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Abstract. In 1996, Dontchev [14] introduced and investigated a
new notion of non-continuity called contra-continuity. Recently,
Baker et al. [6] offered a new generalization of contra-continuous
functions via λ-closed sets, called almost contra λ-continuous func-
tions. It is the objective of this paper to further study some more
properties of such functions.
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1. Introduction and preliminaries

In 1986, Maki [25] introduced the notion of Λ-sets in topological spaces.
A Λ-set is a set A which is equal to its kernel(= saturated set), i.e. to the
intersection of all open supersets of A. Arenas et al. [3] introduced and inves-
tigated the notion of λ-closed sets by involving Λ-sets and closed sets. Quite
recently, Caldas et al. ([7], [11]) introduced the notion of λ-closure of a set
by utilizing the notion of λ-open sets defined in [3]. In [14], Dontchev intro-
duced and studied a new notion of non-continuity called contra-continuity.
It is the aim of this paper to continue our work ([6], [9], [8]) and present
some more properties of almost contra λ-continuity which is a generalization
of contra-continuity. Moreover, we present some of the basic properties and
preservation theorems of almost contra λ-continuous functions. Further-
more, we investigate the relationships between almost contra λ-continuous
functions and functions with λR-closed graph.

Throughout this paper, by (X, τ) and (Y, σ) (or X and Y ) we always
mean topological spaces. Let A be a subset of X. We denote the interior,
the closure and the complement of a set A by Int(A), Cl(A) and X\A
or Ac, respectively. A subset A of X is said to be regular open (resp.
regular closed) if A = Int(Cl(A)) (resp. A = Cl(Int(A))). A subset A
of a space X is called preopen [24] (resp. semi-open [23], β-open [1](also
called semipreopen [2]) if A ⊂ Int(Cl(A)) (resp. A ⊂ Cl(Int(A)), A ⊂
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Cl(Int(Cl(A)))). The complement of a preopen (resp. semi-open, β-open)
set is said to be preclosed (resp. semi-closed, β-closed). The collection
of all regular closed (resp. semi-open) subsets of X will be denoted by
RC(X)(resp. SO(X)). We set RC(X, x) = {V ∈ RC(X) : x ∈ V } (resp.
SO(X, x) = {V ∈ SO(X) : x ∈ V }). A subset A of (X, τ) is called λ-closed
[3] if A = L∩D, where L is a Λ-set and D is a closed set. The complement
of a λ-closed set is called λ-open. We denote the collection of all λ-open sets
(resp. λ-closed sets) by λO(X, τ) (resp. λC(X, τ)). We set λO(X, x) = {U :
x ∈ U ∈ λO(X, τ)} and λC(X, x) = {U : x ∈ U ∈ λC(X, τ)}. A point x in
a topological space (X, τ) is called a λ-cluster point of A [7] if A ∩ U 6= ∅
for every λ-open set U of X containing x. The set of all λ-cluster points is
called the λ-closure of A and is denoted by Clλ(A) ([3], [7]).
A point x ∈ X is said to be a λ-interior point of A if there exists a λ-open
set U containing x such that U ⊂ A. The set of all λ-interior points of A is
said to be λ-interior of A and is denoted by Intλ(A).

Lemma 1 ([3], [7]). Let A, B and Ai (i ∈ I) be subsets of a topological
space (X, τ). The following properties hold:

(1) If Ai is λ-closed for each i ∈ I, then ∩i∈IAi is λ-closed.
(2) If Ai is λ-open for each i ∈ I, then ∪i∈IAi is λ-open.
(3) A is λ-closed if and only if A = Clλ(A).
(4) A is λ-open if and only if A = Intλ(A).
(5) Clλ(A) = ∩{F ∈ λC(X, τ) : A ⊂ F}.
(6) A ⊂ Clλ(A).
(7) If A ⊂ B, then Clλ(A) ⊂ Clλ(B).
(8) Clλ(A) is λ-closed.

Definition 1. A function f : X → Y is said to be:
(1) λ-continuous [3]. If f−1(V ) is λ-closed for every closed set V in Y ,

equivalently if the inverse image of every open set V in Y is λ-open in X.
(2) almost λ-continuous [21] if f−1(V ) is λ-closed in X for every regular

closed set V in Y.
(3) almost contra pre-continuous ([16], [27]) if f−1(V ) is preclosed in X

for every regular open set V in Y.
(4) almost contra β-continuous [5] if f−1(V ) is β-closed in X for every

regular open set V in Y.
(5) almost contra λ-continuous if f−1(V ) is λ-closed in X for each regular

open set V of Y.

Definition 2. Let A be a subset of a space (X, τ). The set
⋂
{U ∈

RO(X) : A ⊂ U} is called the r-kernel of A [17] and is denoted by rker(A).

Lemma 2 (Ekici [17]). The following properties hold for the subsets A,
B of a space X :
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(1) x ∈ rker(A) if and only if A ∩ F 6= ∅ for any F ∈ RC(X, x).
(2) A ⊂ rker(A) and A = rker(A) if A is regular open in X.
(3) If A ⊂ B, then rker(A) ⊂ rker(B).

Theorem 1 ([6]). Let f : X → Y be a function from a topological space
X into a topological space Y. The following statements are equivalent:

(1) f is almost contra λ-continuous;
(2) The inverse image of each regular closed set in Y is λ-open in X;
(3) For each point x in X and each regular closed set V in Y containing

f(x), there is a λ-open set U in X containing x such that f(U) ⊂ V ;
(4) For each point x in X and each semiopen set V in Y containing f(x),

there is a λ-open set U in X containing x such that f(U) ⊂ Cl(V );
(5) f(Clλ(A)) ⊂ rker(f(A)) for every subset A of X;
(6) Clλ(f−1(B)) ⊂ f−1(rker(B)) for every subset B of Y.

2. Some more properties

Recall that a topological space (X, τ) is said to be:
(i) λ-T1 [10] if for any distinct pair of points x and y in X, there exist

U ∈ λO(X) containing x but not y and V ∈ λO(X) containing y but not x.
(ii) λ-T2 [10] if for any distinct pair of points x and y in X, there exist

U ∈ λO(X, x) and V ∈ λO(X, y) such that U ∩ V = ∅.
(iii) Weakly Hausdorff [30] (briefly weak-T2) if every point of X is an

intersection of regular closed sets of X.
(iv) s-Urysohn [4] if for each pair of distinct points x and y in X, there

exist U ∈ SO(X, x) and V ∈ SO(X, x) such that Cl(U) ∩ Cl(V ) = ∅.

Remark 1. Observe that T0, λ-T1 and λ-T2 are equivalent [18] and
s-Urysohn ⇒ weak-T2 ⇒ T1 ⇒ T0.

Theorem 2. If X is a topological space and for each pair of distinct
points x1 and x2 in X, there exists a map f of X into a Urysohn topological
space Y such that f(x1) 6= f(x2) and f is almost contra λ-continuous at x1

and x2 , then X is T0.

Proof. Let x1 and x2 be any distinct points in X. Then by hypothesis,
there is a Urysohn space Y and a function f : X → Y which satisfies the
conditions of the theorem. Let yi = f(xi) for i = 1, 2. Then y1 6= y2. Since
Y is Urysohn , there exist open sets Uy1 and Uy2 of y1 and y2, respectively,
in Y such that Cl(Uy1)∩Cl(Uy2) = ∅. Since f is almost contra λ-continuous
at xi, there exists a λ-open set Wxi of xi in X such that f(Wxi) ⊂ Cl(Uyi)
for i = 1, 2. Hence we get Wx1 ∩ Wx2 = ∅ since Cl(Uy1) ∩ Cl(Uy2) = ∅.
Hence X is λ-T2 and therefore by Remark 1, X is T0. �
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Corollary 1. If f is an almost contra λ-continuous injection of a topo-
logical space X into a Urysohn space Y , then X is T0.

Proof. For each pair of distinct points x1 and x2 in X, f is an almost
contra λ-continuous function of X into a Urysohn space Y such that f(x1) 6=
f(x2) since f is injective. Hence by Theorem 2, X is T0. �

Theorem 3. If f is an almost contra λ-continuous injection of a topo-
logical space X into a weakly Hausdorff space Y , then X is T0.

Proof. Since Y is weakly Hausdorff and f is injective, for any distinct
points x1 and x2 of X, there exist V1, V2 ∈ RC(Y ) such that f(x1) ∈
V1, f(x2) /∈ V1, f(x2) ∈ V2 and f(x1) /∈ V2. Since f is almost con-
tra λ-continuous, by Theorem 2 f−1(V1) and f−1(V2) are λ-open sets and
x1 ∈ f−1(V1), x2 /∈ f−1(V1), x2 ∈ f−1(V2), x1 /∈ f−1(V2). Then, there exists
U1, U2 ∈ λO(X) such that x1 ∈ U1 ⊂ f−1(V1), x2 /∈ U1, x2 ∈ U2 ⊂ f−1(V2)
and x1 /∈ U2. Thus X is T0. �

Corollary 2. If f is an almost contra λ-continuous injection of a topo-
logical space X into a s-Urysohn space Y , then X is T0.

Recall that a topological space is called a λ-space [3] if the union of any
two λ-closed sets is a λ-closed set. Observe that if f, g : X → Y are almost
contra λ-continuous functions, X is a λ-space and Y is s-Urysohn, then it
is obvious that E = {x ∈ X | f(x) = g(x)} is λ-closed in X.

We say that the product space X = X1 × ...×Xn has Property PΛ if Ai

is a λ-open set in a topological space Xi, for i = 1, 2, ...n, then A1× ...×An

is also λ-open in the product space X = X1 × ...×Xn .

Theorem 4. Let f1 : X1 → Y and f2 : X2 → Y be two functions, where
(1) X = X1 ×X2 has the Property PΛ.
(2) Y is a Urysohn space.
(3) f1 and f2 are almost contra λ-continuous .

Then {(x1, x2) : f1(x1) = f2(x2)} is λ-closed in the product space X =
X1 ×X2 .

Proof. Let A denote the set {(x1, x2) : f1(x1) = f2(x2)}. In order
to show that A is λ-closed, we show that (X1 × X2)\A is λ-open. Let
(x1, x2) /∈ A. Then f1(x1) 6= f2(x2). Since Y is Urysohn, there exist open
sets V1 and V2 of f1(x1) and f2(x2), respectively, such that Cl(V1)∩Cl(V2) =
∅. Since fi (i = 1, 2) is almost contra λ-continuous and Cl(Vi) is regular
closed, then f−1

i (Cl(Vi)) is a λ-open set containing xi in Xi (i = 1, 2).
Hence by (1), f−1

1 (Cl(V1))× f−1
2 (Cl(V2)) is λ-open. Furthermore (x1, x2) ∈

f−1
1 (Cl(V1))× f−1

2 (Cl(V2)) ⊂ (X1 ×X2)\A. It follows that (X1 ×X2)\A is
λ-open. Thus A is λ-closed in the product space X = X1 ×X2. �
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Corollary 3. Assume that the product space X×X has the Property PΛ.
If f : X → Y is almost contra λ-continuous and Y is a Urysohn space. Then
A = {(x1, x2) : f(x1) = f(x2)} is λ -closed in the product space X ×X.

Recall that a topological space X is called a T 1
2
-space ([15], [22]) if every

singleton is open or closed.

Lemma 3. Let (X, τ) be a T 1
2
-space and f : X → Y . If f is al-

most contra-β-continuous or almost contra-pre-continuous then f is almost
contra-λ-continuous.

Proof. It follows directly from Theorem 2.6 of [3]. �

Remark 2. Observe that a topological space (X, τ) in which every two
non-void λ-closed subsets of (X, τ) intersect is indiscrete. It is obvious that
if a topological space X is indiscrete and f : X → Y is a surjective al-
most contra λ-continuous function, then Y is hyperconnected. Recall that
a topological space is hyperconnected if every open set is dense. To see this,
suppose that Y is not hyperconnected. This implies that there exists an open
set V such that Cl(V ) 6= Y . Thus, there exist disjoint regular open sets D
and E in Y , i.e, Int(Cl(V )) and Y \Cl(V ). Since f is a surjective almost
contra λ-continuous function, we have A = f−1(D) and B = f−1(E) such
that A and B are disjoint non-empty λ-closed subsets of X. By hypothesis,
X is indiscrete and this implies that A∩B 6= ∅. But this is a contradiction.
Hence Y is hyperconnected.

Theorem 5. Let f : X → Y be a function and g : X → X × Y the
graph function, given by g(x) = (x, f(x)) for every x ∈ X. Then f is almost
contra λ-continuous if g is almost contra λ-continuous.

Proof. Let x ∈ X and V be a regular open subset of Y containing f(x).
Then we have X×V is a regular open. Since g is almost contra λ-continuous,
g−1(X×V ) = f−1(V ) is λ-closed. Hence f is almost contra λ-continuous. �

Recall that for a function f : X → Y , the subset {(x, f(x)) : x ∈ X} ⊂
X × Y is called the graph of f and is denoted by G(f).

Definition 3. A function f : X → Y has a λ-closed graph if for each
(x, y) ∈ (X ×Y )−G(f), there exists U ∈ λO(X, x) and an open set V of Y
containing y such that (U × V ) ∩G(f) = ∅.

Lemma 4. The graph, G(f) of a function f : X → Y is λ-closed if and
only if for each (x, y) ∈ (X × Y )−G(f) there exists U ∈ λO(X, x) and an
open set V of Y containing y such that f(U) ∩ V = ∅.
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Theorem 6. If f : X → Y is a function with λ-closed graph, then for
each x ∈ X, f(x) = ∩{Cl(f(U)) : U ∈ λO(X, x)}.

Proof. Suppose the theorem is false. Then there exists a y 6= f(x) such
that y ∈ ∩{Cl(f(U)) : U ∈ λO(X, x)}. This implies that y ∈ Cl(f(U)),
for every U ∈ λO(X, x). So V ∩ f(U) 6= ∅, for every V ∈ O(Y, y) which
contradicts the hypothesis that f is a function with λ-closed graph. Hence
the theorem. �

Theorem 7. If f : X → Y is almost contra λ-continuous and Y is
Haudorff, then G(f) is λ-closed.

Proof. Let (x, y) ∈ (X×Y )−G(f). Then y 6= f(x). Since Y is Hausdorff,
there exists disjoint open sets V and W of Y such that y ∈ V and f(x) ∈ W .
Then f(x) /∈ Y −Cl(W ). Since Y −Cl(W ) is a regular open set containg V , it
follows that f(x) /∈ rKer(V ) and hence x /∈ f−1(rKer(V )). Then by Theorem
1(6) x /∈ Clλ(f−1(V )). Therefore we have (x, y) ∈ (X−Clλ(f−1(V )))×V ⊂
(X × Y )−G(f), which proves that G(f) is λ-closed. �

Theorem 8. Let f : X → Y have a λ-closed graph.
(1) If f is injective, then X is T0.
(2) If f is surjective, then Y is T1.

Proof. (1) Let x1 and x2 be two points in X. Then (x1, f(x2)) ∈
(X × Y ) − G(f). Since f has a λ-closed graph, there exist U ∈ λO(X, x1)
and an open set V of Y containing f(x2) such that f(U) ∩ V = ∅. Then
U ∩ f−1(V ) = ∅. Since x2 ∈ f−1(V ), x2 /∈ U . Therefore U is a λ-open
set containing x1 but not x2, which proves that X is λ-T1 and hence by
Remark 1 that X is T0.

(2) Let y1 and y2 be two points in Y . Since Y is surjective, there exists
x ∈ X such that f(x) = y1. Then (x, y2) ∈ (X × Y )−G(f). Since f has a
λ-closed graph, there exist U ∈ λO(X, x) and an open set V of Y containing
y2 such that f(U)∩V = ∅. Since y1 = f(x) and x ∈ U , y1 ∈ f(U). Therefore
y1 /∈ V , which proves that Y is T1. �

It is clear that if f : X → Y has a λ-closed graph and X is a λ-space ,
then f−1(K) is λ-closed for every compact subset K of Y.

3. λR-closed graphs

Definition 4. A function f : X → Y has a λR-closed graph if for each
(x, y) ∈ (X × Y )\G(f), there exist U ∈ λO(X, x) and V ∈ RC(Y, y) such
that (U × V ) ∩G(f) = ∅.
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Remark 3. The above definition is equivalent with the statement that
a function f : X → Y has a λR-closed graph if for each (x, y) ∈ (X ×
Y )\G(f), there exist U ∈ λO(X, x) and V ∈ SO(Y, y) such that (U ×
Cl(V )) ∩G(f) = ∅.

Lemma 5. A graph G(f) of a function f : X → Y is λR-closed if
for each (x, y) ∈ (X × Y )\G(f), there exist U ∈ λO(X) containing x and
V ∈ RC(Y ) containing y such that f(U) ∩ V = ∅.

Remark 4. Observe that a graph G(f) of a function f : X → Y is
λR-closed if for each (x, y) ∈ (X × Y )\G(f), there exist U ∈ λO(X) con-
taining x and V ∈ SO(Y ) containing y such that f(U) ∩ Cl(V ) = ∅.

Theorem 9. For a function f : X → Y , the following are equivalent:
(1) f is λ-continuous;
(2) for each x ∈ X and each V ∈ O(Y, f(x)), there exists U ∈ λO(X, x)

such that f(U) ⊂ V .

Proof. Straightforward. �

Remark 5. Examples 3.4 and 3.5 in [6] show that λ-continuity and
almost contra λ-continuity are, in general, independent.

Theorem 10. If f : X → Y is λ-continuous and Y is Hausdorff, then
G(f) is λR-closed.

Proof. Let (x, y) ∈ X ×Y \G(f). Since Y is Hausdorff, then there exists
a set V ∈ O(Y, y) such that f(x) /∈ Cl(V ). Now Y \Cl(V ) ∈ O(Y, f(x)).
Therefore, by the λ-continuity of f there exists U ∈ λO(X, x) such that
f(U) ⊂ Y \Cl(V ). Consequently, f(U)∩Cl(V ) = ∅ where Cl(V ) is a regular
closed set since V is open. By Lemma 5, G(f) is λR-closed. �

Theorem 11. Let f : X → Y has a λ R-closed graph.
(1) If f is injective, then X is T0.
(2) If f is surjective, then Y is weakly-T2.

Proof. (1) Suppose that x and y are any two distinct points of X.
We have (x, f(y)) ∈ X × Y \G(f). Since f has a λR-closed graph, then
there exist a λ-open neighborhood U of x and a regular closed set F of Y
containing f(y) such that f(U)∩F = ∅. Hence U ∩f−1(F ) = ∅. This means
that we have y /∈ U . Thus X is T0.

(2) Let y1 and y2 be any distinct points of Y . Since f is surjective,
then f(x) = y1 for some x ∈ X and (x, y2) ∈ X × Y \G(f). Since f has
a λR-closed graph, then there exist a λ-open neighborhood U of x and a
regular closed set F of Y containing y2 such that f(U)∩F = ∅. This means
that y1 /∈ F . It follows that Y is weakly-T2. �
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Theorem 12. If f : X → Y is almost contra λ-continuous and Y is
Urysohn, then G(f) is λR-closed in X × Y .

Proof. Let (x, y) ∈ (X × Y )\G(f), then y 6= f(x). Since Y is Urysohn
there exist open sets V and W in Y such that y ∈ V , f(x) ∈ W with
Cl(V )∩Cl(W ) = ∅. Since f is almost contra λ-continuous, by Theorem 1(3)
and since Cl(W ) is regular closed containing f(x) there exists U ∈ λO(X, x)
such that f(U) ⊂ Cl(W ). Therefore, we obtain f(U) ∩ Cl(V ) = ∅. By
definition G(f) is λR-closed in X × Y . �

Theorem 13. If f : X → Y is almost contra λ-continuous and Y is
s-Urysohn, then G(f) is λR-closed in X × Y .

Definition 5. A subset A of a space X is said to be S-closed relative to
X [26] if for every cover {Vα | α ∈ ∇} of A by semi-open sets of X, there
exists a finite subset ∇0 of ∇ such that A ⊂

⋃
{Cl(Vα) | α ∈ ∇0}. A space

X is said to be S-closed [32] if X is S-closed relative to X.

It should be noted that if a function f : X → Y has a λR-closed graph
and X is λ-space, then f−1(K) is λ-closed in X for every subset K which
is S-closed relative to Y .

Definition 6. A topological space X is said to be:
(1) strongly λS-closed if every λ-closed cover of X has a finite subcover.

(resp. A ⊂ X is strongly λS-closed if the subspace A is strongly λS-closed).
(2) nearly-compact [28] if every regular open cover of X has a finite sub-

cover.

Theorem 14. If f : X → Y is an almost contra λ-continuous surjection
and X is strongly λS-closed, then Y is nearly compact.

Proof. Let {Vα : α ∈ I} be a regular open cover of Y . Since f is
almost contra λ-continuous, we have that {f−1(Vα) : α ∈ I} is a cover
of X by λ-closed sets. Since X is strongly λS-closed, there exists a finite
subset I0 of I such that X =

⋃
{f−1(Vα) : α ∈ I0}. Since f is surjective

Y =
⋃
{Vα : α ∈ I0} and therefore Y is nearly compact. �

Definition 7. A topological space X is said to be almost-regular [29]
if for each regular closed set F of X and each point x ∈ X\F , there exist
disjoint open sets U and V such that F ⊂ V and x ∈ U .

Theorem 15. If a function f : X → Y is almost contra λ-continuous
and Y is almost-regular, then f is almost λ-continuous.

Proof. Let x be an arbitrary point of X and V an open set of Y con-
taining f(x). Since Y is almost-regular, by Theorem 3.2 of [29] there exists
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a regular open set W in Y containing f(x) such that Cl(W ) ⊂ Int(Cl(V )).
Since f is almost contra λ-continuous, and Cl(W ) is regular closed in Y , by
Theorem 1(3) there exists U ∈ λO(X, x) such that f(U) ⊂ Cl(W ). Then
f(U) ⊂ Cl(W ) ⊂ Int(Cl(V )). Hence, f is almost λ-continuous. �

Recall that Caldas et al. [7] introduced the notion of λ-frontier of A,
denoted by Frλ(A), as Frλ(A) = Clλ(A)\Intλ(A), equivalently Frλ(A) =
Clλ(A) ∩ Clλ(X\A).

Theorem 16. The set of points x ∈ X at which f : (X, τ) → (Y, σ) is
not almost contra λ-continuous is identical with the union of the λ-frontiers
of the inverse images of regular closed sets of Y containing f(x).

Proof. Necessity. Suppose that f is not almost contra λ-continuous at
a point x of X. Then there exists a regular closed set F ⊂ Y containing
f(x) such that f(U) is not a subset of F for every U ∈ λO(X, x). Hence
we have U ∩ (X\f−1(F )) 6= ∅ for every U ∈ λO(X, x). It follows that
x ∈ Clλ(X\f−1(F )). We also have x ∈ f−1(F ) ⊂ Clλ(f−1(F )). This means
that x ∈ Frλ(f−1(F )).

Sufficiency. Suppose that x ∈ Frλ(f−1(F )) for some F ∈ RC(Y, f(x))
Now, we assume that f is almost contra λ-continuous at x ∈ X. Then
there exists U ∈ λO(X, x) such that f(U) ⊂ F . Therefore, we have x ∈
U ⊂ f−1(F ) and hence x ∈ Intλ(f−1(F )) ⊂ X\Frλ(f−1(F )). This is a
contradiction. This means that f is not almost contra λ-continuous. �

Definition 8. A space (X, τ) is called λ-compact ([7], [8]) (also called
λO-compact [19]) if every cover of X by λ-open sets has a finite subcover.

Definition 9. A space X is said to be
(1) S-Lindelöf [12] if every cover of X by regular closed sets has a count-

able subcover,
(2) countably S-closed [1] if every countable cover of X by regular closed

sets has a finite subcover,
(3) mildly compact [31] if every clopen cover of X has a finite subcover.

Theorem 17. Let f : (X, τ) → (Y, σ) be an almost contra λ-continuous
surjection.

(1) If X is λO-compact, then Y is S-closed.
(2) If X is S-Lindelöf, then Y is S-Lindelöf.
(3) If X is countably λO-compact, then Y is countably S-closed.

Proof. We prove only (1) since the proofs of (2) and (3) are analogous.
Suppose that {Vα | α ∈ ∇} be any regular closed cover of Y . Since f is

almost contra λ-continuous, then {f−1(Vα) | α ∈ ∇} is a λ-open cover of X.
Thus, there exists a finite subset ∇0 of ∇ such that X =

⋃
{f−1(Vα) | α ∈
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∇0}. We have Y =
⋃
{Vα | α ∈ ∇0} and this shows that Y is S-closed [[20],

Theorem 3.2]. �
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