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OSCILLATION CRITERIA FOR THIRD ORDER

NONLINEAR DIFFERENCE EQUATIONS

Abstract. We shall establish some new criteria for the oscillation
of third order nonlinear difference equations of the form

∆2 (a(n)(∆(x(n))α) + q(n)f(x[g(n)]) = 0

and

∆2 (a(n)(∆x(n))α) = q(n)f(x[g(n)]) + p(n)h(x[σ(n)])

when
∑∞

a−1/α(n) < ∞.
Key words: oscillation, nonoscillation, comparison, first and sec-
ond order.
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1. Introduction

This paper is concerned with the oscillatory behavior of the third order
nonlinear difference equations

(1) ∆2 (a(n)(∆(x(n))α) + q(n)f(x[g(n)]) = 0

and

(2) ∆2 (a(n)(∆x(n))α) = q(n)f(x[g(n)]) + p(n)h(x[σ(n)]),

where n ∈ IN(n0) = {n0, n0 + 1, · · · }, n0 is a nonnegative integer, and ∆
is the forward difference operator, ∆x(n) = x(n + 1) − x(n) and {a(n)},
{g(n)}, {p(n)}, {q(n)} and {σ(n)} are sequences of real numbers.

The following conditions are always assumed to hold:
(i) α is the ratio of two positive odd integers,
(ii) a(n) > 0 for n ∈ IN(n0) and

(3)
∞∑

k=n0

a−1/α(k) < ∞,
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(iii) p(n) and q(n) ≥ 0 for n ∈ IN(n0),
(iv) g, σ : IN(n0) → Z is such that g(n) < n, σ(n) > n, ∆g(n) ≥ 0

and ∆σ(n) ≥ 0 for n ∈ IN(n0) and limn→∞ g(n) = ∞,
(v) f, h ∈ C1(IR, IR), xf(x) > 0, xh(x) > 0, f ′(x) ≥ 0 and h′(x) ≥ 0

for x 6= 0,

(4) −f(−xy) ≥ f(xy) ≥ f(x)f(y) for xy > 0,

and

(5) −h(−xy) ≥ h(xy) ≥ h(x)h(y) for xy > 0.

By a solution of equation (1)-(2) we mean a real sequence {x(n)} defined
on IN(n0), which satisfies equation (1)-(2) A nontrivial solution of equation
(1)-(2) is said to be nonoscillatory if it is either eventually positive or even-
tually negative and it is oscillatory otherwise. Equation (1)-(2) is said to be
oscillatory if all its solutions are oscillatory.

The problem of determining the nonoscillation and oscillation of all so-
lutions of difference equations has been a very active area of research in
the last three decades. In the second order case oscillation theories for
differential and difference equations are well established, see [1-4] and for
some higher order cases we refer the reader to [3,5-12]. It seems not much is
known regarding the oscillation of equations (1) and (2) particularly, when
condition (3) holds. Therefore, the purpose of this paper is to establish some
new criteria for the oscillation of all solutions of equations (1) and (2). We
note that the obtained results include the previous results for equations (1)
and (2) when

∑∞ a−1/α(s) = ∞. Also, the results of this paper not only
extend the known results, but also improve and unify these criteria.

2. Oscillation criteria for equation (1)

In this section we shall investigate the oscillatory behavior of all solutions
of equation (1). In what follows for n, n1 ∈ IN(n0), we let

A[n, n1] =
n−1∑
k=n1

(
k

a(k)

)1/α

and A(n) =
∞∑

k=n

a−1/α(k).

Theorem 1. Let conditions (i) – (v), (1.3) and (1.4) hold, and assume
that there exists a nondecreasing sequence {η(n)},

(6) η : IN(n0) → Z such that g(n) < η(n) < n for n ∈ IN(n0).

If both first order difference equations

(7) ∆z(n) + cq(n)f(A[g(n), n1])f
(
z1/α[g(n)]

)
= 0
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for any constant c, 0 < c < 1 and all n1 ≥ n0, and

(8) ∆w(n) + q(n)f (A (g (n))) f
(
[η(n)− g(n)]1/α

)
f
(
w1/α[η(n)]

)
= 0

are oscillatory, and

(9)
∞∑

k=n1

(
1

a(k)

k−1∑
u=n1

u−1∑
v=n1

q(v)f(A[g(v)])

)1/α

= ∞,

for n1 ≥ n0, then equation (1) is oscillatory.

Proof. Let {x(n)} be a nonoscillatory solution of equation (1), say,
x(n) > 0 and x[g(n)] > 0 for n ≥ n0 ≥ 0. From equation (1), we have
∆2 (a(n)(∆x(n))α) ≤ 0 for n ≥ n0. Thus, we conclude that ∆ (a(n)(∆x(n))α)
and ∆x(n) are of one sign for n ≥ n1 ≥ n0. Now, there are four possibilities
to consider:

(I) ∆ (a(n)(∆x(n))α) > 0 and ∆x(n) > 0 for n ≥ n1,
(II) ∆ (a(n)(∆x(n))α) > 0 and ∆x(n) < 0 for n ≥ n1,
(III) ∆ (a(n)(∆x(n))α) < 0 and ∆x(n) < 0 for n ≥ n1,
(IV ) ∆ (a(n)(∆x(n))α) < 0 and ∆x(n) > 0 for n ≥ n1.
The Case (IV ) cannot hold. In fact, if we let y(n) = a(n)(∆x(n))α, then

we find that ∆2y(n) < 0 and ∆y(n) < 0 for n ≥ n1 and hence limn→∞ y(n) =
−∞, which contradicts the positivity of y(n).

Case (I). There exist an n2 ∈ IN(n0), n2 ≥ n1 and a constant b, 0 < b < 1
such that

y(n) ≥ bn∆y(n) for n ≥ n2,

or

(10) ∆x(n) ≥ b1/α

(
n

a(n)

)1/α

(∆y(n))1/α for n ≥ n2,

where y(n) = a(n)(∆x(n))α, n ≥ n2.
Summing (10) from n2 to n− 1, we get

x(n) ≥ b1/αA[n, n2]z1/α(n) for n ≥ n2,

where z(n) = ∆y(n), n ≥ n2.
There exists an n3 ∈ IN(n0), n3 ≥ n2 such that

(11) x[g(n)] ≥ b1/αA[g(n), n2]z1/α[g(n)] for n ≥ n3.

Using (4) and (11) in equation (1), we find

−∆z(n) = q(n)f(x[g(n)])(12)

≥ f(b1/α)q(n)f(A[g(n), n2])f
(
z1/α[g(n)]

)
for n ≥ n3.
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Summing (12) from n to u ≥ n ≥ n3 and letting u →∞, we have

z(n) ≥ f(b1/α)
∞∑

k=n

q(k)f(A[g(k), n2])f
(
z1/α[g(k)]

)
.

The sequence {z(n)} is strictly decreasing for n ≥ n3. Hence, by the
analog of Theorem 1 in [14] (also, see [1]), we conclude that there exists a
positive solution {z(n)} of equation (2.2) with limn→∞ z(n) = 0, which
is a contradiction.

Case (II). For n ≥ s ≥ n1, we obtain

a(s) (−∆x(s))α ≥ a(n) (−∆x(n))α

or

x(n) ≥ [a(n) (−∆x(n))α]1/α
∞∑

k=n

a−1/α (k) .

Replacing n by g(n), we find

x[g(n)] ≥ [a(g (n)) (−∆x(g (n)))α]1/α A (g (n)) for n ≥ n2 ≥ n1(13)
=: y1/α[g(n)]A (g (n)) for n ≥ n2,

where y(n) = −a(n)(∆x(n))α for n ≥ n2.
Using (4) and (13) in equation (1), we have

∆2y(n) ≥ q(n)f (A (g (n))) f
(
y1/α[g(n)]

)
for n ≥ n2.(14)

Clearly, y(n) > 0 and ∆y(n) < 0 for n ≥ n2.
For n ≥ s ≥ n2, we have

y(s) ≥ (n− s)(−∆y(n)).

Replacing s and n by g(n) and η(n) respectively, we obtain

(15) y[g(n)] ≥ (η(n)− g(n))w[η(n)] for n ≥ n3 ≥ n2,

where w(n) = −∆y(n), n ≥ n3.
Using (15) and (4) in (14), we have

∆w(n)+q(n)f(A (g (n)))f
(
[η(n)− g(n)]1/α

)
f
(
w1/α[η(n)]

)
≤ 0 for n ≥ n3.

The rest of the proof is similar to that of Case (I) above and hence omitted.

Case (III). For s ≥ n ≥ n1, we have

a(s)(−∆x(s))α ≥ a(n)(−∆x(n))α,
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or

(16) −∆x(s) ≥ − (a1/α(n)∆x(n))(a−1/α(s)).

Summing (16) from n to u ≥ n and letting u →∞, we get

x(n) ≥ −(a1/α(n)∆x(n))
∞∑

k=n

a−1/α(k)(17)

= −(a1/α(n)∆x(n))A (n) .

Clearly,

(18) a1/α(n)(−∆x(n)) ≥ a1/α(n1)(−∆x(n1)) = b > 0,

where b is a constant. Combining (17) and (18), we find

x(n) ≥ bA(n) for n ≥ n1.

There exists an n2 ≥ n1 such that

(19) x[g(n)] ≥ bA(g(n)) for n ≥ n2.

Using (4) and (19), we obtain

(20) −∆2 (a(n)(∆x(n))α) = q(n)f(x[g(n)]) ≥ f(b)q(n)f(A(g(n))).

Summing (20) twice from n2 to n− 1 one can easily find

−a(n)(∆x(n))α ≥ f(b)
n−1∑
u=n2

u−1∑
k=n2

q(k)f(A(g(k))),

or

(21) −∆x(n) ≥ (f(b))1/α

 1
a(n)

n−1∑
u=n2

u−1∑
k=n2

q(k)f(A(g(k)))

1/α

.

Summing (21) from n2 to n− 1, we obtain

∞ > x(n2) ≥ x(n2)− x(n)

≥ (f(b))1/α
n−1∑
`=n2

 1
a(`)

`−1∑
u=n2

u−1∑
k=n2

q(k)f(A(g(k)))

1/α

→∞ as n →∞,

which is a contradiction. This completes the proof. �
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We can combine equations (7) and (8) in one by letting

Q(n) = min {cq(n)f(A[g(n), n1]),(22)

q(n)f (A (g (n))) f
(
[η(n)− g(n)]1/α

)}
,

for any constant c, 0 < c < 1 and all n ≥ n1.
In this case, one can easily replace equations (7) and (8) by the equation

(23) ∆y(n) + Q(n)f
(
y1/α[η(n)]

)
= 0.

From the proof of Theorem 1 it is clear that if the condition

(24)
∞∑

k=n0

a−1/α(k) = ∞

holds, then Cases (I) and (II) hold and Cases (III) and (IV ) are disre-
garded. Thus, we have the following result.

Theorem 2. Let conditions (i) – (v), (4) and (24) hold and assume that
there exists a nondecreasing sequence {η(n)}, η : IN(n0) → Z such that (6)
holds. If equation (23) is oscillatory, then equation (1) is oscillatory.

The following result is immediate.

Corollary 1. Let conditions (i)–(v), (3) and (4) hold, and assume that
there exists a nondecreasing sequence {η(n)} such that condition (6) holds.
Equation (1) is oscillatory if one of the following conditions holds:

(I1)
f(u1/α)

u
≥ k1 for u 6= 0 and some k1 > 0

lim sup
n→∞

n−1∑
k=η(n)

Q(k) >
1
k1

,

(I2)
∫
±0

du

f(u1/α)
< ∞, and

∞∑
k=n0

Q(k) = ∞.

3. Oscillation criteria for equation (2)

The main goal of this section is to establish criteria for the oscillation of
equation (2) of mixed nonlinearities and arguments.
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Theorem 3. Let conditions (i)–(v) and (3) – (5) hold and assume that
there exist nondecreasing sequences {η(n)}, {ρ(n)} and {θ(n)},

η, ρ, θ : IN(n0) → Z such that g(n) < η(n) < n− 1(25)
and σ(n) > ρ(n) > θ(n) > n for n ∈ IN(n0).

If the difference equations

∆y(n)− p(n)h

σ(n)−1∑
k=ρ(n)

a−1/α(k)

(26)

× h
(
[ρ(n)− θ(n)]1/α

)
h
(
y1/α[θ(n)]

)
= 0

∆z(n) + q(n)f

g(n)−1∑
k=n0

a−1/α(k)

(27)

× f
(
[η(n)− g(n)]1/α

)
f
(
z1/α[η(n)]

)
= 0

and

(28) ∆2w(n) + q(n)f(A(g(n)))f(w[g(n)]) = 0

are oscillatory, where A(n) is as in Section 2, then equation (2) is oscilla-
tory.

Proof. Let {x(n)} be a nonoscillatory solution of equation (2), say, x(n)
> 0, x[g(n)] > 0 and x[σ(n)] > 0 for n ≥ n0 ≥ 0. Since ∆2 (a(n)(∆x(n))α)
≥ 0 for n ≥ n0, there exists an n1 ∈ IN(n0) such that ∆ (a(n)(∆x(n))α)
and ∆x(n) are of one sign for n ≥ n1. Now, as in Theorem 1 there are four
possibilities to consider:
(I) ∆ (a(n)(∆x(n))α) > 0 and ∆x(n) > 0 for n ≥ n1,
(II) ∆ (a(n)(∆x(n))α) < 0 and ∆x(n) > 0 for n ≥ n1,
(III) ∆ (a(n)(∆x(n))α) < 0 and ∆x(n) < 0 for n ≥ n1,
(IV ) ∆ (a(n)(∆x(n))α) > 0 and ∆x(n) < 0 for n ≥ n1.

The Case (IV ) cannot hold. In fact, if we let y(n) = a(n)(∆x(n))α

for n ≥ n1, then ∆2y(n) > 0 and ∆y(n) > 0 for n ≥ n1 and hence
limn→∞ y(n) = ∞, which contradicts the negativity of ∆x(n). Now, we
consider:

Case (I). For n ≥ s ≥ n1, we have

a(n)(∆x(n))α ≥ a(s)(∆x(s))α,
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or

x(n) ≥ [a(s)(∆x(s))α]1/α
n−1∑
k=s

a−1/α(k).

Replacing n and s by σ(n) and ρ(n) respectively, we find

x[σ(n)] ≥ [a(ρ (n))(∆x(ρ (n)))α]1/α
σ(n)−1∑
k=ρ(n)

a−1/α(k)(29)

:= y1/α[ρ(n)]
σ(n)−1∑
k=ρ(n)

a−1/α(k) for n ≥ n2 ≥ n1,

where y(n) = a(n)(∆x(n))α for n ≥ n2.

Using (29) and (5) in equation (2), we get

∆2y(n) ≥ p(n)h(x[σ(n)])(30)

≥ p(n)h

σ(n)−1∑
k=ρ(n)

a−1/α(k)

h
(
y1/α[ρ(n)]

)
for n ≥ n2.

For n ≥ s ≥ n2, we have

y(n) ≥ (n− s)∆y(s)

or
y(n) 1/α ≥ (n− s)1/α (∆y(s))1/α .

Replacing n and s by ρ(n) and θ(n) respectively, we get

(31) y1/α[ρ(n)] ≥ (ρ(n)− θ(n))1/αz1/α[θ(n)] for n ≥ n3 ∈ IN(n0),

where z(n) = ∆y(n) for n ≥ n3.
Using (31) and (5) in (30), we obtain

∆z(n) ≥ p(n)h

σ(n)−1∑
k=ρ(n)

a−1/α(k)


× h

(
[ρ(n)− θ(n)]1/α

)
h
(
z1/α[θ(n)]

)
for n ≥ n3.

Now by a known result in [1,3,13], we arrive at the desired contradiction.

Case (II). For n ≥ n1, we have

x(n) = x(n1) +
n−1∑
k=n1

∆x(k) ≥

 n−1∑
k=n1

a−1/α(k)

 y1/α(n),
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where y(n) = a(n)(∆x(n))α, n ≥ n1. Next, there exists an n2 ≥ n1 such
that

(32) x[g(n)] ≥

g(n)−1∑
k=n1

a−1/α(k)

 y1/α[g(n)] for n ≥ n2.

Using (32) and (4) in equation (2), we get

(33) ∆2y(n) ≥ q(n)f

g(n)−1∑
k=n1

a−1/α(k)

 f
(
y1/α[g(n)]

)
for n ≥ n2.

Clearly, ∆y(n) < 0 for n ≥ n2. Thus, for n ≥ s ≥ n2, we find

y(s) ≥ (n− s)(−∆y(n)).

Replacing s and n by g(n) and η(n) respectively, we have

(34) y[g(n)] ≥ (η(n)− g(n))z[η(n)] for n ≥ n3 ≥ n2,

where z(n) = −∆y(n), n ≥ n3.
Using (34) and (4) in (33), we have

∆z(n) + q(n)f

g(n)−1∑
k=n1

a−1/α(k)


× f

(
[η(n)− g(n)]1/α

)
f
(
z1/α[η(n)]

)
≤ 0 for n ≥ n3.

The rest of the proof is similar to that of Theorem 1–Case (I) and hence
omitted.

Case (III). As in the proof of Theorem 1–Case (III), we obtain (17).
There exists n2 ∈ IN(n0), n2 ≥ n1 such that

(35) x[g(n)] ≥ A(g(n))w1/α[g(n)] for n ≥ n2,

where w(n) = −a(n)(∆x(n))α for n ≥ n2.
Using (35) and (4) in equation (2), we get

(36) ∆2w(n) + q(n)f(A(g(n))f
(
w1/α[g(n)]

)
≤ 0 for n ≥ n2.

By a known result in [1], we arrive at the desired contradiction. This com-
pletes the proof. �

From the proof of Theorem 3, we see that Case (III) is disregarded if
condition (24) holds. Thus, one can easily obtain



48 S.R. Grace, R.P. Agarwal and M.F. Aktas

Theorem 4. Let conditions (i) – (v) and (4), (5) and (24) hold and
assume that there exist nondecreasing sequences {η(n)}, {ρ(n)} and {θ(n)}
such that (25) holds. If the equations (26) and (27) are oscillatory, then
equation (2) is oscillatory.

Also, from the proof of Theorem 3–Case (III), we obtain the inequality
(36). Now, it is easy to see that there exist a constant b, 0 < b < 1 and an
n3 ∈ IN(n0), n3 ≥ n2 such that

(37) w[g(n)] ≥ bg(n)∆w[g(n)] for n ≥ n3.

Using (37) and (4) in (36), we have

∆v(n) + f(b1/α)q(n)f(g1/α(n))f(A(g(n)))f
(
v1/α[g(n)]

)
≤ 0, n ≥ n3,

where v (n) = ∆w(n) for n ≥ n3.
Now, one may replace equation (28) by

(38) ∆v(n) + cq(n)f(g1/α(n))f(A(g(n)))f
(
v1/α[g(n)]

)
= 0

for any constant c, 0 < c < 1.
Once again, we may combine equations (27) and (38) in one by letting

Q̃(n) = min

q(n)f

g(n)−1∑
k=n0

a−1/α(k)

 f
(
[η(n)− g(n)]1/α

)
(39)

× cq(n)f(g1/α(n))f(A(g(n)))
}

for n ≥ n0 and any constant c, 0 < c < 1.
Now, equations (27) and (38) are replaced by

(40) ∆y(n) + Q̃(n)f
(
y1/α[η(n)]

)
= 0.

Thus, Theorem 3 can be restated as follows:

Theorem 3′. Let conditions (i)–(v) and (3) – (5) hold and assume that
there exist nondecreasing sequences {η(n)}, {ρ(n)} and {θ(n)} such that
(25) holds. If the equations (26) and (40) are oscillatory, then equation (2)
is oscillatory.

The following result is immediate.

Corollary 2. Let conditions (i) – (v) and (3) – (5) hold and assume
that there exist nondecreasing sequences {η(n)}, {ρ(n)} and {θ(n)} such
that (25) holds. Equation (2) is oscillatory if one of the following conditions
holds:
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(II1)
f(u1/α)

u
≥ k1 and

h(u1/α)
u

≥ h1 for u 6= 0 and some k1, h1 > 0

lim sup
n→∞

θ(n)−1∑
k=n

p(k)h

σ(k)−1∑
s=ρ(k)

a−1/α(s)

h
(
[ρ(k)− θ(k)]1/α

)
>

1
h1

and

lim sup
n→∞

n−1∑
k=η(n)

Q̃(k) >
1
k1

,

where Q̃ is as in (39),

(II2)
∫
±0

du

f(u1/α)
< ∞ and

∫ ±∞ du

h(u1/α)
< ∞,

∞∑
p(n)h

σ(n)−1∑
k=ρ(n)

a−1/α(k)

h
(
[ρ(n)− θ(n)]1/α

)
= ∞

and
∞∑

Q̃(n) = ∞.

4. Some general remarks

1. Conditions (4) and (5) can be discarded if we let f(x) = xβ and
h(x) = xγ , where β and γ are ratios of positive odd integers. The details
are left to the reader.

2. By applying many other known results oscillation criteria for first
order equations, one can easily drawn many oscillation results similar to
those in Corollaries 1 and 2 obtained from Theorems 1 and 3 respectively.
The details are left to the reader, see [1, 13].

3. The results of this paper are extendable to neutral equations of the
form

∆2 (a(n)(∆(x(n) + c(n)x[τ(n)]))α) + q(n)f(x[g(n)]) = 0

and

∆2 (a(n)(∆(x(n) + c(n)x[τ(n)]))α) = q(n)f(x[g(n)]) + p(n)h(x[σ(n)]),

where {c(n)} and {τ(n)} are sequences of real numbers and lim
n→∞

τ(n) = ∞.
The details are left to the reader. We also note that we may extend our
results to third order dynamic equations of the form(

a(n)(x∆(n))α
)∆∆

+ q(n)f(x[g(n)]) = 0.
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