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Abstract. In this paper, we establish some fixed point theorems
for Noor iterations associated with Zamfirescu mappings in uni-
formly convex Banach spaces and deduce similar other results on
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1. Introduction

Let K be a closed and convex subset of a Banach space E and let T be
a selfmap of K. The set FT = {x ∈ K : Tx = x} is called the fixed point
set of T in K.

A Banach space (E, ‖.‖) is called uniformly convex if, given ε > 0, there
exists δ1 > 0 such that for all x, y ∈ E with ‖x‖ ≤ 1, ‖y‖ ≤ 1 and ‖x− y‖ ≥
ε, we have

∥∥1
2(x + y)

∥∥ < 1− δ1.
In Berinde [3], Zamfirescu proved the following result:

Theorem 1. Let (E, d) be a complete metric space and T : E −→ E be a
mapping for which there exist real numbers α, β and γ saisfying 0 ≤ α < 1,
0 ≤ β, γ < 0.5 such that, for each x, y ∈ E, at least one of the following is
true:

(Z1) d(Tx, Ty) ≤ αd(x, y);
(Z2) d(Tx, Ty) ≤ β[d(x, Tx) + d(y, Ty)];
(Z3) d(Tx, Ty) ≤ γ[d(x, Ty) + d(y, Tx)].

Then, T is a Picard mapping.

Remark 1. The proof of this Theorem is contained in Berinde [3].
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Indeed, if

(1) δ = max

{
α,

β

1− β
,

γ

1− γ

}
,

in Theorem 1, we obtain

(2) 0 ≤ δ < 1.

Then, for all x, y ∈ E, and by using Z2, it was proved in Berinde [3] that

(3) d(Tx, Ty) ≤ 2δd(x, Tx) + δd(x, y),

and by using Z3, we obtain

(4) d(Tx, Ty) ≤ 2δd(x, Ty) + δd(x, y),

where 0 ≤ δ < 1 is as defined by (1).

Remark 2. If (E, ‖.‖) is a normed linear space, then (3) becomes

(5) ‖Tx− Ty‖ ≤ 2δ ‖x− Tx‖+ δ ‖x− y‖ ,

for all x, y ∈ E and where 0 ≤ δ < 1 is as defined by (1).

2. Preliminaries

Let K be a closed and convex subset of a Banach space E and T : K −→
K a mapping which satisfies the condition

(6) d(x, Tx) + d(y, Ty) ≤ qd(x, y)

for all x, y ∈ K, where 2 ≤ q < 4.
Let x0 in K be arbitrary and let a sequence {xn}∞n=0 be defined by

(7) xn+1 =
1
2
(xn + Txn), n = 0, 1, 2, ...

For arbitrary x0 in K, we define Mann iteration {xn}∞n=0 by

(8) xn+1 = (1− αn)xn + αnTxn, n = 0, 1, 2, ...

with {αn}∞n=o being a sequence of real numbers in [0,1] satisfying conditions
(i) 0 ≤ αn ≤ 1 and (ii)

∑∞
n=0 αn(1− αn) = ∞.

For any x0 ∈ K, let {xn}∞n=0 be the Ishikawa iteration defined by

xn+1 = (1− αn)xn + αnTyn(9)
yn = (1− βn)xn + βnTxn
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with {αn}∞n=o, {βn}∞n=o being sequences of real numbers in [0,1] satisfying
conditions (i)

∑∞
n=0 αn = ∞ ; (ii)

∑∞
n=0 βn = ∞ and (iii) 0 ≤ αn, βn ≤ 1.

For arbitrary x0 ∈ K, let {xn}∞n=0 be the Noor iteration defined by

xn+1 = (1− αn)xn + αnTyn(10)
yn = (1− βn)xn + βnTzn

zn = (1− γn)xn + γnTxn

with {αn}∞n=o, {βn}∞n=o, {γn}∞n=o being sequences of real numbers in [0,1]
satisfying conditions (i)

∑∞
n=0 αn =

∑∞
n=0 βn =

∑∞
n=0 γn = ∞ and (ii)

0 ≤ αn, βn, γn ≤ 1.
By using the contractive definition (6) and iteration (7), Ciric [5] estab-

lished the following result:

Theorem 2. Let K be a closed and convex subset of a Banach space E
with the norm ‖x‖ = d(x, 0), x ∈ K and T : K −→ K a mapping which
satisfies the contractive definition (6).

Let x0 in K be arbitrary and let a sequence {xn}∞n=0 be defined iteratively
by (7).

Then, T has at least one fixed point.

Remark 3. The proof of Theorem 2.1 is contained in Ciric [5].

Our aim in this paper is to establish some fixed point theorems for Noor
iterations associated with Zamfirescu mappings in uniformly convex Banach
spaces by using the contractive definition (5). We shall also deduce similar
other results on Mann and Ishikawa iterations as special cases.

We shall use the Noor iteration (10) instead of iteration (7) used by
Ciric [5].

Remark 4. We observe that the contractive definition (5) is well-defined.
Also, iteration (10) used in our result is more general than iteration (7)

used by Ciric [5] and many others in the following sense:
If γn = 0, ∀ n ∈ N in the Noor iteration (10), then we obtain the

Ishikawa iteration (7).
Again, if βn = 0, ∀ n ∈ N in the Ishikawa iteration (9), we obtain the

Mann iteration (8).
Also, if αn = 1

2 , ∀ n ∈ N in the Mann iteration (8), we obtain iteration
(7), which is the iteration used by Ciric [5] in Theorem 2.1 above.

The following result is a fixed point theorem for the Noor iterations (10)
associated with Zamfirescu mappings in uniformly convex Banach spaces.
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3. The main results

Theorem 3. Let K be a closed and convex subset of a uniformly convex
Banach space E and T : K −→ K a mapping which satisfies the contractive
definition (5).

Let x0 in K be arbitrary and let a sequence {xn}∞n=0 be defined iteratively
by (10). Then, iteration (10) converges strongly to the fixed point of T .

Proof. Theorem 1 shows that T has a unique fixed point in K. Let us
denote it by p.

For arbitrary x0 in K and by using iteration (10), we get

xn+1 − p = (1− αn)xn + αnTyn − p

= (1− αn)xn + αnTyn − αnp− (1− αn)p
= (1− αn)(xn − p) + αn(Tyn − p)

and hence,

‖xn+1 − p‖ = ‖(1− αn)(xn − p) + αn(Tyn − p)‖
≤ (1− αn) ‖xn − p‖+ αn ‖Tyn − p‖
= (1− αn) ‖xn − p‖+ αn ‖Tyn − Tp‖
= (1− αn) ‖xn − p‖+ αn ‖Tp− Tyn‖ .

By using the contractive definition (5), we obtain

‖xn+1 − p‖ ≤ (1− αn) ‖xn − p‖+ αn(2δ ‖p− Tp‖+ δ ‖p− yn‖)
= (1− αn) ‖xn − p‖+ αn(2δ ‖p− p‖+ δ ‖yn − p‖)
= (1− αn) ‖xn − p‖+ αn(2δ(0) + δ ‖yn − p‖)
= (1− αn) ‖xn − p‖+ αn(0 + δ ‖yn − p‖), 0 ≤ δ < 1

which implies that,

(11) ‖xn+1 − p‖ ≤ (1− αn) ‖xn − p‖+ αnδ ‖yn − p‖ .

But, yn = (1− βn)xn + βnTzn, therefore,

‖yn − p‖ ≤ ‖(1− βn)xn + βnTzn − p‖
= ‖(1− βn)(xn − p) + βn(Tzn − p)‖
≤ (1− βn) ‖xn − p‖+ βn ‖Tzn − p‖
= (1− βn) ‖xn − p‖+ βn ‖Tzn − Tp‖
= (1− βn) ‖xn − p‖+ βn ‖Tp− Tzn‖ .
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Again, by using the contractive definition (5), we obtain

‖yn − p‖ ≤ (1− βn) ‖xn − p‖+ βn(2δ ‖p− Tp‖+ δ ‖p− zn‖)
= (1− βn) ‖xn − p‖+ βn(2δ ‖p− p‖+ δ ‖zn − p‖)
= (1− βn) ‖xn − p‖+ βn(2δ(0) + δ ‖zn − p‖)
= (1− βn) ‖xn − p‖+ βn(0 + δ ‖zn − p‖), 0 ≤ δ < 1

and hence,

(12) ‖yn − p‖ ≤ (1− βn) ‖xn − p‖+ βnδ ‖zn − p‖ .

But, zn = (1− γn)xn + γnTxn, hence,

‖zn − p‖ ≤ ‖(1− γn)xn + γnTxn − p‖
= ‖(1− γn)(xn − p) + γn(Txn − p)‖
≤ (1− γn) ‖xn − p‖+ γn ‖Txn − p‖
= (1− γn) ‖xn − p‖+ γn ‖Txn − Tp‖
= (1− γn) ‖xn − p‖+ γn ‖Tp− Txn‖ .

By using the contractive definition (5), we get

‖zn − p‖ ≤ (1− γn) ‖xn − p‖+ γn(2δ ‖p− Tp‖+ δ ‖p− xn‖)
= (1− γn) ‖xn − p‖+ γn(2δ ‖p− p‖+ δ ‖xn − p‖)
= (1− γn) ‖xn − p‖+ γn(2δ(0) + δ ‖xn − p‖)
= (1− γn) ‖xn − p‖+ γn(0 + δ ‖xn − p‖)
= (1− γn) ‖xn − p‖+ γnδ ‖xn − p‖ , 0 ≤ δ < 1

which implies that,

‖zn − p‖ ≤ (1− γn + γnδ) ‖xn − p‖ .

By observing that 0 ≤ γn ≤ 1, 0 ≤ δ < 1 and since 0 ≤ (1− γn + γnδ) < 1,
we get

(13) ‖zn − p‖ ≤ ‖xn − p‖ .

Substitute (13) into (12) yields

‖yn − p‖ = (1− βn) ‖xn − p‖+ βnδ ‖xn − p‖
≤ (1− βn + βnδ) ‖xn − p‖ .

Again, by observing that 0 ≤ βn ≤ 1, 0 ≤ δ < 1 and since 0 ≤ (1 − βn +
βnδ) < 1, we obtain

(14) ‖yn − p‖ ≤ ‖xn − p‖ .
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Substitute (14) into (11) yields

xn+1 − p ≤ (1− αn + αnδ) ‖xn − p‖ .

By observing that 0 ≤ αn ≤ 1, 0 ≤ δ < 1 and since 0 ≤ (1− αn + αnδ) < 1,
we obtain

(15) ‖xn+1 − p‖ ≤ ‖xn − p‖

which shows that the sequence {‖xn − p‖} is monotone decreasing.
We also have

‖xn − Txn‖ = ‖(xn − p)− (Txn − p)‖
≤ ‖xn − p‖+ ‖Txn − p‖
= ‖xn − p‖+ ‖Txn − Tp‖
= ‖xn − p‖+ ‖Tp− Txn‖
≤ ‖xn − p‖+ 2δ ‖p− Tp‖+ δ ‖p− xn‖
= ‖xn − p‖+ 2δ ‖p− p‖+ δ ‖xn − p‖
= ‖xn − p‖+ 2δ(0) + δ ‖xn − p‖
= ‖xn − p‖+ 0 + δ ‖xn − p‖
= (1 + δ) ‖xn − p‖ , 0 ≤ δ < 1.

Now, let us assume that there exists a real number a > 0 such that ‖xn − p‖ ≥
a for all n.

Suppose {‖xn − Txn‖} does not converge to zero. Then, there are two
possibilities: Either there exists an ε > 0 such that ‖xn − Txn‖ ≥ ε for all
n or lim inf ‖xn − Txn‖ = 0.

In the first case and as in Berinde [3], putting b = 2δ( ε
‖x0−p‖), we get

‖xn+1 − p‖ ≤ (1− αn(1− αn)b) ‖xn − p‖
≤ ‖xn−1 − p‖ − αn−1(1− αn−1)b ‖xn − p‖ − bαn(1− αn) ‖xn − p‖
≤ ‖xn−1 − p‖ − b[αn−1(1− αn−1) + αn(1− αn)] ‖xn − p‖ .

By induction, we obtain

a ≤ ‖xn+1 − p‖ ≤ ‖x0 − p‖ − b
n∑

k=0

αk(1− αk) ‖xn − p‖ .

Therefore,

a + b
n∑

k=0

αk(1− αk) ‖xn − p‖ ≤ ‖x0 − p‖ .
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It follows that
∑n

k=0 αk(1 − αk) is bounded which contradicts condition
(8)(ii).

Hence, there is no real number a > 0 such that ‖xn − p‖ ≥ a for all n,
which implies that {‖xn − Txn‖} converges to zero.

In the second case, there exists a subsequence {xnk
} such that

(16) lim
k−→∞

‖xnk
− Txnk

‖ = 0.

If {xnk
}, {xni} satisfy the contractive definition (5), then

‖Txnk
− Txni‖ ≤ 2δ ‖xnk

− Txnk
‖+ δ ‖xnk

− xni‖
≤ 2δ ‖xnk

− Txnk
‖+ δ(‖xnk

− Txnk
‖

+ ‖Txnk
− Txni‖+ ‖Txni − xni‖)

= 3δ ‖xnk
− Txnk

‖+ δ ‖Txnk
− Txni‖+ δ ‖xni − Txni‖

which implies that

(1− δ) ‖Txnk
− Txni‖ ≤ 3δ ‖xnk

− Txnk
‖+ δ ‖xni − Txni‖ .

Thus,

‖Txnk
− Txni‖ ≤

3δ

1− δ
‖xnk

− Txnk
‖+

δ

1− δ
‖xni − Txni‖ .

But, 0 ≤ δ < 1, therefore, {Txnk
} is a Cauchy sequence, and hence conver-

gent.
Let u be its limit. From (16), it results that

(17) lim
k−→∞

xnk
= lim

k−→∞
Txnk

= u.

We will show that u = Tu, that is, u is a fixed point of T . Indeed,

(18) ‖u− Tu‖ ≤ ‖u− xnk
‖+ ‖xnk

− Txnk
‖+ ‖Txnk

− Tu‖ .

If {xnk
}, u satisfy the contractive definition (5), then

(19) ‖Txnk
− Tu‖ ≤ 2δ ‖xnk

− Txnk
‖+ δ ‖xnk

− u‖ .

Substitute (19) into (18) gives

‖u− Tu‖ ≤ ‖u− xnk
‖+ ‖xnk

− Txnk
‖(20)

+ 2δ ‖xnk
− Txnk

‖+ δ ‖xnk
− u‖ .

By using (17) and letting k −→∞ in (20), we get

‖u− Tu‖ = 0.
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Hence, u = Tu. Now, since p is the unique fixed point of T , it follows
that p = u. Therefore, by condition (17) and the fact that {‖xn − p‖} is
monotone decreasing with respect to n, we obtain

lim
n−→∞

xn = u = p.

This completes the proof. �

Now, we shall use the Ishikawa iteration (9) instead of iteration (7) used
by Ciric [5].

The next result is a fixed point theorem for the Ishikawa iteration (9)
associated with Zamfirescu mappings in uniformly convex Banach spaces
and is our second main result in this work.

Theorem 4. Let K and the mapping T : K −→ K be as defined in
Theorem 3 above. Let x0 in K be arbitrary and let a sequence {xn}∞n=0 be
defined iteratively by (9). Then, iteration (9) converges strongly to the fixed
point of T .

Proof. Just as in the proof of Theorem 3, we know that T has a unique
fixed point in K. Call it p, that is, p = Tp, for p ∈ K. It suffices to show
that the sequence {‖xn − p‖} is monotone decreasing as the rest of the proof
is exactly the same as that of Theorem 3 above.

Indeed, for arbitrary x0 ∈ K, by using (3.1) and Ishikawa iteration (9),
we get

‖xn+1 − p‖ ≤ (1− αn) ‖xn − p‖+ αnδ ‖yn − p‖ .

Again, from Ishikawa iteration (9) and by using the contractive definition
(5), we obtain

‖yn − p‖ ≤ (1− βn + βnδ) ‖xn − p‖
and hence, for 0 ≤ βn ≤ 1, 0 ≤ δ < 1 and since 0 ≤ (1− βn + βnδ) < 1, we
get

(21) ‖yn − p‖ ≤ ‖xn − p‖ .

Substitute (21) into (11) gives

‖xn+1 − p‖ ≤ (1− αn + αnδ) ‖xn − p‖ .

For 0 ≤ αn ≤ 1, 0 ≤ δ < 1 and since 0 ≤ (1− αn + αnδ) < 1, we get

‖xn+1 − p‖ ≤ ‖xn − p‖

which shows that the sequence {‖xn − p‖} is monotone decreasing.
This completes the proof. �

The following result is a fixed point theorem for the Mann iteration (8)
associated with Zamfirescu mappings in uniformly convex Banach spaces.
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Theorem 5. Let K and the mapping T : K −→ K be as defined in
Theorem 3 above. Let x0 in K be arbitrary and let a sequence {xn}∞n=0 be
defined iteratively by (8). Then, the Mann iteration (8) converges strongly
to the fixed point of T .

Proof. The proof follows the same standard method as in Theorem 3,
Theorem 4 and it is therefore omitted. �
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