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Abstract. In this paper, necessary and sufficient condition are
obtained so that every bounded solution of

∆(yn − yn−k) + qnG(yσ(n)) = 0

is oscillatory, under a condition weaker than
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qn = ∞.

Key words: oscillatory solution, nonoscillatory solution, asymp-
totic behaviour, difference equation.

AMS Mathematics Subject Classification: 39A10, 39A12.

1. Introduction

In this paper, necessary and sufficient conditions are obtained so that
every bounded solution of

(1) ∆(yn − yτ(n)) + qnG(yσ(n)) = 0

is oscillatory, where ∆ is the forward difference operator given by ∆yn =
yn+1 − yn, {qn} are assumed to be infinite sequences of real numbers with
qn ≥ 0, but 6≡ 0. We assume τ(n), σ(n) are unbounded increasing sequence
of integers less than n and G ∈ C(R,R). Further in this work we assume
that xG(x) > 0 for x 6= 0 and G is non-decreasing.

All over the world, during the last decade or two a lot of research activity
is undertaken on the study of the oscillation of neutral delay difference equa-
tions(NDDEs in short). For recent results and references see the monograph
by Agarwal[1] and the papers [2, 3, 5, 9, 10] and [12]–[20] and the references
cited there in. In these papers the authors have studied the oscillation and
non-oscillation of solutions of the NDDE

(2) ∆(yn − pnyn−k) + qnG(yn−r) = fn
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under the condition

(3)
∞∑

n=n0

qn = ∞.

However, in this work we find a necessary and sufficient condition for the
oscillation of all bounded solutions of (1) under a condition weaker than
(3). Thus our results improve the following Theorems, which are particular
cases of some of the results in [13, 16, 20].

Theorem 1 ([20], Theorem 3.5). Suppose (3) hold.Then every bounded
solution of

(4) ∆(yn − yn−k) + qnG(yn−r) = 0

oscillates.

Theorem 2 ([13], Theorem 2.3). Suppose that there exists a sequence
{Fn} such that Fn → 0 as n →∞ and ∆Fn = fn. Further assume that

(5)
∞∑

j=0

qnj = ∞, for every subsequence nj of n.

Then every bounded solution of (4) oscillates or tends to zero as n →∞.

Theorem 3 ([16], Theorem 3.3). Suppose that G(u)/u > γ > 0. Assume
that

(6) lim inf
n→∞

n−1∑
i=n−k

qi >
kk+1

γ(k + 1)k+1
.

Then every bounded solution of (4) oscillates or tends to zero as n →∞.

Let n0 be a fixed nonnegative integer. Let ρ = min{τ(n0), σ(n0)}. By a
solution of (1) we mean a real sequence {yn} which is defined for all positive
integer n ≥ ρ and satisfies (1) for n ≥ n0. Clearly if the initial condition

(7) yn = an for ρ ≤ n ≤ n0

is given then the equation (1) has a unique solution satisfying the given
initial condition (7). A solution {yn} of (1) is said to be oscillatory if for
every positive integer n0 > 0, there exists n ≥ n0 such that ynyn+1 ≤ 0,
otherwise {yn} is said to be non-oscillatory.
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2. Main results

In this section we prove that every bounded solution of

(8) ∆(yn − yn−k) + qnG(yσ(n)) = 0

oscillates if

(9)
∞∑

n=n0

nqn = ∞.

We need the following Lemma,which generalizes the Lemma [12, Lemma2.1]
and can be easily proved.

Lemma 1. Let {fn} and {gn} be sequences of real numbers for n ≥ 0
such that

fn = gn − pgτ(n), n ≥ n0

where p ∈ R, p 6= 1 and τ(n) ≤ n,∀n, with limn→∞ τ(n) = ∞. Suppose that
lim

n→∞
fn = λ ∈ R exists. Then the following statements hold.

(i) If lim inf
n→∞

gn = a ∈ R then λ = (1− p)a.

(ii) If lim sup
n→∞

gn = b ∈ R, then λ = (1− p)b.

Theorem 4. Suppose that fn ≤ 0 for every n and

(10)

∣∣∣∣∣∣
∞∑
i=1

∞∑
j=τ i

−1(n)

fj

∣∣∣∣∣∣ < ∞.

holds. Then the neutral equation

(11) ∆(yn − yτ(n)) + qnG(yσ(n)) = fn

admits a positive bounded solution if and only if

(12)
∞∑
i=1

∞∑
j=τ i

−1(n)

qj < ∞,

holds.

Proof. Suppose that (11) admits a positive bounded solution. From (10),
we obtain ∣∣∣∣ ∞∑

j=τ i
−1(n0)

fj

∣∣∣∣ < ∞, for every i ≥ 0.
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Hence
∣∣ ∑∞

j=n0
fj

∣∣ < ∞. If we set Fn = −
∑∞

j=n fj for n ≥ n0, then ∆Fn = fn

and

(13) Fn ≥ 0 and lim
n→∞

Fn = 0.

Let {yn} be a positive bounded solution of (11) such that yn > 0, yτ(n) and
yσ(n) > 0 for n ≥ n0. Setting

(14) zn = yn − yτ(n) and wn = zn − Fn

for n ≥ n0, we obtain

(15) ∆wn = −qnG(yσ(n)) ≤ 0.

Since wn is bounded,then limn→∞wn = l exists. From (13) and (14), we
obtain limn→∞ zn = l. From Lemma 1, it follows that l = 0. Hence wn > 0
for n ≥ n1 ≥ n0 as it is decreasing. From (14) we obtain yn > yτ(n) for
n ≥ n1 because Fn > 0. This implies lim infn→∞ yn > 0. Thus there exists
γ > 0 such that yn > γ for n ≥ n2 ≥ n1. Summing (15) from n to ∞, we
obtain for n ≥ n3 ≥ n2,

wn =
∞∑

i=n

qiG(yσ(i)).

That is,

(16) yτ(n) < yn −G(γ)
∞∑

i=n

qi +
∞∑

i=n

fi.

Replacing n by τ−1(n) in (16), we get

(17) yn < yτ−1(n) −G(γ)
∞∑

i=τ−1(n)

qi +
∞∑

i=τ−1(n)

fi.

From (16) and (17) it follows that,

(18) yτ(n) < yτ−1(n) −G(γ)
1∑

i=0

∞∑
j=τ i

−1(n)

qj +
1∑

i=0

∞∑
j=τ i

−1(n)

fj .

Hence repeating the above process k times, we obtain

(19) yτ(n) < yτk
−1(n) −G(γ)

k∑
i=0

∞∑
j=τ i

−1(n)

qj +
k∑

i=0

∞∑
j=τ i

−1(n)

fj .
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Hence

(20) G(γ)
k∑

i=0

∞∑
j=τ i

−1(n)

qj < yτk
−1(n) − yτ(n) +

k∑
i=0

∞∑
j=τ i

−1(n)

fj .

Taking limit k →∞ and using (10) and that yn is bounded, we obtain (12).
Conversely,if (12) holds then Let µ = max {|G(x)| : 2 ≤ x ≤ 6} . Then from
(12), and (10) one can find N1 > 0 such that for n ≥ N1 we have

µ

∞∑
i=1

∞∑
j=τ i

−1(n)

qj < 1,

and ∣∣∣∣∣∣
∞∑
i=1

∞∑
j=τ i

−1(n)

fj

∣∣∣∣∣∣ < 1.

Let
S = {y ∈ X : 2 ≤ yn ≤ 6, n ≥ N1} .

Choose N2 > N1 such that k ≥ N1, where k = min{τ(N2), σ(N2)}. Then
define the mapping

(21) (By)n =


(By)N2 , N1 ≤ n ≤ N2,
4−

∑∞
i=1

∑∞
j=τ i

−1(n) qjG(yσ(j))
+

∑∞
i=1

∑∞
j=τ i

−1(n) fj ,
n ≥ N2.

Then we may easily establish that (i) By ∈ S for y ∈ S (ii) BS is
relatively compact. Then by [6] Schauder’s Fixed Point Theorem: there
is a fixed point y0 in S such that By0

n = y0
n. For n ≥ N2 ,writing yn for y0

n

we obtain

yn = 4−
∞∑
i=1

∞∑
j=τ i

−1(n)

qjG(yσ(j)) +
∞∑
i=1

∞∑
j=τ i

−1(n)

fj .

Then

yn − yτ(n) =
∞∑

j=n

qjG(yσ(j) −
∞∑

j=n

fj .

Then applying ∆ bothsides we find that yn is the required positive and
bounded solution of (11) for n ≥ N2. Hence the theorem is proved. �

Corollary. Assume that fn ≥ 0 for every n, and (10) holds. The neutral
equation (11) admits a negative bounded solution if and only if (12) holds.

Proof. The proof is similar to the proof of the above theorem, hence
omitted. �
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Theorem 5. Every bounded solution of (1) oscillates if and only if (12)
holds.

Proof. It follows from the proof of the Theorem 4 for fn ≡ 0. �

Next, our objective is to show that the conditions (12) and (9) are equiv-
alent. For that we need the following definition and there after a useful
lemma.

Definition. Define the factorial function(See[8, page-20]) by

n(k) := n (n− 1) . . . (n− k + 1) ,

where k ≤ n and n ∈ Z and k ∈ N. Note that n(k) = 0, if k > n.

Then we have

(22) ∆n(k) = kn(k−1),

where n ∈ Z, k ∈ N and ∆ is the forward difference operator. One can show,
by summing up (22) that

(23)
n−1∑
i=m

i(k) =
1

k + 1

(
n(k+1) −m(k+1)

)
holds. Now set

(24) bk (n, m) :=


1, k = 0

n∑
j=m

bk−1 (n, j) , k ∈ N.

Here, we evaluate bk by recursion. Clearly, for k = 1 in (24), we have

b1 (n, m) =
n∑

j=m

b0 (n, j) =
n∑

j=m

1 = (n + 1−m) = (n + 1−m)(1) .

By (23) and for k = 2 in (24), we get

b2 (n, m) =
n∑

j=m

b1 (n, j) =
n∑

j=m

(n + 1− j)(1)

=
n+1−m∑

i=1

i(1) =
1
2

(n + 2−m)(2) − 1
2
1(2) =

1
2

(n + 2−m)(2) .



Oscillation and non-oscillation criteria . . . 115

Note that 1(2) = 0. By (23) and for k = 3 in (24), we get

b3 (n, m) =
n∑

j=m

b2 (n, j) =
1
2

n∑
j=m

(n + 2− j)(2)

=
1
2

n+2−m∑
i=2

i(2) =
1
6

[
(n + 3−m)(3) − 2(3)

]
=

1
3!

(n + 3−m)(3) .

Using a simple induction, we obtain

(25) bk (n, m) =
1
k!

(n + k −m)(k) .

Lemma 2. Let p ∈ N and x (n) be a non oscillatory sequence which
is positive for large n. If there exists an integer p0 ∈ {0, 1, . . . , p− 1} such
that ∆p0w (∞) exits(finite) and ∆iw (∞) = 0 for all i ∈ {p0 + 1, . . . , p− 1}.
Then

(26) ∆pw (n) = −x (n)

implies

∆p0w (n) = ∆p0w (∞)(27)

+
(−1)p−p0−1

(p− p0 − 1)!

∞∑
i=n

(i + p− p0 − 1− n)(p−p0−1) x (i) .

for all sufficiently large n.

Proof. Summing up (26) from n to ∞, we get

∆p−1w (∞)−∆p−1w (n) = −
∞∑

i=n

x (i)

or simply

(28) ∆p−1w (n) =
∞∑

i=n

x (i) =
∞∑

i=n

b0 (i, n) x (i) .

Summing up (28) from n to ∞, we get

∆p−2w (n) = ∆p−2w (∞)−
∞∑

i=n

∞∑
j=i

b0 (j, i) x (j)(29)

= −
∞∑

j=n

j∑
i=n

b0 (j, i) x (j)

= −
∞∑

j=n

b1 (j, n) x (j) = −
∞∑

i=n

b1 (i, n) x (i) .
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Again summing up (29) from n to ∞, we obtain

∆p−3w (n) =
∞∑

j=n

∞∑
i=j

b1 (i, j) x (i) =
∞∑

i=n

i∑
j=n

b1 (i, j) x (i)

=
∞∑

i=n

b2 (i, n) x (i) .

By the emerging pattern, we have

∆jw (n) = (−1)p−j−1
∞∑

i=n

bp−j−1 (i, n) x (i) , j ∈ {p0 + 1, . . . p− 1} .

Then by letting j = p0 + 1, we get

(30) ∆p0+1w (n) = (−1)p−p0−2
∞∑

i=n

bp−p0−2 (i, n) x (i) .

Summing up (30) from n to ∞ and arranging we get

(31) ∆p0w (n) = ∆p0w (∞) + (−1)p−p0−1
∞∑

i=n

bp−p0−1 (i, n) x (i) .

From (25) and (31) it follows that

∆p0w (n) = ∆p0w (∞) +
(−1)p−p0−1

(p− p0 − 1)!

∞∑
i=n

(i + p− p0 − 1− n)(p−p0−1) x (i) .

Hence the Lemma is proved. �

Theorem 6. Consider the delay difference equation

(32) ∆2xn + qnxσ(n) = 0.

Then the following conditions are equivalent.
(a) every solution of (32) oscillates.
(b) The condition (9) holds.
(c)

∑∞
i=0

∑∞
j=n0+ik qj = ∞, for any fixed positive integer k and n0 > 0.

Proof. We show that (a) ⇔ (c) and (a) ⇔ (b). Hence (b) ⇔ (c). First
let us prove (a) ⇔ (c). Suppose that (a) holds.For the sake of contradiction,
assume that (c) does not hold. Then

∞∑
i=0

∞∑
j=n0+ik

qj < ∞.
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Hence we can find an integer n1 > 0 such that

(33) k
∞∑

i=n1

∞∑
j=n0+ik

qj < 1/3.

Let n2 = n0 + n1k. Then from (33), we obtain

(34) k
∞∑
i=0

∞∑
j=n+ik

qj < 1/3 for n ≥ n2.

Choose N0 ≥ n2 and N1 > N0 such that σ(N1) ≥ N0. Let X = lN0
∞ be the

Banach space of bounded real sequences x = {xn}, n ≥ N0 with supremum
norm ||x|| = sup{|xn| : n ≥ N0}. Define S to be a closed subset of X such
that S = {y ∈ X : 1 ≤ yn ≤ 3/2, n ≥ N0}. Then S is a metric space, where
the metric is induced by the norm on X. For x ∈ S, define

Axn =


1, N0 ≤ n ≤ N1,

1 +
n−1∑
i=N1

∞∑
j=i

qjxσ(j), n ≥ N1.

Then for n ≥ N0,

1 ≤ Axn < 1 +
∞∑

i=N1

∞∑
j=i

qjxσ(j)

≤ 1 +
∞∑

p=0

N1+pk+k−1∑
i=N1+pk

∞∑
j=i

qjxσ(j)

≤ 1 + k
∞∑

p=0

∞∑
j=N1+pk

qjxσ(j)

1 +
3
2
k

∞∑
p=0

∞∑
j=N1+pk

qj ≤ 1 + 1/2 ≤ 3/2.

Hence AS ⊂ S. Further, it may be shown that, for x, y ∈ S, ||Ax− Ay|| ≤
1
3 ||x−y||. Hence A is a contraction. Consequently A has a unique fixed point
x in S. It is a positive bounded solution of (32) for n ≥ N2, a contradiction.
Hence (a) ⇒ (c) holds.

Next, suppose that (c) holds.Let x = {xn} be a bounded non-oscillatory
solution of (32). We may take, with out any loss of generality xn > 0,
xσ(n) > 0 for n ≥ n0 > 0. Then ∆2xn ≤ 0 for n ≥ n1 ≥ n0. Hence xn

and ∆xn are monotonic and is of constant sign for n ≥ n2 ≥ n1. Since
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xn is bounded, ∆xn > 0 and limn→∞ xn = l > 0 and limn→∞∆xn = 0.
Let xn > α > 0 for n ≥ n3 ≥ n2. Summing (32) from n to ∞, we obtain
∆xn =

∑∞
i=n qixσ(i). Hence

(35)
j∑

p=0

n3+pk+k−1∑
n=n3+pk

∆xn =
j∑

p=0

n3+pk+k−1∑
n=n3+pk

∞∑
i=n

qixσ(i).

This implies

xn3+(j+1)k − xn3 =
j∑

p=0

n3+pk+k−1∑
n=n3+pk

∞∑
i=n

qixσ(i)

≥ αk

j∑
p=0

∞∑
i=n3+pk+k−1

qi.

Since {xn} is bounded,
∑∞

p=0

∑∞
i=n3+pk+k−1 qi < ∞, a contradiction. Hence

(c) ⇒ (a) is proved.
Next, to show (a) ⇒ (b). Suppose that (a) holds.For the sake of contradic-

tion, assume (b) does not hold.That is
∑∞

i=0 iqi < ∞. Hence for any n ≥ n0,
we have

∑∞
i=n(i−n+1)qi < ∞. Then proceeding as in the proof of the case

(a) ⇒ (c), we find N0 such that n ≥ N0 implies
∑∞

i=n(i−n+1)qi < 1/4. Let
N1 > N0 such that σ(N1) ≥ N0. Set S = {xn ∈ X : 3/4 ≤ xn ≤ 1, n ≥ N0}
and for x ∈ S,

Axn =

AxN1 , N0 ≤ n ≤ N1

1−
∞∑

i=n
(i− n + 1)qixσ(i), n ≥ N1.

Clearly, 3/4 ≤ A(xn) ≤ 1. Hence A(S) ⊂ S and A is a contraction. Hence
A has a unique fixed point in S which is a positive bounded solution of (32),
a contradiction. Hence (a) implies (b).

Next, suppose (b) holds. Let {xn} be a bounded non-oscillatory solution
of (32) for n ≥ n0 > 0. Proceeding as in the proof of the case (c) ⇒ (a), we
obtain limn→∞ xn = l > 0 exists and limn→∞∆xn = 0. From (32), using
Lemma 2 for p = 2 and p∗ = 0, we get xn = l−

∑∞
i=n(i−n+1)qixσ(i). This

implies
∑∞

i=n(i− n + 1)qixσ(i) < ∞. On the other hand,

∞∑
i=n

(i− n + 1)qixσ(i) >
l

2

∞∑
i=n

(i− n + 1)qi = ∞.

a contradiction. Hence (b) ⇒ (a). Thus the theorem is completely proved. �
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Remark 1. In the condition (12), if we substitute τ(n) = n − k i.e
τ−1(n) = n + k and τ i

−1(n) = n + ik, then from Theorem 6, it follows that
(12) ⇔ (9).

From Remark 1 and Theorem 5 the following result follows.

Theorem 7. Every bounded solution of (8) oscillates if and only if (9)
holds.

Remark 2. The above theorem improves Theorems 1, 2 and 3.

The following example illustrates the above Theorem 7.

Example. Consider the neutral difference equation

(36) ∆(yn − yn−1) +
(n− 2)(4n6 + 6n2 − 2)

n3(n− 1)3(n + 1)3
y

1/3
n−2 = 0, n ≥ 1.

Here, qn ≈ 1
n2 . Hence

∑∞
n=1 qn < ∞. However,

∑∞
n=1 nqn = ∞. Hence

all the conditions of Theorem 7 are satisfied. Hence all it’s solutions are
oscillatory. In particular yn = (−1)n

n3 is an oscillatory solution of (36). But
the results of [13, 16, 20], i.e. Theorems 1, 2 and 3 fail to give any conclusion,
because (3) is not satisfied. Note that both the conditions (5) and (6)
required for the Theorems 2 and 3 respectively, independently impliy (3).

Acknowledgement. The authors are thankful and obliged to the referee
for his or her various suggestions to improve the presentation of this paper.
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