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1. Introduction

In the paper [30] we demonstrate a Voronovskaja-type theorem and ap-
proximation theorem for a class of GBS operators associated to the linear
positive operators which have the form(

Lδ
mf
)

(x, y) =
pm∑
k=0

(δϕm,k(x) + (1− δ)ϕm,k(y))A∗m,k(f).

In this paper we study the same thing for the linear positive operators which
have the form(

L∗m,nf
)
(x, y) =

pm∑
k=0

pn∑
j=0

ϕm,k(x)ϕn,j(y)Am,n,k,j(f).

In this section, we recall some notions and results which we will use in
this paper.

Let N be the set of positive integers and N0 = N∪ {0}. For the following
construction see [20].
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Define the natural number m0 by

(1) m0 =

{
max{1,−[β]}, if β ∈ R\Z
max{1, 1− β}, if β ∈ Z.

For the real number β, we have that

(2) m+ β ≥ γβ

for any natural number m, m ≥ m0, where

(3) γβ = m0 + β =

{
max

{
1 + β, {β}

}
, if β ∈ R\Z

max{1 + β, 1}, if β ∈ Z.

For the real numbers α, β, α ≥ 0, we note

(4) µ(α,β) =


1, if α ≤ β

1 +
α− β

γβ
, if α > β.

For the real numbers α and β, α ≥ 0, we have that 1 ≤ µ(α,β) and

(5) 0 ≤ k + α

m+ β
≤ µ(α,β)

for any natural number m, m ≥ m0 and for any k ∈ {0, 1, . . . ,m}.
For the real numbers α and β, α ≥ 0, m0 and µ(α,β) defined by (1) - (4),

let the operators P (α,β)
m : C

(
[0, µ(α,β)]

)
→ C

(
[0, 1]

)
, defined for any function

f ∈ C
(
[0, µ(α,β)]

)
by

(6)
(
P (α,β)

m f
)
(x) =

m∑
k=0

pm,k(x)f
(
k + α

m+ β

)
,

for any natural number m,m ≥ m0 and any x ∈ [0, 1].
These operators are named Stancu operators, introduced and studied in

1969 by D. D. Stancu in the paper [32]. In [32], the domain of definition
of the Stancu operators is C([0, 1]) and the numbers α and β verify the
condition 0 ≤ α ≤ β.

The fundamental polynomials of Bernstein are defined as follows

(7) pm,k(x) =
(
m

k

)
xk(1− x)m−k

for any x ∈ [0, 1], m ∈ N and k ∈ {0, 1, . . . ,m}.
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If α = β = 0, then we obtained the Bernstein operators (see [5] or [33]).
If p ∈ N0, α = 0, β = −p, replace m by m + p, then γβ = γ−p = 1,

µ(α,β) = µ(0,−p) = 1 + p and then we obtain the Schurer operators (see [31]
or [33]).

For m ∈ N, let the operators Mn : L1([0, 1]) → C([0, 1]) defined for any
function f ∈ L1([0, 1]) by

(8) (Mmf)(x) = (m+ 1)
m∑

k=0

pm,k(x)

1∫
0

pm,k(t)f(t)dt,

for any x ∈ [0, 1].
These operators were introduced in 1967 by J. L. Durrmeyer in [11] and

were studied in 1981 by M. M. Derriennic in [9]. The operators Mm, m ∈ N
are named Durrmeyer operators.

For m ∈ N, let the operators Km : L1([0, 1]) → C([0, 1]) defined for any
function f ∈ L1([0, 1]) by

(9) (Kmf)(x) = (m+ 1)
m∑

k=0

pm,k(x)

k+1
m+1∫
k

m+1

f(t)dt,

for any x ∈ [0, 1].
The operators Km, where m ∈ N, are named Kantorovich operators,

introduced and studied in 1930 by L. V. Kantorovich (see [14] or [33]).
In 1980, G. Bleimann, P. L. Butzer and L. Hahn introduced in [7] a se-

quence of linear positive operators (Lm)m≥1, Lm : CB([0,∞)) → CB([0,∞)),
defined for any function f ∈ CB([0,∞)) by

(10) (Lmf)(x) =
1

(1 + x)m

m∑
k=0

(
m

k

)
xkf

(
k

m+ 1− k

)
,

for any x ∈ [0,∞) and m ∈ N, where CB([0,∞)) = {f | f : [0,∞) → R, f
bounded and continuous on [0,∞)}.

Let m ∈ N and the operators Sm : C2([0,∞)) → C([0,∞)) defined for
any function f ∈ C2([0,∞)) by

(11) (Smf)(x) = e−mx
∞∑

k=0

(mx)k

k!
f

(
k

m

)

for any x ∈ [0,∞), where C2([0,∞)) =
{
f ∈ C([0,∞)) : lim

x→∞

f(x)
1 + x2

exists

and is finite
}

. The oprators (Sm)m≥1 are named Mirakjan-Favard-Szász
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operators, introduced in 1941 by G. M. Mirakjan in the paper [18]. These
operators are intensive studied by J. Favard in 1944 in the paper [12] and
O. Szász in 1950 in the paper [34].

Let m ∈ N and the operators Vm : C2([0,∞)) → C([0,∞)) defined for
any function f ∈ C2([0,∞)) by

(12) (Vmf)(x) = (1 + x)−m
∞∑

k=0

(
m+ k − 1

k

)(
x

1 + x

)k

f

(
k

m

)
for any x ∈ [0,∞). The operators (Vm)m≥1 are named Baskakov operators,
introduced in 1957 by V. A. Baskakov in the paper [3].

W. Meyer-König and K. Zeller have introduced in [17] a sequence of linear
and positive operators. After a slight adjustment given by E. W. Cheney and
A. Sharma in [8], these operators take the form Zm : B([0, 1)) → C([0, 1)),
defined for any function f ∈ B([0, 1)) by

(13) (Zmf)(x) =
∞∑

k=0

(
m+ k

k

)
(1− x)m+1xkf

(
k

m+ k

)
,

for any x ∈ [0, 1) and m ∈ N.
These operators are named Meyer-König and Zeller operators. Observe

that we can consider Zm : C([0, 1]) → C([0, 1]), m ∈ N.
In the paper [13], M. Ismail and C. P. May consider the operators (Rm)m≥1.

For m ∈ N, Rm : C([0,∞)) → C([0,∞)) is defined for any function
f ∈ C([0,∞)) by

(14) (Rmf)(x) = e−
mx
1+x

∞∑
k=0

m(m+ k)k−1

k!

(
x

1 + x

)k

e−
kx

1+x f

(
k

m

)
,

for any x ∈ [0,∞).
We consider I ⊂ R, I an interval and we shall use the function sets:

B(I) = {f |f : I → R, f bounded on I}, C(I) = {f |f : I → R, f continuous
on I} and CB(I) = B(I)∩C(I). For any x ∈ I, let the function ψx : I → R,
ψx(t) = t− x, for any t ∈ I.

If I ⊂ R is a given interval and f ∈ B(I), then the first order modulus
of smoothness of f is the function ω(f ; ·) : [0,∞) → R defined for any δ ≥ 0
by

(15) ω(f ; δ) = sup
{
|f(x′)− f(x′′)| : x′, x′ ∈ I, |x′ − x′′| ≤ δ

}
.

Let I, J ⊂ R intervals, E(I × J), F (I × J) which are subsets of the set
of real functions defined on I × J and L : E(I × J) → F (I × J) be a linear
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positive operator. The operator UL : E(I × J) → F (I × J) defined for any
function f ∈ E(I × J), any (x, y) ∈ I × J by

(16) (ULf)(x, y) = L (f(x, ∗) + f(·, y)− f(·, ∗)) (x, y)

is called GBS operator (”Generalized Boolean Sum” operator) associated to
the operator L, where ”·” and ”∗” stand for the first and second variable
(see [2]).

If f ∈ E(I × J) and (x, y) ∈ I × J , let the functions fx = f(x, ∗),
fy = f(·, y) : I × J → R, fx(s, t) = f(x, t), fy(s, t) = f(s, y) for any
(s, t) ∈ I × J . Then, we can consider that fx, fy are functions of real
variable, fx : J → R, fx(t) = f(x, t) for any t ∈ J and fy : I → R,
fy(s) = fy(s, y) for any s ∈ I.

Let I1, I2 ⊂ R be given intervals and f : I1 × I2 → R be a bounded
function. The function ωtotal(f ; · , ∗) : [0,∞)× [0,∞) → R, defined for any
(δ1, δ2) ∈ [0,∞)× [0,∞) by

ωtotal(f ; δ1, δ2) = sup
{
|f(x, y)− f(x′, y′)| : (x, y), (x′, y′) ∈ I1 × I2,(17)
|x− x′| ≤ δ1, |y − y′| ≤ δ2

}
is called the first order modulus of smoothness of function f or total modulus
of continuity of function f (see [35]).

The first order modulus of smoothness for bivariate functions has proper-
ties similar to the properties of the first modulus of smoothness for univariate
functions.

2. Preliminaries

For the following construction and results see [25], [29] and [30], where
pm = m for any m ∈ N or pm = ∞ for any m ∈ N.

Let I, J ⊂ R be intervals with I ∩ J 6= ∅. For any m ∈ N and
k ∈ {0, 1, ..., pm} ∩ N0 consider the functions ϕm,k : J → R with the pro-
perty that ϕm,k(x) ≥ 0 for any x ∈ J and the linear positive functionals
Am,k : E(I) → R.

Definition 1. For m ∈ N define the operator Lm : E(I) → F (J) by

(18) (Lmf)(x) =
pm∑
k=0

ϕm,k(x)Am,k(f),

for any f ∈ E(I) and x ∈ J , where E(I) and F (J) are subsets of the set of
real functions defined on I and J , respectively.

Proposition 1. The Lm, m ∈ N operators are linear and positive on
E(I ∩ J).
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Definition 2. For m ∈ N and i ∈ N0, define T ∗m,i by

(19)
(
T ∗m,iLm

)
(x) = mi

(
Lmψ

i
x

)
(x) = mi

pm∑
k=0

ϕm,k(x)Am,k(ψi
x),

for any x ∈ I ∩ J .

In the following let s ∈ N0, s even and we suppose that the operators
(Lm)m≥1 verify the conditions: there exists, the smallest αj ∈ [0,∞) so that

(20) lim
m→∞

(
T ∗m,jLm

)
(x)

mαj
= Bj (x) ∈ R,

for any x ∈ I ∩ J , j ∈ {0, 2, 4, . . . , s+ 2} and

(21)


αs−2l + α2l − αs ≤ 0

αs−2l+2 + α2l − αs − 2 < 0

αs−2l+2 + α2l+2 − αs − 4 < 0

where l ∈
{

0, 1, 2, . . . ,
s

2

}
.

Remark 1. From the first and second relation from (21), for l = 0 it
results that

(22) α0 = 0

and

(23) αs+2 < αs + 2.

For m,n ∈ N, let the linear positive functionals Am,n,k,j : E(I × I) → R
with the properties

(24) Am,n,k,j

(
(· − x)i(∗ − y)l

)
= Am,k

(
(· − x)i

)
An,j

(
(∗ − y)l

)
,

(25) Am,n,k,j(fx) = An,j(fx)

and

(26) Am,n,k,j(fy) = Am,k(fy),

for any x, y ∈ I, k ∈ {0, 1, . . . , pm} ∩ N0, j ∈ {0, 1, . . . , pn} ∩ N0 and i, l ∈
{0, 1, . . . , s}, where ” · ” and ” ∗ ” stand for the first and second variable.
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Remark 2. In this paper pm, pn are simultaneous finite or infinite, where
m,n ∈ N.

Definition 3. Let m,n ∈ N. The operator L∗m,n : E(I × I) → F (J × J)
defined for any function f ∈ E(I × I) and any (x, y) ∈ J × J by

(27)
(
L∗m,nf

)
(x, y) =

pm∑
k=0

pn∑
j=0

ϕm,k(x)ϕn,j(y)Am,n,k,j(f)

is named the bivariate operator of L-type.

Proposition 2. The operators
(
L∗m,n

)
m,n≥1

are linear and positive on
E ((I × I) ∩ (J × J)).

In the following, we consider that

(28)
(
T ∗m,0Lm

)
(x) = Am,k(e0) = 1,

for any m ∈ N and k ∈ {0, 1, . . . , pm} ∩ N0, where e0 : I → R, e0(x) = 1 for
any x ∈ I. From (28) it results immediately that

(29)
pm∑
k=0

ϕm,k(x) = 1

for any x ∈ I and m ∈ N.
In [30] are given the following results.

Theorem 1. Let f : I → R be a function. If x ∈ I ∩ J and f is a s
times differentiable in x with f (s) continuous in x, then

(30) lim
m→∞

ms−αs

[
(Lmf)(x)−

s∑
i=0

f (i)(x)
mii!

(
T ∗m,iLm

)
(x)

]
= 0.

Assume that f is s times differentiable function on I, with f (s) continuous
on I and there exists an interval K ⊂ I ∩ J such that there exist m(s) ∈ N
and kj ∈ R depending on K, so that for any m ≥ m(s) and any x ∈ K we
have

(31)

(
T ∗m,jLm

)
(x)

mαj
≤ kj

where j ∈ {s, s + 2}. Then the convergence given in (30) is uniform on K
and

ms−αs

∣∣∣∣(Lmf)(x)−
s∑

i=0

f (i)(x)
mii!

(
T ∗m,iLm

)
(x)
∣∣∣∣ ≤(32)

≤ 1
s!

(ks + ks+2)ω
(
f (s);

1√
m2+αs−αs+2

)
for any x ∈ K and m ≥ m(s).



98 Ovidiu T. Pop

Remark 3. From (29) it results that k0 = 1.

Theorem 2. Let f : I → R be a function. If x ∈ I ∩ J and f is
continuous in x, then

(33) lim
m→∞

(Lmf)(x) = f(x).

Assume that f is continuous on I and there exists an interval K ⊂ I ∩ J
such that there exist m(0) ∈ N and k2 ∈ R depending on K, so that for any
m ≥ m(0) and any x ∈ K we have

(34)

(
T ∗m,2Lm

)
(x)

mα2
≤ k2.

Then the convergence given in (33) is uniform on K and

(35) |(Lmf)(x)− f(x)| ≤ (1 + k2)ω
(
f ;

1√
m2−α2

)
for any x ∈ K and any m ∈ N, m ≥ m(0).

For the following results, see the paper [25] and [29].

Theorem 3. Let f : I × I → R be a bivariate function. If (x, y) ∈
(I × I) ∩ (J × J) and f admits partial derivatives of order s continuous in
a neighborhood of the point (x, y), then

lim
m→∞

ms−αs

[ (
L∗m,mf

)
(x, y)−(36)

−
s∑

i=0

1
mii!

i∑
l=0

(
i

l

)
∂if

∂ti−l∂τ l
(x, y)

(
T ∗m,i−lL

∗
m

)
(x)
(
T ∗m,lL

∗
m

)
(y)
]
=0.

If f admits partial derivatives of order s continuous on (I × I) ∩ (J × J)
and there exists an interval K ⊂ I ∩ J such that there exist m(s) ∈ N and
k2l ∈ R depending on K, so that for any m ∈ N, m ≥ m(s) and any x ∈ K
we have

(37)

(
T ∗m,2lL

∗
m

)
(x)

mα2l
≤ k2l

where l ∈
{

0, 1, . . . ,
s

2
+ 1
}

, then the convergence given in (36) is uniform

on K ×K and

ms−αs

∣∣∣∣ (L∗m,mf
)
(x, y)−(38)

−
s∑

i=0

1
mii!

i∑
l=0

(
i

l

)
∂if

∂ti−l∂τ l
(x, y)

(
T ∗m,i−lLm

)
(x)
(
T ∗m,lLm

)
(y)
∣∣∣∣
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≤ 1
s!

s
2∑

l=0

( s
2

l

)
(k2l + k2l+2) (ks−2l + ks−2l+2)

×
s∑

i=0

(
s

i

)
ωtotal

(
∂sf

∂ts−i∂τ i
;

1√
mβs

,
1√
mβs

)

for any (x, y) ∈ K ×K, any m ∈ N, m ≥ m(s), where

βs =−max
{
αs−2l+2+α2l−αs−2,

1
2
(αs−2l+2+α2l+2−αs−4) : l∈

{
0, 1, ...,

s

2

}}
.

Theorem 4. Let f : I × I → R be a bivariate function. If (x, y) ∈
(I × I) ∩ (J × J) and f is continuous in (x, y), then

(39) lim
m→∞

(
L∗m,mf

)
(x, y) = f(x, y).

If f is continuous on (I×I)∩ (J×J) and there exists an interval K ⊂ I ∩J
such that there exist m(0) ∈ N and k2 ∈ R depending on K so that for any
m ∈ N, m ≥ m(0) and any x ∈ K we have

(40)

(
T ∗m,2Lm

)
(x)

mα2
≤ k2,

then the convergence given in (39) is uniform on K ×K and

(41)
∣∣(L∗m,mf

)
(x, y)−f(x, y)

∣∣≤(1 + k2)2ωtotal

(
f ;

1√
m2−α2

,
1√

m2−α2

)
,

for any (x, y) ∈ K ×K, any natural number m, m ≥ m(0).

3. Main results

In this section, we study the GBS operators
(
UL∗m,n

)
m,n≥1

associated to
the

(
L∗m,n

)
m,n≥1

operators.

Lemma. If m,n ∈ N, then UL∗m,n : E(I × I) → F (J × J) have the form

(42)
(
UL∗m,nf

)
(x, y) = (Lnfx)(y) + (Lmf

y)(x)−
(
L∗m,nf

)
(x, y)

for any (x, y) ∈ J × J , any f ∈ E(I × I).
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Proof. We have(
UL∗m,nf

)
(x, y) =

(
L∗m,n(f(x, ∗) + f(·, y)− f(·, ∗)

)
(x, y)

=
(
L∗m,nf(x, ∗)

)
(x, y)+

(
L∗m,nf(·, y)

)
(x, y)−

(
L∗m,nf

)
(x, y)

=
pm∑
k=0

pn∑
j=0

ϕm,k(x)ϕn,j(y)Am,n,k,j(fx)

+
pm∑
k=0

pn∑
j=0

ϕm,k(x)ϕn,j(y)Am,n,k,j(fy)−
(
L∗m,nf

)
(x, y)

and taking (25), (26) into account, we obtain

(
UL∗m,nf

)
(x, y) =

pm∑
k=0

pn∑
j=0

ϕm,k(x)ϕn,j(y)An,j(fx)

+
pm∑
k=0

pn∑
j=0

ϕm,k(x)ϕn,j(y)Am,k(fy)−
(
L∗m,nf

)
(x, y)

=

(
pm∑
k=0

ϕm,k(x)

) pn∑
j=0

ϕn,j(y)An,j(fx)


+

(
pm∑
k=0

ϕm,k(x)Am,k(fy)

) pn∑
j=0

ϕn,j(y)

− (L∗m,nf
)
(x, y).

From (18) and (29), the relation (42) is obtained. �

Theorem 5. Let f : I × I → R be a bivariate function. If (x, y) ∈
(I × I) ∩ (J × J) and f admits partial derivatives of order s continuous in
a neighborhood of the point (x, y), then

lim
m→∞

ms−αs

{(
UL∗m,mf

)
(x, y)(43)

−
s∑

i=0

1
mii!

[(
∂if

∂τ i
(x, y)

(
T ∗m,iLm

)
(y) +

∂if

∂ti
(x, y)

(
T ∗m,iLm

)
(x)

)

−
i∑

l=0

(
i

l

)
∂if

∂ti−l∂τ l
(x, y)

(
T ∗m,i−lLm

)
(x)
(
T ∗m,lLm

)
(y)

]}
= 0.

If f admits partial derivatives of order s continuous on (I × I) ∩ (J × J)
and there exists an interval K ⊂ I ∩ J such that there exist m(s) ∈ N and
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k2l ∈ R depending on K, so that for any m ∈ N, m ≥ m(s) and any x ∈ K
we have

(44)

(
T ∗m,2lLm

)
(x)

mα2l
≤ k2l,

where l ∈
{

0, 1, . . . ,
s

2
+ 1
}
, then the convergence given in (43) is uniform

on K ×K and

ms−αs

∣∣∣∣∣(UL∗m,mf)(x, y)

(45)

−
s∑

i=0

1
mii!

[
∂if

∂τ i
(x, y)(T ∗m,iLm)(y) +

∂if

∂ti
(x, y)(T ∗m,iLm)(x)−

−
i∑

l=0

(
i

l

)
∂if

∂ti−l∂τ i
(x, y)(T ∗m,i−lLm)(x)(T ∗m,lLm)(y)

]∣∣∣∣∣
≤ 1
s!

{
(ks+ks+2)

[
ω

(
∂sfx

∂τ s
;

1√
m2+αs−αs+2

)

+ ω

(
∂sfy

∂ts
;

1√
m2+αs−αs+2

)]

+

s
2∑

l=0

( s
2

l

)
(k2l + k2l+2)(ks−2l + ks−2l+2)

s∑
i=0

(
s

i

)

× ωtotal

(
∂sf

∂ts−i∂τ i

1√
mβs

,
1√
mβs

)}

≤ 1
s!

{
(ks + ks+2)

[
ω

(
∂sfx

∂τ s
;

1√
mβs

)
+ω

(
∂sfy

∂ts
;

1√
mβs

)]

+

s
2∑

l=0

( s
2

l

)
(k2l + k2l+2)(ks−2l + ks−2l+2)

s∑
i=0

(
s

i

)

× ωtotal

(
∂sf

∂ts−i∂τ i
;

1√
mβs

,
1√
mβs

)}
for any (x, y) ∈ K ×K, any m ∈ N, m ≥ m(s), where

βs =−max

{
αs−2l+2+α2l−αs−2,

1
2
(αs−2l+2+α2l+2−αs−4) : l∈

{
0, 1, ...,

s

2

}}
.
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Proof. We use the (30) relation from Theorem 1 for the functions fx

and fy, the (36) relation from Theorem 3 for the function f and then we
obtain the (43) relation. If we note by S the left member of (43) relation,
we can write

S = ms−αs

∣∣∣∣∣
[
(Lmfx)(y)−

s∑
i=0

1
mii!

∂if

∂τ i
(x, y)

(
T ∗m,iLm

)
(y)

]

+

[
(Lmf

y)(x)−
s∑

i=0

1
mii!

∂if

∂ti
(x, y)

(
T ∗m,iLm

)
(x)

]

+

[
s∑

i=0

1
mii!

i∑
l=0

(
i

l

)
∂if

∂ti−l∂τ l
(x, y)

(
T ∗m,i−lLm

)
(x)
(
T ∗m,lLm

)
(y)

−
(
L∗m,mf

)
(x, y)

]∣∣∣∣∣
≤ms−αs

∣∣∣∣∣(Lmfx) (y)−
s∑

i=0

1
mii!

∂if

∂τ i
(x, y)

(
T ∗m,iLm

)
(y)

∣∣∣∣∣
+ms−αs

∣∣∣∣∣(Lmf
y)(x)−

s∑
i=0

1
mii!

∂if

∂ti
(x, y)

(
T ∗m,iLm

)
(x)

∣∣∣∣∣
+ms−αs

∣∣∣∣∣ (L∗m,mf
)
(x, y)−

s∑
i=0

1
mii!

i∑
l=0

(
i

l

)
∂if

∂ti−l∂τ l
(x, y)

×
(
T ∗m,i−lLm

)
(x)
(
T ∗m,lLm

)
(y)

∣∣∣∣∣
and taking (32), (38) relations into account we obtain the first inequality
from (45). From hypothesis βs ≥ −(αs−2l+2 + α2l − αs − 2) and if l = 0
we obtain that βs ≥ αs + 2 − αs+2. From the increasing monotony of the
function ω, the second inequality from (45) results. From (45) the uniform
convergence for (43) results. �

Corollary 1. Let f : I × I → R be a bivariate function. If (x, y) ∈
(I × I) ∩ (J × J) and f is continuous in (x, y), then

(46) lim
m→∞

(
UL∗m,mf

)
(x, y) = f(x, y).

Assume that f is continuous on (I×I)∩ (J×J) and there exists an interval
K ⊂ I ∩ J such that there exist m(0) ∈ N and k2 ∈ R depending on K so
that for any m ∈ N, m ≥ m(0) and any x ∈ K we have

(47)

(
T ∗m,2Lm

)
(x)

mα2
≤ k2.
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Then the convergence given in (46) is uniform on K ×K and∣∣(UL∗m,mf
)
(x, y)− f(x, y)

∣∣(48)

≤ (1 + k2)
[
ω

(
fx;

1√
m2−α2

)
+ ω

(
fy;

1√
m2−α2

)]
+ (1 + k2)2ωtotal

(
f ;

1√
m2−α2

,
1√

m2−α2

)
,

for any (x, y) ∈ K ×K and any m ∈ N, m ≥ m(0).

Proof. It results from Theorem 5 for s = 0 or from Theorem 2 and
Theorem 4. �

Corollary 2. Let f : I × I → R be a bivariate function. If (x, y) ∈
(I× I)∩ (J×J) and f admits partial derivatives of second order continuous
in a neighborhood of the point (x, y), then

lim
m→∞

m2−α2

[ (
UL∗m,mf

)
(x, y)(49)

− f(x, y) +
1
m2

∂2f

∂t∂τ
(x, y)

(
T ∗m,1Lm

)
(x)
(
T ∗m,1Lm

)
(y)

]
= 0.

If f admits partial derivatives of second order continuous on (I×I)∩(J×J)
and there exists an interval K ⊂ I ∩ J such that there exist m(2) ∈ N and
k2l ∈ R depending on K, so that for any m ∈ N, m ≥ m(2) and any x ∈ K
we have

(50)

(
T ∗m,2lLm

)
(x)

mα2l
≤ k2k,

l ∈ {1, 2}, then the convergence given in (49) is uniform on K ×K.

Proof. It results from Theorem 5 for s = 2. �

In the following, by particularization and applying Theorem 5, Corol-
lary 1 and Corollary 2 we can obtain Voronovskaja’s type theorem and
approximation theorem for some known operators. Because every applica-
tion is a simple substitute in this theorem and corollaries of this section, we
won’t replace anything. In every application we have α2 = 1.

In Applications 1 - 3 let pm = m, ϕm,k = pm,k, where k ∈ {0, 1, . . . ,m},
m ∈ N and K = [0, 1].

Application 1. Let I = [0, µ(α,β)], J = [0, 1], E(I) = C([0, µ(α,β)]) and
F (J) = C([0, 1]). For any m ∈ N, m ≥ m0, let Am,k : C([0, µ(α,β)]) → R,
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Am,k(f) = f

(
k + α

m+ β

)
for any f ∈ C([0, µ(α,β)]), any k ∈ {0, 1, . . . ,m}.

In this case, we obtain the Stancu operators. We have
(
T ∗m,1P

(α,β)
m

)
(x) =

m(α− βx)
m+ β

,
(
T ∗m,2P

(α,β)
m

)
(x) =

m2[mx(1− x) + (α− βx)2]
(m+ β)2

, for any

x ∈ [0, 1], any m ∈ N, m ≥ m0, k2 =
5
4

and k4 = 1 (see [27]).

Application 2. If I = J = [0, 1], E(I) = L1([0, 1]), F (J) = C([0, 1]),

Am,k(f)=(m+1)
∫ 1

0
f(t)dt, where k∈{0, 1, . . . ,m}, m∈N and f ∈ L1([0, 1]),

then we obtain the Durrmeyer operators. We have
(
T ∗m,1Mm

)
(x)=

m(1−2x)
m+ 2

,(
T ∗m,2Mm

)
(x) = m2

2(m− 3)x(1− x) + 2
(m+ 2)(m+ 3)

for any x ∈ [0, 1], any m ∈ N,

k2 =
3
2

and k4 =
7
4

(see [21]).

Application 3. We consider I = J = [0, 1], E(I) = L1([0, 1]), F (J) =

C([0, 1]), Am,k(f) = (m + 1)
∫ k+1

m+1

k
m+1

f(t)dt, where k ∈ {0, 1, . . . ,m}, m ∈ N

and f ∈ L1([0, 1]).
In this case, we obtain the Kantorovich operators. We have

(
T ∗m,1Km

)
(x)=

m

2(m+ 1)
(1 − 2x),

(
T ∗m,2Km

)
(x) =

(
m

m+ 1

)2 (1− x)3 + x3 + 3mx(1− x)
3

for any x ∈ [0, 1], any m ∈ N, k2 = 1 and k4 =
3
2

(see [21]).

Application 4. In this application I = J = [0,∞), E(I) = F (J) =

CB([0,∞)),K = [0, b], b > 0, pm = m, ϕm,k(x) =
(
m

k

)
xk

(1 + x)m
, Am,k(f) =

f

(
k

m+ 1− k

)
for any x ∈ [0,∞), k ∈ {0, 1, . . . ,m} and m ∈ N. We ob-

tain the Bleimann, Butzer and Hahn operators. We have
(
T ∗m,1Lm

)
(x) =

−mx
(

x

1 + x

)m

, x ∈ [0,∞), m ∈ N, k2 = 4b(1 + b)2 if x ∈ [0, b] and m ∈ N,

m ≥ 24(1 + b) (see [28]).

In Application 5 - 8 let pm = ∞, for any m ∈ N, in Application 5 - 6 and
Application 8 let K = [0, b], b > 0.



Voronovskaja-type theorems and . . . 105

Application 5. We consider I = J = [0,∞), E(I) = C2([0,∞)),

F (J) = C([0,∞)), ϕm,k(x) = e−mx
(mx)k

k!
, Am,k(f) = f

(
k

m

)
for any

x ∈ [0,∞), m ∈ N, k ∈ N0 and f ∈ C2([0,∞)). In this application we
obtain the Mirakjan-Favard-Szász operators. We have

(
T ∗m,1Sm

)
(x) = 0,(

T ∗m,2Sm

)
(x) = mx, x ∈ [0,∞), m ∈ N, k2 = b and k4 = 3b2 + b (see [23]).

Application 6. Let I = J = [0,∞), E(I) = C2([0,∞)), F (J) = [0,∞),

ϕm,k(x) = (1 + x)−m

(
m+ k − 1

k

)(
x

1 + x

)k

, Am,k(f) = f

(
k

m

)
for any

x ∈ [0,∞), m ∈ N, k ∈ N0 and f ∈ C2([0,∞)). In this case we obtain the
Baskakov operators. We have

(
T ∗m,1Vm

)
(x) = 0,

(
T ∗m,2Vm

)
(x) = mx(1+x),

x ∈ [0,∞), m ∈ N, k2 = b(1 + b) and k4 = 9b4 + 18b3 + 10b2 + b (see [23]).

Application 7. In this application I = J = [0, 1], E(I) = F (J) =

C([0, 1]),K = [0, 1], ϕm,k(x) =
(
m+ k

k

)
(1−x)m+1xk, Am,k(f) = f

(
k

m+ k

)
for any x ∈ [0, 1], m ∈ N, k ∈ N0 and f ∈ C([0, 1]). We obtain the
Meyer-König and Zeller operators. We have

(
T ∗m,1Zm

)
(x) = 0, x ∈ [0, 1],

m ∈ N and k2 = 2 (see [23]).

Application 8. We consider I = J = [0,∞), E(I) = F (J) = C([0,∞)),

ϕm,k(x) = e−
(m+k)x

1+x
m(m+ k)k−1

k!

(
x

1 + x

)k

, Am,k(f) = f

(
k

m

)
for any

x ∈ [0,∞), m ∈ N, k ∈ N0 and f ∈ C([0,∞)). In this application we
obtain the Ismail-May operators. We have

(
T ∗m,1Rm

)
(x) = Am,1(x) = 0,(

T ∗m,2Rm

)
(x) = Am,2(x) = mx(1 + x)2 for any x ∈ [0,∞), m ∈ N and

k2 = b(1 + b)2 (see [33]).

For the operators we shape in this paper, we have lim
m→∞

(
T ∗m,1Lm

)
(x) =

0, x ∈ I or lim
m→∞

(
T ∗m,1Lm

)
(x) = B(x), x ∈ I, where B(x) is bounded

on I. It results that lim
m→∞

1
m

(
T ∗m,1Lm

)
(x)
(
T ∗m,1Lm

)
(y) = 0 uniform on

(I × I) ∩ (J × J) and then the Corollary 2 can be reformulated through
Corollary 3 for the operators studied in this paper.

Corollary 3. Let f : I × I → R be a bivariate function. If (x, y) ∈
(I× I)∩ (J×J) and f admits partial derivatives of second order continuous
in a neighborhood of the point (x, y), then

(51) lim
m→∞

m
[(
UL∗m,mf

)
(x, y)− f(x, y)

]
= 0.

If f admits partial derivatives of second order continuous on (I×I)∩(J×J)
and there exists an interval K ⊂ I ∩ J such that there exist m(2) ∈ N and
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k2l ∈ R depending on K, so that for any m ∈ N, m ≥ m(2) and any x ∈ K
we have

(52)

(
T ∗m,2lLm

)
(x)

mα2l
≤ k2l,

l ∈ {1, 2}, then the convergence given in (51) is uniform on K ×K.

Now we give an example.

For m ∈ N, let the operators Om : C([0, 2]) → C([0, 1]) defined for any
x ∈ [0, 1] and any function f ∈ C([0, 2]) by

(53) (Omf)(x) =
m∑

k=0

pm,k(x)f
(
k

m
+

1√
m

)
.

One verifies immediately that (Ome0)(x) = 1, (Ome1)(x) = x +
1
√
m

,

(Ome2)(x) = x2 +
x(1− x)

m
+

2
√
m
x +

1
m

,
(
T ∗m,1Om

)
(x) =

√
m and(

T ∗m,2Om

)
(x) = m[x(1 − x) + 1], where x ∈ [0, 1] and m ∈ N. Then,

from the Corollary 2 we obtain the following proposition for the (Om)m≥1

operators.

Proposition 3. Let f : [0, 2] × [0, 2] → R be a bivariate function. If
(x, y) ∈ [0, 1] × [0, 1] and f admits partial derivatives of second order con-
tinuous in a neighborhood of the point (x, y), then

(54) lim
m→∞

m
[(
UO∗m,mf

)
(x, y)− f(x, y)

]
=

∂2f

∂t∂τ
(x, y).
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manian).

[34] Szász O., Generalization of S. Bernstein’s polynomials to the infinite interval,
J. Research, National Bureau of Standards, 45(1950), 239-245.

[35] Timan A.F., Theory of Approximation of Functions of Real Variable, New
York: Macmillan Co. 1963, MR22#8257.
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