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1. Introduction and preliminaries

In paper [8], Kasahara had shown that if an iterated sequence defined by
using a continuous linear mapping is convergent under certain assumptions,
then the limit point is a common fixed point of each of two non-linear map-
pings. Ganguly [6] arrived at the same conclusion under the same contractive
definition by taking the sequence of Mann iterates [9]. In this paper, our
attempt is to place the random version of Ganguly’s result. The study of
random fixed points has been an active area of contemporary research in
Mathematics. Random iteration scheme has been elaborately discussed by
Choudhury ([1], [2], [3], [4]). Looking to the immense applications of itera-
tive algorithms in signal processing and image reconstruction, it is essential
to venture upon random iteration.

We first review the following concepts, which are essential for our study
in this paper.

Throughout this paper, (Ω,Σ) denotes a measurable space and X stands
for a separable Banach space. C is a non-empty subset of X.

A mapping f : Ω → C is said to be measurable if f−1(B ∩ C) ∈ Σ for
every Borel subset B of X.

A mapping F : Ω × C → C is said to be a random operator, if F (., x) :
Ω → C is measurable for every x ∈ C.
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A measurable mapping g : Ω → C is said to be a random fixed point of
the random operator F : Ω× C → C, if F (t, g(t)) = g(t) for all t ∈ Ω.

A random operator F : Ω× C → C is said to be continuous if, for fixed
t ∈ Ω, F (t, .) : C → C is continuous.

Definition 1 (Random Mann iteration Scheme). Let S, T : Ω×C →
C be two operators on a non-empty convex subset C of a separable Banach
space X. Then the sequence {xn} of random Mann iterates associated with
S or T is defined as follows:

(1) Let x0 : Ω → C be any given measurable mapping.

(2) xn+1(t) = (1− cn)xn(t) + cnS(t, xn(t)) for n > 0, t ∈ Ω

or

(3) xn+1(t) = (1− cn)xn(t) + cnT (t, xn(t)) for n > 0, t ∈ Ω

where cn satisfies:

(4) c0 = 1 for n = 0,

(5) 0 < cn ≤ 1 for n > 0,

(6) lim
n

cn = h > 0.

Since C is convex it follows from the above construction that xn is a
mapping from Ω to C for all n = 0, 1, 2, . . .

2. Main result

Theorem 1. Let S, T : Ω×C → C, where C is a nonempty closed convex
subset of a separable Banach space X, be two continuous random operators
which satisfy the following inequality: for all x, y ∈ C and t ∈ Ω

‖S(t, x)− T (t, y)‖ ≤ α max {β‖x− y‖, ‖x− S(t, x)‖, ‖y − T (t, y)‖,(7)
‖x− T (t, y)‖, ‖y − S(t, x)‖}

where α, β ≥ 0, 0 ≤ α < 1.
If the sequence {xn} of random Mann iterates associated with S or T

satisfying (1)-(6) converges, then it converges to a common random fixed
point of both S and T .
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Proof. We may assume that the sequence {xn} defined by (2) is point-
wise convergent, that is, for all t ∈ Ω,

(8) x(t) = lim
n→∞

xn(t).

Since X is a separable Banach space, for any continuous random operator
A : Ω × C → C and any measurable mapping f : Ω → C, the mapping
x(t) = A(t, f(t)) is a measurable mapping [7].

Since x(t) is measurable and C is convex, it follows that {xn} constructed
in the random iteration from (2)-(6) is a sequence of measurable mappings.
Hence, x : Ω → C being limit of measurable mapping sequence is also
measurable. For t ∈ Ω, from (2) it follows that

‖x(t)− T (t, x(t))‖ ≤ ‖x(t)− xn+1(t)‖+ ‖xn+1(t)− T (t, x(t))‖(9)
≤ ‖x(t)− xn+1(t)‖+ (1− cn)‖xn(t)− T (t, x(t))‖

+ cn‖S(t, xn(t))− T (t, x(t))‖
≤ ‖x(t)− xn+1(t)‖+ ‖(1− cn)xn(t) + cnS(t, x(t))− T (t, x(t))‖
≤ ‖x(t)− xn+1(t)‖+ (1− cn)‖xn(t)− T (t, x(t))‖

+ cn‖S(t, xn(t))− T (t, x(t))‖
≤ ‖x(t)− xn+1(t)‖+ (1− h)‖xn(t)− T (t, x(t))‖

+ cn α max {β‖xn(t)− x(t)‖, ‖xn(t)− S(t, xn(t))‖,
‖x(t)− T (t, x(t))‖, ‖xn(t)− T (t, x(t))‖, ‖x(t)− S(t, xn(t))‖},

by equations (6) and (7).
Now,

cn(S(t, xn(t))− xn(t)) = cn S(t, xn(t))− cnxn(t) = xn+1(t)− xn(t)

by (2), so that

‖S(t, xn(t))− xn(t)‖ ≤ 1
cn
‖xn+1(t)− xn(t)‖.

This shows that for t ∈ Ω, S(t, xn(t))− xn(t) → 0 and so S(t, xn(t)) → x(t)
as n → ∞, as S is a continuous random operator and x is a measurable
mapping. Consequently from (9) on taking the limit as n →∞, we obtain

‖x(t)− T (t, x(t))‖ ≤ (1− h)‖x(t)− T (t, x(t))‖
+ cnα max{0, 0, ‖x(t)− T (t, x(t))‖, ‖x(t)− T (t, x(t))‖, 0}
≤ (1− h + hα)‖x(t)− T (t, x(t))‖,
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which implies T (t, x(t)) = x(t) for all t ∈ Ω , as T is a continuous random
operator and x is measurable. Therefore,

‖S(t, x(t))− x(t)‖ = ‖S(t, x(t))− T (t, x(t))‖
≤ α max{ β ‖x(t)− x(t)‖, ‖x(t)− S(t, x(t))‖,

‖x(t)− T (t, x(t))‖, ‖x(t)− T (t, x(t))‖, ‖x(t)− S(t, x(t))‖}
≤ α max{0, ‖x(t)− S(t, x(t))‖, 0, 0, ‖x(t)− S(t, x(t))‖}.

Since α < 1, it follows that for all t ∈ Ω, and x is measurable, S(t, x(t)) =
x(t), which proves the theorem. �

Remark. In the deterministic case:
1. Our theorem gives the result of Ganguly [6].
2. For S = T with cn = t, 0 < t < 1, our result gives Theorem 3 of Ciric [5].
3. It extends Theorem 1 of Rhodes [9].

Open problem. The random Mann iteration will not in general be
convergent for an arbitrary closed convex set. It will be interesting to find
the type of subsets C for which the theorem is valid. Further in that case
measurable perturbative effects on the random iteration may be investigated.
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