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(¢, ) CONTRACTIVE CONDITION AND COMMON
FIXED POINTS

ABSTRACT. In the present paper we prove a common fixed point
theorem (Theorem 1) for four mappings under the (e, §) contrac-
tive condition, however, without either imposing any additional
restriction on § or assuming the ¢-contractive condition together
with. While proving the theorem, neither the completeness of
the metric space is assumed nor any of the mappings is required
to be continuous. Thus we also provide one more answer to the
problem of Rhoades [24] which ensures the existence of common
fixed point, however, does not force the maps to be continuous at
the common fixed point. Theorem 2 generalizes further the result
obtained in Theorem 1.
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1. Introduction

For a selfmapping f of a metric space (X, d) the most general type of
contractive condition is either a Banach type contractive condition

(1) d(fz, fy) < kmax{d(z,y),d(z, fz),d(y,dy),
[d(z, fy) + d(y, fz)]
2

or a Meir-Keeler type (¢, ) contractive condition given € > 0 there exists a
0 > 0 such that

b, 0<k<1,

[d(z, fy) + d(y, fx)]
2

(2) e < max{d(z,y),d(z, fz),d(y,dy),
= d(fz, fy) <e.

or a ¢-contractive condition of the form

}<e+d

(3) d(fz, fy) < ¢p(max{d(z,y), d(z, fz),d(y,dy),

2
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where Ry — R, is such that ¢(t) < ¢ for each ¢ > 0.

In the more general setting pertaining to common fixed points of four
mappings, say A, B, S and T of a metric space (X, d) the conditions (2)
and (3) respectively assume the form given € > 0 there exists a § > 0 such
that

(4) e < max{d(Sz,Ty),d(Az,Sz),d(By,Ty),
[d(Az, Ty) —;d(By, Sz)]} <etd
= d(Az, By) <€,
and
(5) d(Az, By) < ¢(max{d(Sz,Ty),d(Az,Sz),d(By,Ty),

[d(Az, Ty) + d(By, Sz)] 1
2

where Ry — Ry is such that ¢(t) < ¢ for each t > 0. In some results the
contractive condition (4) has been replaced by a slightly weaker contractive
condition of the form given € > 0 there exists a § > 0 such that

(6) e < max{d(Sxz,Ty),d(Ax,Sz),d(By,Ty),
[d(Ax, Ty) ;rd(By, S:E)]} <etd

= d(Az,By) <e

Jachymski [5] has shown that contractive condition (4) implies (6) but
(6) does not imply (4).

In the setting of common fixed point theorems Meir-Keeler type (¢, ) con-
tractive condition alone is not sufficient to guarantee the existence of fixed
point. While assuming the (e, 0) contractive condition the existence of fixed
point is ensured either by imposing some additional restriction on d or by
assuming some additional condition besides the (e, ) contractive condition
or by imposing strong conditions on the continuity of mappings. Following
conditions are known to be assumed in proving a fixed point theorem:

(I) (e, ) contractive condition is taken and ¢ is assumed nondecreasing
(e.g. Pant ([12], [13]))

(II) (e, &) contractive condition is taken and ¢ is assumed lower semicontin-
uous (e.g. Jungck [7], Jungck et al [6])

(III) (e, 0) contractive condition is assumed and relatively stronger conti-
nuity conditions are used (e.g. Maiti and Pal [11], Park and Bae [21],
Park and Rhoades [20])

(IV') Both the (e, 6) contractive condition and the ¢-contractive condition
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are assumed simultaneously, however, without imposing any additio-
nal restriction either on ¢ or on § (e.g. Pant and Pant [14], Pant et
al [15]).

It has been shown by Jachymski ([4], Proposition 4.2) that the Meir-Keeler
type (e,0) contractive condition implies an analogous ¢-contractive condi-
tion if ¢ is assumed nondecreasing. Pant et al [15] has proved that the (¢, 6)
contractive condition implies an analogous ¢-contractive condition if § is
lower semicontinuous. A slightly different version of this result has been
proved by Jachymski [4] also. Thus any of the assumption (/) or (II) above
implies the assumption (IV'), but not conversely (e.g. see Pant and Pant
[14], Pant et al [15]).

It may be observed that the Meir-Keeler type (¢,6) contractive condi-
tion alongwith weaker continuity conditions does not ensure the existence
of fixed point. An example to this effect is given by Pant (Example 1, [18])
illustrating that the continuity of one of the mappings is not sufficient to
ensure the existence of a common fixed point under an (e,d) contractive
condition.

Adopting the approach (V') above, Pant and Pant [14] and Pant et al [15]
have proved common fixed point theorems, where a ¢-contractive condition
is assumed together with the (e, ) contractive condition, however, without
imposing any additional restriction either on § or on ¢. Such contractive
conditions when taken together are implied by (I) and (II) above but not
conversely. As a special case of common fixed point theorems proved under
assumption (I'V'), we can relax the continuity conditions of the mappings in
as much as the mappings involved become discontinuous at their common
fixed points (see e.g. in Pant et al [15]).

In view of this, it is inferred that the most generalized known common
fixed point theorem have been obtained under assumption (IV), i.e., by
assuming the ¢-contractive condition together with the (e,d) contractive
condition, however, without either imposing any additional restriction on
¢ or on § or assuming much stronger continuity conditions on the map-
pings involved. These theorems can be generalized further if we replace the
¢-contractive condition with a plane contractive condition or with Lipschitz
type analogue of the plane contractive condition. Following this approach,
in the present paper we prove a common fixed point theorem (Theorem 1)
for four mappings under the (e,d) contractive condition, however, without
either imposing any additional restriction on § or assuming the ¢-contractive
condition together with it. Further, while proving the theorem; neither the
continuity of any of the mapping is required nor the metric space is assumed
to be complete. Our theorem (Theorem 1), thus generalize the known results
proved under the assumptions I-IV above. Theorem 2 generalizes further the
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result obtained in Theorem 1. To prove the desired results in the following
lines we use the notions of Weak Compatible maps of type (A), Noncom-
patible maps and Reciprocally Continuous maps.

We begin with the following preliminaries:

Definition 1. Two selfmaps f and g of a metric space X are called
compatible (see Jungck [7]) if Umd(fgxn, gfzn) = 0, whenever {z,} is a

n
sequence in X such that lim fx,, = lim gz, =t for some t in X.
n n

It is clear from the above definition that f and ¢ will be noncompatible,

if there exists at least one sequence {z,} such that lim fx,, = limgx, =t
n n
for some ¢ in X but limd(fgzy,gfx,) is either non-zero or non-existent.
n
Definition 2. Two selfmappings f and g of a metric space X are called

weakly commuting if d(fgzx,gfz) < d(fz,gz) for all x in X. The mappings
f and g are said to be weakly commuting at a point z in X if d(fgz,gfz) <

d(fz,gz).

Definition 3. The mappings A and S from a metric space (X, d) into
itself are said to be compatible of type (A) (see [3], [22] and [23]) if

limd(ASx,,SSz,) =0 and limd(SAzx,, AAx,) =0,

whenever {x,} is a sequence in X such that

lim Sz, = lim Ax, =t for some t€ X.
n n

Definition 4. The mappings A and S from a metric space (X, d) into
itself are said to be weak compatible of type (A) (see [22] and [23]) if

limd(ASxy,, SSzy,) <limd(SAzx,, SSz,)

and
limd(SAx,, AAzx,) < limd(ASz,, AAz,),

whenever {x,} is a sequence in X such that lim Sx,, = lim Az, =t for some
n n
tin X.
Definition 5. Two selfmappings f and g of a metric space (X,d) are
called reciprocally continuous (see [14]) if lim fgx,, = ft and limgfz, = gt
n n
whenever {x,} is a sequence such that lim fx,, = lim gz, =t for some t in
n n
X.
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2. Main results

We define the following for Theorem 1:

[d(Az,Ty) + d(By, Sz)]
2

M(z,y) = max{d(Sz, Ty),d(Ax, Sz),d(By, Ty), }
Theorem 1. Let (A,S) and (B,T) be weak compatible mappings of type
(A) from a metric space (X,d) into itself such that AX C TX, BX C SX
and
(1) given € > 0, there exists a § > 0 such that,

€< M(z,y) < e+ 0= d(Az,By) < e

(ix) d(Az, By) < M (z,y), whenever the right hand side is positive,
(11) d(Az,By) < k d(Sz,Ty), k > 0,
then A, B, S and T have a unique common fized point.

Proof. Let zy be any point in X. Define sequences {z,} and {y,} in X
given by the rule

Yon = Axoy = Txop41, Yon+1 = Bropt1 = Swanio.

This can be done by virtue of (). We claim that {y,} is a Cauchy sequence.
Two cases arise. FKither y, = y,y1 for some n or y, # yny1 for each n.
If ¥y, = yn41 for some n then as shown by Rhoades et al [24] we have
Yn = Yn+k for each k > 1. For instance, suppose that yo2,, = yam+1 then
Yam+1 = Yoam+2. Otherwise, using (ii) we get

d(Yom+1, Yom+2) = d(Az2my2, Broms1) = M (Z2m42, Tam+1)

= d(Y2m+1; Y2m+2),

a contradiction. Hence, yom 11 = Yomao. Similarly, yomt1 = Yomao implies
that yo,m+2 = Y2m+3. Proceeding in this manner, it follows that yo,, = Yomik
for each k > 1 and so {y,} is a Cauchy sequence.

Let us, therefore, consider the case when y, # y,4+1 for each n. Us-
ing (i1), we get d(yon,yant1) < d(Yon—1,Y2n). Similarly, d(yon—1,y2n) <
d(y2n—2,Yon—1) and so on. Thus, {d(yn,yn+1)} is a strictly decreasing se-
quence of positive numbers and, therefore, tends to a limit » > 0. If possible
suppose r > 0. Then given § > 0 there exists a positive number N such
that for each n > N we have

(7) r < d(Yon, Yont1) = M (Tony2, Tons1) <7+ 6.
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Selecting 0 in (7) in accordance with (ii), for each n > N we get d(y2n+2, Y2n+1)
= d(Axant2, Bropt1) < r. This, in turn, gives d(y2n+3, Y2n+2) < d(Y2n+1, Y2n+2)
< r, contradicting (7). Hence 1171?1 Ad(Yn,Ynt+1) = 0.

We now show that {y,} is a Cauchy sequence. Suppose it is not. Then
there exists an € > 0 and a subsequence {yy, } of {y,} such that d(yn,, yn,,,)
> 2¢e. Select § in (i7) so that 0 < § < e. Since 1i71£nd(yn,yn+1) = 0, there

exists an integer N such that d(y,, yn+1) < §/6 whenever n > N.
Let n; > N. Then, there exist integers m; satisfying n; < m; < n;41
such that d(yn,, ym,;) > €+ (6/3). If not, then

d(ym ) yni+1) S d(ynz’ yni+1*1) + d(yni+1—1 ’ yni+1)

) 1)
< = =) < 2e,
e+ (5)+(5) < 2e
a contradiction. Without loss of generality, we can assume n; to be odd.
Let m; be the smallest even integer such that d(yn,, ym,;) > € + (%) Then

d(Yn,, Ym;—2) < €+ (§) and

1)
(8) €+ (g) < d(ynmymz) + d(yni7ymi—2)
+ d(ymi727 ymifl) + d(ymiflv ym)
) ) 1) )
< €+(§)+(6)+(6) —€+2(§)
Also,

d(yni ’ ymi) < M(xni+1 ’ xmu-l)

1 0
<e+2(§)+(6)<e+5,

that is,

)
e—l—(g) < M(%nyy, Tmy,) < €406,

In view of (i), this yields d(yn, ,;Ym,.,) < €. But then

d(yn“ ym,) < d(ynm yTLH—l) + d(yni—i-l, ymi—l-l) + d(ymi-‘rlv ymz)
) J 0
< (= “)=e+(3),
(D) +et (@ =c+(3)
which contradicts (8). Hence {y,} is a Cauchy sequence. Since X is com-
plete, there exists a point z in X such that y, — z. Also

(9) yon = Axop = Txop1 — 2, Yont1 = BTopt1 = STony2 — 2.
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Now, since the pair (A,S) is weak compatible of type (A), we have,
d(ASzy, SSx,) < d(SAxz,,SSz,) and d(SAz,, AAx,) < d(ASz,, AAx,)
which on letting n — oo yields ASx, = SAx, and SAx, = AAx,, that is,
Az = Sz. Since AX C TX, there exists a w in X such that Az = Tw. If
Bw # Tw, using (i) we get

Az, T B
d(Az, Bw) < max d(Sz,Tw),d(Az,Sz),d(Bw, Tw), [d(Az, Tw) 4+ d(Bw, Sz)]

2
= max(d(Bw, Tw), [d(Az, Tw) —;—d(Bw, Sz)]

= d(Bw,Tw) = d(Bw, Az),

)

a contradiction. Hence Bw = Tw and Sz = Az = Tw = Bw. Since pair
(A, S) is weak compatible of type (A),

d(ASz,55z) < d(SAz,SSz) and d(SAz, AAz) < d(ASz, AAz),

which implies that ASz = 5SSz and SAz = AAz. Thus AAz = ASz =
SAz = SSz. Similarly, since pair (B, T) is also weak compatible of type (A)
it can be shown that BBw = BTw = TBw = TTw. If Az # AAz, using (i)
we get

d(Az, By) = d(AAz, Bw) < max{d(SAz,Tw),d(AAz,SAz),d(Bw, Tw),

[d(AAz, Tw) + d(Bw, SAz)]
5 }

=d(SAz,Tw) = d(AAz, Bw)

a contradiction. Hence Az = AAz = SAz and Az is a common fixed point
of A and S. Similarly, Bw(= Az) is a common fixed point of B and T.
Uniqueness of the common fixed point follows from (7). Moreover, the proof
follows on similar lines when A or B is assumed continuous since AX C T'X
and BX C SX. This establishes the theorem. |

Example 1. Let X = [2,20) and d be the usual metric on X. Define
A B,SandT: X — X by

Ar=2 if =2 or >5, Ar=4if2<ax <5
Bxr=2 if =2 or >5, Br=6if2<x<5
§2=2 Sr=8if2<z<5 Sr="ifs>5

T2=2, Te=z+9if2<z<5 To="Difz>s5

Then A, B, S and T satisfy the conditions of the above theorem and have a
unique common fixed point x = 2. It can be verified in this example that A,
B, S and T satisfy the condition (ii) and d(e) = 7T—eif e < 2 and d(e) = 13—e¢
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if € > 2. It may also be observed that A, B, S and T satisfy the condition
(i7i) of the above theorem. Further, (A4,S) and (B,T) are pairs of weakly
compatible mapping of type (A). To see this let us consider a decreasing se-
quence {z, =5+ % :n > 0}, then Az, = 2, Sz, — 2 and d(ASzy, SSz,) <
d(SAx,,SSzy,), d(SAx,, AAx,) < d(ASx,, AAx,). Also, Bz, =2, Tx, —

2 and d(BTxy, TTxy,) < d(TBxy, TTxy,), d(TBxy, BBx,) < d(BTx,, BBxy,).
It may also be observed that none of the mappings A, B, S or T is continuous
and also the metric space is not complete.

Remark 1. Above theorem has been proved under (e, d) contractive
condition without imposing any additional restriction on § or assuming the
¢-contractive condition together with. The completeness of the metric space
is not necessary and none of the mapping assumed is continuous. Our theo-
rem, thus, generalizes several results including that of Jachymski ([4], The-
orem 3.3), Pant ([12], [13], [18]), Pant and Pant [14], Pant et al ([15], [19]),
Singh and Kasahara [26], Boyd and Wong [1], Maiti and Pal [11] and Park
and Rhoades [20].

Remark 2. Despite the Lemma 2.2 of Jachymski [4], an (€, §) contractive
condition does not imply the existence of a common fixed point unless some
additional condition is imposed on §. For example Jungck [7] and Jungck et
al [6] assume ¢ to be lower semicontinuous. On the other hand, Pant ([12],
[13]) assumes § to be nondecreasing. However, we have not imposed any
additional condition on §.

We now generalize the above theorem and get the following theorem.

Theorem 2. Let (A,S) and (B,T) be pointwise R-weakly commuting
pairs of self mappings from a metric space (X, d) into itself such that AX C
TX,BX C SX and

[d(Az, Sz) + d(By, Ty)]
2 Y
[d(Az, Ty) : By SOy < p <o,

(1) d(Azx,By) < max{d(Sz,Ty),k

(it) d(Az,By) <k d(Sz,Ty), k>0.
Suppose that one of the pairs (A,S) or (B,T) be noncompatible and other
compatible. If mappings in the compatible pair are reciprocally continuous
then A, B, S and T have a unique common fized point.

Proof. Let B and T be noncompatible maps. Then there exists a se-
quence {z,} in X such that Bz, — t and Tz, — t for some ¢ in X but
lim d(BTx,, T Bx,) is either nonzero or non existent. Since BX C SX, for

n

each z,, there exists y,, in X such that Bx,, = Sy,. Thus Bz, — t,Tx, —t
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and Sy, — t. We claim that Ay, — t. If not, there exists a subsequence
{Aym} of {Ay,}, a positive integer M and a number r > 0 such that for
each m > M we have d(Aym,t) > r, d(Aym, Bxy,) > r and
d A my m d B m)T m
d(Aym, Bxy,) < max{d(Sym, Txm), [(Aym, Sy )_; (Bz v )],
i [d(AYm, Txy,) + d( Bz, Sym)]}
2

< d(Ayma Sym) = d(Aym7 me)7

a contradiction. Hence Ay, — t.

Suppose that A and S are reciprocally continuous. Then since Ax, — t,
Sz, — t, by virtue of reciprocal continuity of A and S we get ASx,, — At
and SAx, — St. On the other hand compatibility of A and .S implies that
lirrln d(ASz,, SAz,) = 0, that is, At = St. Since AX C TX, there exists w

in X such that At = Tw. We show that St = At = Tw = Bw. If At # Bw
d(At, Bw) < k d(St,Tw) = 0,

a contradiction. Hence St = At = Tw = Bw. Since compatible maps
commute at their coincidence points, we get ASt = SAt and BTw = T Bw.
Moreover, AAt = ASt = SAt = S5t and BBw = BTw = TBw = TTw.
We claim that At is common fixed point of A and S. If not, by (ii) we get,

d(St, SSt) = d(At, AAt) = d(AAt, Bw)

< max{d(SAL Tw), | [HAAL SAY 2+ d(Bu, Tw)]

[d(AAt, Tw) 4+ d(Bw, S At)] )
2

= d(AAt, Ab),

a contradiction. Hence At = AAt = SAt and At is a common fixed point
of A and S. Similarly At = Bw is a common fixed point of B and T. The
proof is similar when B and T are assumed reciprocally continuous. This
completes the proof of the theorem. |

We now give and example to illustrate the above theorem.

Example 2. Let X = [2,20) and d be the usual metric on X. Define
A, B,Sand T : X — X by

A2 =2, Arx=3ifx > 2
Br=2ifx =2 or > 5, Brxr=6if2<x<5
S2=2, Sr=6ifzx>2
T2=2 Te=4if2<z<5 Te="5)ifz>5
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Then A, B, S and T satisfy the conditions of the above theorem and have
a unique common fixed point z = 2. Here AX = {2,3}, TX = [2,5),
BX = {2,6}, SX = {2,6}, thus AX C TX, BX C SX. Condition (i)
holds good for k = 2. It may be seen that the above example satisfies the
condition (ii) of Theorem 2. It may also be observed here that if z > 2,
it is not possible that Ax, — t, Sz, — t. However, at x = 2, Ax, —
2, Sz, — 2 implies that ¢ = 2. Thus {z,} is a sequence consisting of
only one term, that is, 2. Hence, Sz, = 2 = Ax,. Also, SAx, = ASx,
which implies that d(ASz,, SAz,) = 0. Thus (A4,S) are compatible and
reciprocally continuous. Further, let {z,} is a decreasing sequence such
that liTILnacn = 5. Then Bz, =2, Tz, — 2, TBx, = 2 and BTz, = 6, that

is, lim d(BTzy, T Bx,) = 4. Therefore, B and T' are noncompatible.
n

Remark 3. It is known since the paper of Kannan [8] in 1968 that there
exist maps that have a discontinuity in their domain but which have fixed
points. In 1988, Rhoades [24] posed an open problem - “Whether there exists
a contractive definition which is strong enough to generate a fixed point,
but which does not force the map to be continuous at the fixed point.” The
problem had remained open for more than one decade. Pant ([16], [17]) and
Pant et al ([15], [19]) have provided some solutions to this problem. In the
above theorems we have provided one more answer to this problem. It may
be observed that in the Examples above none of the mapping is continuous
at their common fixed point.

Acknowledgement. The authors are thankful to the referee for provid-
ing valuable suggestions to improve this paper.
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