfx0 = hhx0 = hx0 and hx0 is also a fixed point of f .

Suppose that T1 > 0. By (ii) there exists an x1 ∈ X such that fx1 = hx0.
In general define {xn} ⊂ X so that fxn = hxn−1 for n ≥ 1.

Without loss of generality we may assume that fxn 6= hxn for each n.
For, if fxn = hxn for some n, the above argument, with x0 replaced with
xn, yields fxn as a common fixed point of f and h.

Define {Tn} by Tn+1 = G(Tn), with T1 =
∫ d(fx0,hx0)
0 ϕ(t)dt > 0. By (a),

0 < Tn+1 < Tn < T1, n ≥ 1.
Moreover, by (b) and (c) the series

∑∞
n=1 Tn converges. We shall show

that
∫ d(hxn−1,hxn)
0 ϕ(t)dt ≤ Tn, n ≥ 1.

For n = 1, we have∫ d(hx0,hx1)

0
ϕ(t)dt ≤ G

(∫ M∗(x0,x1)

0
ϕ(t)dt

)
,

where

M∗(x0, x1) = max{d(fx0, fx1), d(fx0, hx0), d(fx1, hx1)}
= max{d(fx0, hx0), d(hx0, hx1)}.

If M∗(x0, x1) = d(hx0, hx1), then∫ d(hx0,hx1)

0
ϕ(t)dt ≤ G

(∫ M∗(x0,x1)

0
ϕ(t)dt

)

<

∫ d(hx0,hx1)

0
ϕ(t)dt,
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a contradiction. Thus M∗(x0, x1) = d(fx0, hx0), and the desired inequality
is valid for n = 1, in fact∫ d(hx0,hx1)

0
ϕ(t)dt ≤ G

(∫ d(fx0,hx0)

0
ϕ(t)dt

)
= G(T1) < T1.

Assume that it is true for some n > 1. Then∫ d(hxn,hxn+1)

0
ϕ(t)dt ≤ G

(∫ M∗(xn,xn+1)

0
ϕ(t)dt

)
,

where
M∗(xn, xn+1) = max{d(hxn−1, hxn), d(hxn, hxn+1)}.

By assumption, M∗(xn, xn+1) 6= 0 for each n. If M∗(xn, xn+1) = d(hxn, hxn+1),
then we get ∫ d(hxn,hxn+1)

0
ϕ(t)dt ≤ G

(∫ M∗(xn,xn+1)

0
ϕ(t)dt

)

<

∫ d(hxn,hxn+1)

0
ϕ(t)dt,

a contradiction. Therefore, M∗(xn, xn+1) = d(hxn−1, hxn) and∫ d(hxn,hxn+1)

0
ϕ(t)dt ≤ G

(∫ M∗(xn,xn+1)

0
ϕ(t)dt

)

= G

(∫ d(hxn−1,hxn)

0
ϕ(t)dt

)
≤ G(Tn) = Tn+1.

Since
∑∞

n=1 Tn is convergent, it follows that
∑∞

n=1

∫ d(hxn,hxn+1)
0 ϕ(t)dt is

convergent too. Therefore the series
∑∞

n=1 d(hxn, hxn+1) converges.
Now X is d-complete so {hxn} converges to some z ∈ X. Then w-continuity

of f implies that fhxn → fz. Since f and h commute, and h is w-continuous,
fhxn = hfxn = hhxn−1 → hz. Since X is Hausdorff, hz = fz. Again using
(7), ∫ d(hhz,hz)

0
ϕ(t)dt ≤ G

(∫ M∗(hz,z)

0
ϕ(t)dt

)
and

M∗(hz, z) = d(fhz, hz) = d(hfz, hz) = d(hhz, hz),
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since hz = fz and h and f commute. If hz 6= hhz, then we obtain the
contradiction ∫ d(hhz,hz)

0
ϕ(t)dt ≤ G

(∫ M∗(hz,z)

0
ϕ(t)dt

)

<

∫ d(hhz,hz)

0
ϕ(t)dt.

Thus hz is a fixed point of h. Since fhz = hfz = hhz = hz, hz is also fixed
point of f . The uniqueness of the common fixed point can be easily shown
using (7). �

Remark 1. If ϕ(t) = 1 in Theorem 3, we have Theorem 1.

Remark 2. If we take a complete metric space instead of Hausdorff
d-complete topological space in Theorems 2 and 3, we have the following
theorems. Note that the condition (2) has been weakened in these theorems,
but we have changed the conditions of the function G.

We need the following lemma for the proofs of these theorems.

Lemma ([12]). Let G : R+ → R+ be right continuous function such that
G(t) < t for every t > 0, then lim

n→∞
Gn(t) = 0.

Theorem 4. Let f be self-mapping of a complete metric space (X, d)
satisfying the following∫ d(fx,fy)

0
ϕ(t)dt ≤ G

(∫ M(x,y)

0
ϕ(t)dt

)

for all x, y ∈ X, where ϕ : R+ → R+ is a Lebesgue integrable mapping which
is summable on each compact subset of R+, non-negative and such that

(8)
∫ ε

0
ϕ(t)dt > 0 for each ε > 0,

M(x, y) = max{d(x, y), d(x, fx), d(y, fy)}

and G : R+ → R+ is a right continuous and nondecreasing function such
that G(0) = 0, and G(t) < t for each t > 0.

Then f has a unique fixed point in X.

Proof. Let x ∈ X and define xn = fnx. As in the proof of Theorem 2,
we can obtain

(9)
∫ d(xn,xn+1)

0
ϕ(t)dt ≤ G

(∫ d(xn−1,xn)

0
ϕ(t)dt

)
for n ≥ 1.
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Now, from (9), we have∫ d(xn,xn+1)

0
ϕ(t)dt ≤ G

(∫ d(xn−1,xn)

0
ϕ(t)dt

)

≤ G2

(∫ d(xn−2,xn−1)

0
ϕ(t)dt

)
...

≤ Gn

(∫ d(x0,x1)

0
ϕ(t)dt

)
,

and, taking the limit as n →∞ and using Lemma, we have

lim
n→∞

∫ d(xn,xn+1)

0
ϕ(t)dt ≤ lim

n→∞
Gn

(∫ d(x0,x1)

0
ϕ(t)dt

)
= 0,

which from (8), implies that

(10) lim
n→∞

d(xn, xn+1) = 0.

We now show that {xn} is a Cauchy sequence. Suppose that it is not.
Then there exists an ε > 0 and subsequences {m(k)} and {n(k)} such that
m(k) < n(k) < m(k + 1) with

(11) d(xm(k), xn(k)) ≥ ε, d(xm(k), xn(k)−1) < ε.

Now from (10), we have

(12) lim
k→∞

∫ d(xm(k)−1,xm(k))

0
ϕ(t)dt = lim

k→∞

∫ d(xn(k)−1,xn(k))

0
ϕ(t)dt = 0.

On the other hand, using the triangular inequality and (11), we have

d(xm(k)−1, xn(k)−1) ≤ d(xm(k)−1, xm(k)) + d(xm(k), xn(k)−1)(13)
< d(xm(k)−1, xm(k)) + ε.

Hence, ∫ ε

0
ϕ(t)dt ≤

∫ d(xm(k),xn(k))

0
ϕ(t)dt(14)

=
∫ d(fxm(k)−1,fxn(k)−1)

0
ϕ(t)dt
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≤ G

(∫ M(xm(k)−1,xn(k)−1)

0
ϕ(t)dt

)

≤ G

(∫ max{d(xm(k)−1,xn(k)−1),d(xm(k)−1,xm(k)),d(xn(k)−1,xn(k))}

0
ϕ(t)dt

)

≤ G

(∫ max{d(xm(k)−1,xm(k))+ε,d(xm(k)−1,xm(k)),d(xn(k)−1,xn(k))}

0
ϕ(t)dt

)
.

Using (11), (12), (13) and (14), we have∫ ε

0
ϕ(t)dt ≤

∫ d(xm(k),xn(k))

0
ϕ(t)dt ≤ G

(∫ ε

0
ϕ(t)dt

)
,

which is a contradiction. Therefore {xn} is Cauchy. Since X is complete
{xn} converges to some z ∈ X. Therefore we can complete the proof as in
the proof of Theorem 2. �

We can prove the following theorem using the proofs of Theorem 3 and
Theorem 4.

Theorem 5. Let (X, d) be complete metric space, f, h continuous self-
mappings of X satisfying

(15)
∫ d(hx,hy)

0
ϕ(t)dt ≤ G

(∫ M∗(x,y)

0
ϕ(t)dt

)

for all x, y ∈ X, where ϕ and G are as in Theorem 4 and

M∗(x, y) = max{d(fx, fy), d(fx, hx), d(fy, hy)}.

Suppose also that
(i) f and h commute,
(ii) h(X) ⊆ f(X).
Then f and h have a unique fixed point in X.

Remark 3. If ϕ(t) = 1 in Theorem 5, we have a generalization of main
theorem of [8].

Example. Let X = { 1
n : n = 2, 3, ...} ∪ {0} with the metric induced by

d(x, y) = |x− y|, thus since X is a closed subset of it is a complete metric
space. We consider now two mappings h, f : X → X defined by

hx =
{

1
n+1 , x = 1

n

0 , x = 0
and fx = x.
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It is obvious that f and h commute and h(X) ⊆ f(X). Then h and f
satisfies (7) with ϕ : [0,∞) → [0,∞)

ϕ(t) =


1+ln 2

4 , t > 1
2

t
1
t
−2[1− ln t] , 0 < t ≤ 1

2
0, t = 0

and G(s) = s
2 . In this context one has, if 0 < t ≤ 1

2 ,
∫ t
0 ϕ(s)ds = t

1
t so that,

since sup{d(x, y) : x, y ∈ X} =
1
2
, (15) for x 6= y is equivalent to:

(16) d(hx, hy)
1

d(hx,hy) ≤ G
(
M∗(x, y)

1
M∗(x,y)

)
=

1
2
M∗(x, y)

1
M∗(x,y) .

Since d(x, y) ≤ M∗(x, y) and
∫ t
0 ϕ(s)ds = t

1
t is non-decreasing, we show

sufficiently that

(17) d(hx, hy)
1

d(hx,hy) ≤ G
(
d(x, y)

1
d(x,y)

)
=

1
2
d(x, y)

1
d(x,y)

instead of (16). Using [5, Example 3.6 ] we can show the condition (17) is
satisfied. Thus h and f satisfies (15). Therefore the Theorem 5 is applicable
in this example.

But, since

sup
{x,y∈X:x6=y}

d(hx, hy)
M∗(x, y)

≥ 1,

then there is not any constant k ∈ (0, 1) such that d(hx, hy) ≤ kM∗(x, y).
Thus the main theorem of [8] is not applicable in this example.
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