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1. Introduction

In the study of various properties of solutions of differential and integral
equations the method of integral inequalities with explicit estimates is a
very powerful tool. Many authors have established explicit bounds on the
Volterra type integral inequalities

(1) u (x, y) ≤ f (x, y) +

x∫
0

y∫
0

k (x, y, s, t) u (s, t) dtds,

and used as tools in various applications (see [6,7]). Some initial boundary
value problems for partial differential equations of the parabolic type and
certain epidemic models (see [1-5]) are reducible to the integral equation of
the form

(2) u (x, t) = f (x, t) +

t∫
0

∫
G

k (x, t, y, s) u (y, s) dyds,

where G is a compact subset of Rn and f depends on the given initial
boundary conditions. The integral equation (2) appears to be Volterra type
in t, and of Fredholm type with respect to x and hence it can be viewed
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as a mixed Volterra-Fredholm type integral equation. It is easy to observe
that the bounds obtained on the integral inequalities of the form (1) are
not directly applicable to studying integral equations of the form (2). Mo-
tivated by the desire to apply integral inequalities which provide explicit
estimates on unknown functions to study various properties of solutions of
equations of the form (2), in the present paper we offer some basic mixed
Volterra-Fredholm type integral inequalities which can be used as powerful
tools for handling equations of the form (2). Some applications are also
given to convey the importance of our results to the literature.

2. Statement of results

Let R denote the set of real numbers, R+ = [0,∞) be the given sub-
set of R and B be a bounded domain in Rn, the n-dimensional Euclidean

space defined by B =
n∏

i=1
[ai, bi] (ai < bi). Let x = (x1, ..., xn) , (xi ∈ R) is a

variable point in B, dx = dx1...dxn and ′ the derivative of a function with
respect to t ∈ R+. For any continuous function z : B → R, we denote by∫
B

z (x) dx the n-fold integral
bn∫
an

...
b1∫
a1

z (x1, ..., xn) dx1...dxn. Let ∆ = B×R+

and denote by C (S1, S2) the class of continuous functions from the set S1

to the set S2.
Our main results on Volterra-Fredholm type integral inequalities are

given in the following theorems.

Theorem 1. Let u, p, q ∈ C (∆, R+) and L ∈ C (∆×R+, R+) be such
that

(3) 0 ≤ L (x, t, u)− L (x, t, v) ≤ M (x, t, v) (u− v) ,

for u ≥ v ≥ 0, where M ∈ C (∆×R+, R+). If

(4) u (x, t) ≤ p (x, t) + q (x, t)

t∫
0

∫
B

L (y, s, u (y, s)) dyds,

for (x, t) ∈ ∆, then

u (x, t) ≤ p (x, t) + q (x, t)

t∫
0

∫
B

L (y, s, p (y, s))(5)

× exp

 t∫
s

∫
B

M (z, τ, p (z, τ)) q (z, τ) dzdτ

 dyds,

for (x, t) ∈ ∆.
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As an immediate consequence of Theorem 1 when L (y, s, u (y, s)) =
f (y, s) u (y, s), we have the following corollary.

Corollary 1. Let u, p, q, f ∈ C (∆, R+). If

(6) u (x, t) ≤ p (x, t) + q (x, t)

t∫
0

∫
B

f (y, s) u (y, s) dyds,

for (x, t) ∈ ∆, then

u (x, t) ≤ p (x, t) + q (x, t)

t∫
0

∫
B

f (y, s) p (y, s)(7)

× exp

 t∫
s

∫
B

f (z, τ) q (z, τ) dzdτ

 dyds,

for (x, t) ∈ ∆.

Theorem 2. Let u, p, q, r, f, g ∈ C (∆, R+) and suppose that

u (x, t) ≤ p (x, t) + q (x, t)

t∫
0

∫
B

f (y, s) u (y, s) dyds(8)

+ r (x, t)

∞∫
0

∫
B

g (y, s) u (y, s) dyds,

for (x, t) ∈ ∆. If

(9) d =

∞∫
0

∫
B

g (y, s) K2 (y, s) dyds < 1,

then

(10) u (x, t) ≤ K1 (x, t) + DK2 (x, t) ,

for (x, t) ∈ ∆, where

K1 (x, t) = p (x, t) + q (x, t)

t∫
0

∫
B

f (y, s) p (y, s)(11)

× exp

 t∫
s

∫
B

f (z, τ) q (z, τ)dzdτ

 dyds,
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K2 (x, t) = r (x, t) + q (x, t)

t∫
0

∫
B

f (y, s) r (y, s)(12)

× exp

 t∫
s

∫
B

f (z, τ) q (z, τ)dzdτ

 dyds,

and

(13) D =
1

1− d

∞∫
0

∫
B

g (y, s) K1 (y, s) dyds.

By taking g = 0, it is easy to observe that the inequality in Theorem 2
reduces to the inequality obtained in Corollary 1. If we choose f = 0 in
Theorem 2, then we have the following corollary.

Corollary 2. Let u, p, r, g ∈ C (∆, R+) and suppose that

(14) u (x, t) ≤ p (x, t) + r (x, t)

∞∫
0

∫
B

g (y, s) u (y, s) dyds,

for (x, t) ∈ ∆. If

(15) d0 =

∞∫
0

∫
B

g (y, s) r (y, s) dyds < 1,

then

(16) u (x, t) ≤ p (x, t) + r (x, t)

 1
1− d0

∞∫
0

∫
B

g (y, s) p (y, s) dyds

 ,

for (x, t) ∈ ∆.

3. Proofs of Theorems 1 and 2

Introduce the notation

(17) e (s) =
∫
B

L (y, s, u (y, s)) dy.

Then the inequality (4) can be restated as

(18) u (x, t) ≤ p (x, t) + q (x, t)

t∫
0

e (s) ds,
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for (x, t) ∈ ∆. Define

(19) m (t) =

t∫
0

e (s) ds,

then m(0) = 0 and

(20) u (x, t) ≤ p (x, t) + q (x, t) m (t) .

From (19), (17), (20) and (3) we observe that

m′ (t) = e (t) =
∫
B

L (y, t, u (y, t)) dy(21)

≤
∫
B

L (y, t, p (y, t) + q (y, t) m (t)) dy

=
∫
B

{L (y, t, p (y, t) + q (y, t) m (t))

− L (y, t, p (y, t)) + L (y, t, p (y, t))} dy

≤
∫
B

M (y, t, p (y, t)) q (y, t) m (t) dy+
∫
B

L (y, t, p (y, t)) dy

= m (t)
∫
B

M (y, t, p (y, t)) q (y, t) dy+
∫
B

L (y, t, p (y, t)) dy.

The inequality (21) implies (see [6, Theorem 1.3.2])

m (t) ≤
t∫

0

∫
B

L (y, s, p (y, s))(22)

× exp

 t∫
s

∫
B

M (z, τ, p (z, τ)) q (z, τ)dzdτ

 dyds,

for (x, t) ∈ ∆. Using (22) in (20) we get the required inequality in (5). This
completes the proof of Theorem 1.

In order to prove Theorem 2, let

(23) w (t) =

t∫
0

∫
B

f (y, s) u (y, s) dyds,

(24) λ =

∞∫
0

∫
B

g (y, s) u (y, s) dyds.



68 Baburao G. Pachpatte

Then (8) can be restated as

(25) u (x, t) ≤ p (x, t) + q (x, t) w (t) + r (x, t) λ.

Introducing the notation

(26) E (s) =
∫
B

f (y, s) u (y, s) dy,

in (23) we get

(27) w (t) =

t∫
0

E (s) ds.

From (27) and (25) we have

w′ (t) = E (t) =
∫
B

f (y, t) u (y, t) dy(28)

≤
∫
B

f (y, t) [p (y, t) + q (y, t) w (t) + r (y, t) λ] dy

= w (t)
∫
B

f (y, t) q (y, t) dy +
∫
B

f (y, t) [p (y, t) + r (y, t) λ] dy.

The inequality (28) implies (see [6, Theorem 1.3.2])

w (t) ≤
t∫

0

∫
B

f (y, s) [p (y, s) + r (y, s) λ](29)

× exp

 t∫
s

∫
B

f (z, τ) q (z, τ) dzdτ

 dyds

=

t∫
0

∫
B

f (y, s) p (y, s) exp

 t∫
s

∫
B

f (z, τ) q (z, τ) dzdτ

 dyds

+ λ

t∫
0

∫
B

f (y, s) r (y, s) exp

 t∫
s

∫
B

f (z, τ) q (z, τ) dzdτ

 dyds.
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From (25) and (29) we get

u (x, t) ≤ p (x, t)(30)

+ q (x, t)


t∫

0

∫
B

f (y, s) p (y, s) exp

 t∫
s

∫
B

f (z, τ) q (z, τ) dzdτ

 dyds

+ λ

t∫
0

∫
B

f (y, s) r (y, s) exp

 t∫
s

∫
B

f (z, τ) q (z, τ) dzdτ

 dyds


+ r (x, t) λ = K1 (x, t) + λK2 (x, t) .

From (24) and (30) we observe that

λ =

∞∫
0

∫
B

g (y, s) u (y, s) dyds

≤
∞∫
0

∫
B

g (y, s) [K1 (y, s) + λK2 (y, s)] dyds,

which implies

(31) λ ≤ D.

Using (31) in (30) we get (10) and the proof of Theorem 2 is complete.

4. Some applications

Consider the following mixed Volterra-Fredholm type integral equation

(32) u (x, t) = h (x, t) +

t∫
0

∫
B

F (x, t, y, s, u (y, s)) dyds,

for (x, t) ∈ ∆, where h ∈ C (∆, R), F ∈ C
(
∆2 ×R,R

)
, which occur in a

natural way in a wide variety of applications (see [1-5,10]). For the existence
and uniqueness of solutions of equation (32), see [8]. In this section we apply
the inequality established in Corollary 1 to obtain explicit estimates on the
solution of equation (32).

Theorem 3. Suppose that the function F in equation (32) satisfies the
condition

(33) |F (x, t, y, s, u)| ≤ q (x, t) f (y, s) |u| ,
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where q, f ∈ C (∆, R+). If u(x, t) is any solution of equation (32) on ∆,
then

|u (x, t)| ≤ |h (x, t)|+ q (x, t)

t∫
0

∫
B

f (y, s) |h (y, s)|(34)

× exp

 t∫
s

∫
B

f (z, τ) q (z, τ) dzdτ

 dyds,

for (x, t) ∈ ∆.

Proof. Let u ∈ C (∆, R) be a solution of equation (32). Then from the
hypotheses, we have

|u (x, t)| ≤ |h (x, t)|+
t∫

0

∫
B

|F (x, t, y, s, u (y, s))| dyds(35)

≤ |h (x, t)|+ q (x, t)

t∫
0

∫
B

f (y, s) |u (y, s)| dyds.

Now an application of Corollary 1 to (35) gives the desired estimate
in (34). �

The following theorem deals with a slight variant of Theorem 3, assuming
that the function F in equation (32) satisfies Lipschitz type condition.

Theorem 4. Suppose that the function F in equation (32) satisfies the
condition

(36) |F (x, t, y, s, u)− F (x, t, y, s, v)| ≤ q (x, t) f (y, s) |u− v| ,

where q, f ∈ C (∆, R+). If u(x, t) is any solution of equation (32) on ∆,
then

|u (x, t)− h (x, t)| ≤ k (x, t) + q (x, t)

t∫
0

∫
B

f (y, s) k (y, s)(37)

× exp

 t∫
s

∫
B

f (z, τ) q (z, τ) dzdτ

 dyds,

for (x, t) ∈ ∆, where

(38) k (x, t) =

t∫
0

∫
B

|F (x, t, y, s, h (y, s))| dyds,

for (x, t) ∈ ∆.
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Proof. Let u ∈ C (∆, R) be a solution of equation (32). Then from the
hypotheses, we have

|u (x, t)− h (x, t)| ≤
t∫

0

∫
B

|F (x, t, y, s, u (y, s))| dyds(39)

≤
t∫

0

∫
B

|F (x, t, y, s, u (y, s))− F (x, t, y, s, h (y, s))| dyds

+

t∫
0

∫
B

|F (x, t, y, s, h (y, s))| dyds

≤ k (x, t) + q (x, t)

t∫
0

∫
B

f (y, s) |u (y, s)− h (y, s)| dyds,

for (x, t) ∈ ∆. Now an application of Corollary 1 to (39) gives the required
estimate in (37). �

We note that the inequality given in Theorem 2 can be used to establish
similar results as in Theorems 3 and 4 given above for the following general
mixed Volterra-Fredholm type integral equation

u (x, t) = h (x, t) +

t∫
0

∫
B

F (x, t, y, s, u (y, s)) dyds(40)

+

∞∫
0

∫
B

G (x, t, y, s, u (y, s)) dyds,

for (x, t) ∈ ∆, where h ∈ C (∆, R), F,G ∈ C
(
∆2 ×R,R

)
. Moreover,

Corollary 1 and Theorem 2 can be used to establish results on the continuous
dependence of solutions of equations (32), (40) by closely looking at the
results recently given in [9]. Here, we omit the details.
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