F A S C I C U L I M A T H E M A T I C I

Radhanath Rath and Subhendu K. Rath

OSCILLATION AND NON-OSCILLATION CRITERIA FOR A NEUTRAL DELAY DIFFERENCE EQUATION OF FIRST ORDER

Abstract. In this paper, necessary and sufficient condition are obtained so that every bounded solution of

$$
\Delta\left(y_{n}-y_{n-k}\right)+q_{n} G\left(y_{\sigma(n)}\right)=0
$$

is oscillatory, under a condition weaker than $\sum_{n=n_{0}}^{\infty} q_{n}=\infty$.
KEY WORDS: oscillatory solution, nonoscillatory solution, asymptotic behaviour, difference equation.
AMS Mathematics Subject Classification: 39A10, 39A12.

1. Introduction

In this paper, necessary and sufficient conditions are obtained so that every bounded solution of

$$
\begin{equation*}
\Delta\left(y_{n}-y_{\tau(n)}\right)+q_{n} G\left(y_{\sigma(n)}\right)=0 \tag{1}
\end{equation*}
$$

is oscillatory, where Δ is the forward difference operator given by $\Delta y_{n}=$ $y_{n+1}-y_{n},\left\{q_{n}\right\}$ are assumed to be infinite sequences of real numbers with $q_{n} \geq 0$, but $\not \equiv 0$. We assume $\tau(n), \sigma(n)$ are unbounded increasing sequence of integers less than n and $G \in C(R, R)$. Further in this work we assume that $x G(x)>0$ for $x \neq 0$ and G is non-decreasing.

All over the world, during the last decade or two a lot of research activity is undertaken on the study of the oscillation of neutral delay difference equations(NDDEs in short). For recent results and references see the monograph by Agarwal[1] and the papers [2, 3, 5, 9, 10] and [12]-[20] and the references cited there in. In these papers the authors have studied the oscillation and non-oscillation of solutions of the NDDE

$$
\begin{equation*}
\Delta\left(y_{n}-p_{n} y_{n-k}\right)+q_{n} G\left(y_{n-r}\right)=f_{n} \tag{2}
\end{equation*}
$$

under the condition

$$
\begin{equation*}
\sum_{n=n_{0}}^{\infty} q_{n}=\infty \tag{3}
\end{equation*}
$$

However, in this work we find a necessary and sufficient condition for the oscillation of all bounded solutions of (1) under a condition weaker than (3). Thus our results improve the following Theorems, which are particular cases of some of the results in $[13,16,20]$.

Theorem 1 ([20], Theorem 3.5). Suppose (3) hold.Then every bounded solution of

$$
\begin{equation*}
\Delta\left(y_{n}-y_{n-k}\right)+q_{n} G\left(y_{n-r}\right)=0 \tag{4}
\end{equation*}
$$

oscillates.
Theorem 2 ([13], Theorem 2.3). Suppose that there exists a sequence $\left\{F_{n}\right\}$ such that $F_{n} \rightarrow 0$ as $n \rightarrow \infty$ and $\Delta F_{n}=f_{n}$. Further assume that

$$
\begin{equation*}
\sum_{j=0}^{\infty} q_{n_{j}}=\infty, \quad \text { for every subsequence } n_{j} \text { of } n \tag{5}
\end{equation*}
$$

Then every bounded solution of (4) oscillates or tends to zero as $n \rightarrow \infty$.
Theorem 3 ([16], Theorem 3.3). Suppose that $G(u) / u>\gamma>0$. Assume that

$$
\begin{equation*}
\liminf _{n \rightarrow \infty} \sum_{i=n-k}^{n-1} q_{i}>\frac{k^{k+1}}{\gamma(k+1)^{k+1}} . \tag{6}
\end{equation*}
$$

Then every bounded solution of (4) oscillates or tends to zero as $n \rightarrow \infty$.
Let n_{0} be a fixed nonnegative integer. Let $\rho=\min \left\{\tau\left(n_{0}\right), \sigma\left(n_{0}\right)\right\}$. By a solution of (1) we mean a real sequence $\left\{y_{n}\right\}$ which is defined for all positive integer $n \geq \rho$ and satisfies (1) for $n \geq n_{0}$. Clearly if the initial condition

$$
\begin{equation*}
y_{n}=a_{n} \quad \text { for } \quad \rho \leq n \leq n_{0} \tag{7}
\end{equation*}
$$

is given then the equation (1) has a unique solution satisfying the given initial condition (7). A solution $\left\{y_{n}\right\}$ of (1) is said to be oscillatory if for every positive integer $n_{0}>0$, there exists $n \geq n_{0}$ such that $y_{n} y_{n+1} \leq 0$, otherwise $\left\{y_{n}\right\}$ is said to be non-oscillatory.

2. Main results

In this section we prove that every bounded solution of

$$
\begin{equation*}
\Delta\left(y_{n}-y_{n-k}\right)+q_{n} G\left(y_{\sigma(n)}\right)=0 \tag{8}
\end{equation*}
$$

oscillates if

$$
\begin{equation*}
\sum_{n=n_{0}}^{\infty} n q_{n}=\infty \tag{9}
\end{equation*}
$$

We need the following Lemma, which generalizes the Lemma [12, Lemma2.1] and can be easily proved.

Lemma 1. Let $\left\{f_{n}\right\}$ and $\left\{g_{n}\right\}$ be sequences of real numbers for $n \geq 0$ such that

$$
f_{n}=g_{n}-p g_{\tau(n)}, \quad n \geq n_{0}
$$

where $p \in \mathbb{R}, p \neq 1$ and $\tau(n) \leq n, \forall n$, with $\lim _{n \rightarrow \infty} \tau(n)=\infty$. Suppose that $\lim _{n \rightarrow \infty} f_{n}=\lambda \in \mathbb{R}$ exists. Then the following statements hold.
(i) If $\liminf _{n \rightarrow \infty} g_{n}=a \in \mathbb{R}$ then $\lambda=(1-p) a$.
(ii) If $\limsup _{n \rightarrow \infty} g_{n}=b \in \mathbb{R}$, then $\lambda=(1-p) b$.

Theorem 4. Suppose that $f_{n} \leq 0$ for every n and

$$
\begin{equation*}
\left|\sum_{i=1}^{\infty} \sum_{j=\tau_{-1}^{i}(n)}^{\infty} f_{j}\right|<\infty \tag{10}
\end{equation*}
$$

holds. Then the neutral equation

$$
\begin{equation*}
\Delta\left(y_{n}-y_{\tau(n)}\right)+q_{n} G\left(y_{\sigma(n)}\right)=f_{n} \tag{11}
\end{equation*}
$$

admits a positive bounded solution if and only if

$$
\begin{equation*}
\sum_{i=1}^{\infty} \sum_{j=\tau_{-1}^{i}(n)}^{\infty} q_{j}<\infty \tag{12}
\end{equation*}
$$

holds.
Proof. Suppose that (11) admits a positive bounded solution. From (10), we obtain

$$
\left|\sum_{j=\tau_{-1}^{i}\left(n_{0}\right)}^{\infty} f_{j}\right|<\infty, \text { for every } i \geq 0
$$

Hence $\left|\sum_{j=n_{0}}^{\infty} f_{j}\right|<\infty$. If we set $F_{n}=-\sum_{j=n}^{\infty} f_{j}$ for $n \geq n_{0}$, then $\Delta F_{n}=f_{n}$ and

$$
\begin{equation*}
F_{n} \geq 0 \text { and } \lim _{n \rightarrow \infty} F_{n}=0 \tag{13}
\end{equation*}
$$

Let $\left\{y_{n}\right\}$ be a positive bounded solution of (11) such that $y_{n}>0, y_{\tau(n)}$ and $y_{\sigma(n)}>0$ for $n \geq n_{0}$. Setting

$$
\begin{equation*}
z_{n}=y_{n}-y_{\tau(n)} \text { and } w_{n}=z_{n}-F_{n} \tag{14}
\end{equation*}
$$

for $n \geq n_{0}$, we obtain

$$
\begin{equation*}
\Delta w_{n}=-q_{n} G\left(y_{\sigma(n)}\right) \leq 0 \tag{15}
\end{equation*}
$$

Since w_{n} is bounded, then $\lim _{n \rightarrow \infty} w_{n}=l$ exists. From (13) and (14), we obtain $\lim _{n \rightarrow \infty} z_{n}=l$. From Lemma 1, it follows that $l=0$. Hence $w_{n}>0$ for $n \geq n_{1} \geq n_{0}$ as it is decreasing. From (14) we obtain $y_{n}>y_{\tau(n)}$ for $n \geq n_{1}$ because $F_{n}>0$. This implies $\liminf _{n \rightarrow \infty} y_{n}>0$. Thus there exists $\gamma>0$ such that $y_{n}>\gamma$ for $n \geq n_{2} \geq n_{1}$. Summing (15) from n to ∞, we obtain for $n \geq n_{3} \geq n_{2}$,

$$
w_{n}=\sum_{i=n}^{\infty} q_{i} G\left(y_{\sigma(i)}\right)
$$

That is,

$$
\begin{equation*}
y_{\tau(n)}<y_{n}-G(\gamma) \sum_{i=n}^{\infty} q_{i}+\sum_{i=n}^{\infty} f_{i} \tag{16}
\end{equation*}
$$

Replacing n by $\tau_{-1}(n)$ in (16), we get

$$
\begin{equation*}
y_{n}<y_{\tau_{-1}(n)}-G(\gamma) \sum_{i=\tau_{-1}(n)}^{\infty} q_{i}+\sum_{i=\tau_{-1}(n)}^{\infty} f_{i} . \tag{17}
\end{equation*}
$$

From (16) and (17) it follows that,

$$
\begin{equation*}
y_{\tau(n)}<y_{\tau_{-1}(n)}-G(\gamma) \sum_{i=0}^{1} \sum_{j=\tau_{-1}^{i}(n)}^{\infty} q_{j}+\sum_{i=0}^{1} \sum_{j=\tau_{-1}^{i}(n)}^{\infty} f_{j} . \tag{18}
\end{equation*}
$$

Hence repeating the above process k times, we obtain

$$
\begin{equation*}
y_{\tau(n)}<y_{\tau_{-1}^{k}(n)}-G(\gamma) \sum_{i=0}^{k} \sum_{j=\tau_{-1}^{i}(n)}^{\infty} q_{j}+\sum_{i=0}^{k} \sum_{j=\tau_{-1}^{i}(n)}^{\infty} f_{j} . \tag{19}
\end{equation*}
$$

Hence

$$
\begin{equation*}
G(\gamma) \sum_{i=0}^{k} \sum_{j=\tau_{-1}^{i}(n)}^{\infty} q_{j}<y_{\tau_{-1}^{k}(n)}-y_{\tau(n)}+\sum_{i=0}^{k} \sum_{j=\tau_{-1}^{i}(n)}^{\infty} f_{j} \tag{20}
\end{equation*}
$$

Taking limit $k \rightarrow \infty$ and using (10) and that y_{n} is bounded, we obtain (12). Conversely, if (12) holds then Let $\mu=\max \{|G(x)|: 2 \leq x \leq 6\}$. Then from (12), and (10) one can find $N_{1}>0$ such that for $n \geq N_{1}$ we have

$$
\mu \sum_{i=1}^{\infty} \sum_{j=\tau_{-1}^{i}(n)}^{\infty} q_{j}<1
$$

and

$$
\left|\sum_{i=1}^{\infty} \sum_{j=\tau_{-1}^{i}(n)}^{\infty} f_{j}\right|<1
$$

Let

$$
S=\left\{y \in X: 2 \leq y_{n} \leq 6, n \geq N_{1}\right\}
$$

Choose $N_{2}>N_{1}$ such that $k \geq N_{1}$, where $k=\min \left\{\tau\left(N_{2}\right), \sigma\left(N_{2}\right)\right\}$. Then define the mapping

$$
(B y)_{n}=\left\{\begin{array}{cl}
(B y)_{N_{2}}, & N_{1} \leq n \leq N_{2} \tag{21}\\
4-\sum_{i=1}^{\infty} \sum_{j=\tau_{-1}^{i}(n)}^{\infty} q_{j} G\left(y_{\sigma(j)}\right) & n \geq N_{2} \\
+\sum_{i=1}^{\infty} \sum_{j=\tau_{-1}^{i}(n)}^{\infty} f_{j}, &
\end{array}\right.
$$

Then we may easily establish that $(i) B y \in S$ for $y \in S$ (ii) $B S$ is relatively compact. Then by [6] Schauder's Fixed Point Theorem: there is a fixed point y^{0} in S such that $B y_{n}^{0}=y_{n}^{0}$. For $n \geq N_{2}$, writing y_{n} for y_{n}^{0} we obtain

$$
y_{n}=4-\sum_{i=1}^{\infty} \sum_{j=\tau_{-1}^{i}(n)}^{\infty} q_{j} G\left(y_{\sigma(j)}\right)+\sum_{i=1}^{\infty} \sum_{j=\tau_{-1}^{i}(n)}^{\infty} f_{j} .
$$

Then

$$
y_{n}-y_{\tau(n)}=\sum_{j=n}^{\infty} q_{j} G\left(y_{\sigma(j)}-\sum_{j=n}^{\infty} f_{j}\right.
$$

Then applying Δ bothsides we find that y_{n} is the required positive and bounded solution of (11) for $n \geq N_{2}$. Hence the theorem is proved.

Corollary. Assume that $f_{n} \geq 0$ for every n, and (10) holds. The neutral equation (11) admits a negative bounded solution if and only if (12) holds.

Proof. The proof is similar to the proof of the above theorem, hence omitted.

Theorem 5. Every bounded solution of (1) oscillates if and only if (12) holds.

Proof. It follows from the proof of the Theorem 4 for $f_{n} \equiv 0$.
Next, our objective is to show that the conditions (12) and (9) are equivalent. For that we need the following definition and there after a useful lemma.

Definition. Define the factorial function(See[8, page-20]) by

$$
n^{(k)}:=n(n-1) \ldots(n-k+1),
$$

where $k \leq n$ and $n \in \mathbb{Z}$ and $k \in \mathbb{N}$. Note that $n^{(k)}=0$, if $k>n$.
Then we have

$$
\begin{equation*}
\Delta n^{(k)}=k n^{(k-1)}, \tag{22}
\end{equation*}
$$

where $n \in \mathbb{Z}, k \in \mathbb{N}$ and Δ is the forward difference operator. One can show, by summing up (22) that

$$
\begin{equation*}
\sum_{i=m}^{n-1} i^{(k)}=\frac{1}{k+1}\left(n^{(k+1)}-m^{(k+1)}\right) \tag{23}
\end{equation*}
$$

holds. Now set

$$
b_{k}(n, m):= \begin{cases}1, & k=0 \tag{24}\\ \sum_{j=m}^{n} b_{k-1}(n, j), & k \in \mathbb{N} .\end{cases}
$$

Here, we evaluate b_{k} by recursion. Clearly, for $k=1$ in (24), we have

$$
b_{1}(n, m)=\sum_{j=m}^{n} b_{0}(n, j)=\sum_{j=m}^{n} 1=(n+1-m)=(n+1-m)^{(1)} .
$$

By (23) and for $k=2$ in (24), we get

$$
\begin{aligned}
b_{2}(n, m) & =\sum_{j=m}^{n} b_{1}(n, j)=\sum_{j=m}^{n}(n+1-j)^{(1)} \\
& =\sum_{i=1}^{n+1-m} i^{(1)}=\frac{1}{2}(n+2-m)^{(2)}-\frac{1}{2} 1^{(2)}=\frac{1}{2}(n+2-m)^{(2)} .
\end{aligned}
$$

Note that $1^{(2)}=0$. By (23) and for $k=3$ in (24), we get

$$
\begin{aligned}
b_{3}(n, m) & =\sum_{j=m}^{n} b_{2}(n, j)=\frac{1}{2} \sum_{j=m}^{n}(n+2-j)^{(2)} \\
& =\frac{1}{2} \sum_{i=2}^{n+2-m} i^{(2)}=\frac{1}{6}\left[(n+3-m)^{(3)}-2^{(3)}\right]=\frac{1}{3!}(n+3-m)^{(3)}
\end{aligned}
$$

Using a simple induction, we obtain

$$
\begin{equation*}
b_{k}(n, m)=\frac{1}{k!}(n+k-m)^{(k)} \tag{25}
\end{equation*}
$$

Lemma 2. Let $p \in \mathbb{N}$ and $x(n)$ be a non oscillatory sequence which is positive for large n. If there exists an integer $p_{0} \in\{0,1, \ldots, p-1\}$ such that $\Delta^{p_{0}} w(\infty)$ exits(finite) and $\Delta^{i} w(\infty)=0$ for all $i \in\left\{p_{0}+1, \ldots, p-1\right\}$. Then

$$
\begin{equation*}
\Delta^{p} w(n)=-x(n) \tag{26}
\end{equation*}
$$

implies

$$
\begin{aligned}
(27) \Delta^{p_{0}} w(n)= & \Delta^{p_{0}} w(\infty) \\
& +\frac{(-1)^{p-p_{0}-1}}{\left(p-p_{0}-1\right)!} \sum_{i=n}^{\infty}\left(i+p-p_{0}-1-n\right)^{\left(p-p_{0}-1\right)} x(i)
\end{aligned}
$$

for all sufficiently large n.
Proof. Summing up (26) from n to ∞, we get

$$
\Delta^{p-1} w(\infty)-\Delta^{p-1} w(n)=-\sum_{i=n}^{\infty} x(i)
$$

or simply

$$
\begin{equation*}
\Delta^{p-1} w(n)=\sum_{i=n}^{\infty} x(i)=\sum_{i=n}^{\infty} b_{0}(i, n) x(i) \tag{28}
\end{equation*}
$$

Summing up (28) from n to ∞, we get

$$
\begin{align*}
\Delta^{p-2} w(n) & =\Delta^{p-2} w(\infty)-\sum_{i=n}^{\infty} \sum_{j=i}^{\infty} b_{0}(j, i) x(j) \tag{29}\\
& =-\sum_{j=n}^{\infty} \sum_{i=n}^{j} b_{0}(j, i) x(j) \\
& =-\sum_{j=n}^{\infty} b_{1}(j, n) x(j)=-\sum_{i=n}^{\infty} b_{1}(i, n) x(i) .
\end{align*}
$$

Again summing up (29) from n to ∞, we obtain

$$
\begin{aligned}
\Delta^{p-3} w(n) & =\sum_{j=n}^{\infty} \sum_{i=j}^{\infty} b_{1}(i, j) x(i)=\sum_{i=n}^{\infty} \sum_{j=n}^{i} b_{1}(i, j) x(i) \\
& =\sum_{i=n}^{\infty} b_{2}(i, n) x(i)
\end{aligned}
$$

By the emerging pattern, we have

$$
\Delta^{j} w(n)=(-1)^{p-j-1} \sum_{i=n}^{\infty} b_{p-j-1}(i, n) x(i), \quad j \in\left\{p_{0}+1, \ldots p-1\right\}
$$

Then by letting $j=p_{0}+1$, we get

$$
\begin{equation*}
\Delta^{p_{0}+1} w(n)=(-1)^{p-p_{0}-2} \sum_{i=n}^{\infty} b_{p-p_{0}-2}(i, n) x(i) . \tag{30}
\end{equation*}
$$

Summing up (30) from n to ∞ and arranging we get

$$
\begin{equation*}
\Delta^{p_{0}} w(n)=\Delta^{p_{0}} w(\infty)+(-1)^{p-p_{0}-1} \sum_{i=n}^{\infty} b_{p-p_{0}-1}(i, n) x(i) \tag{31}
\end{equation*}
$$

From (25) and (31) it follows that

$$
\Delta^{p_{0}} w(n)=\Delta^{p_{0}} w(\infty)+\frac{(-1)^{p-p_{0}-1}}{\left(p-p_{0}-1\right)!} \sum_{i=n}^{\infty}\left(i+p-p_{0}-1-n\right)^{\left(p-p_{0}-1\right)} x(i)
$$

Hence the Lemma is proved.
Theorem 6. Consider the delay difference equation

$$
\begin{equation*}
\Delta^{2} x_{n}+q_{n} x_{\sigma(n)}=0 \tag{32}
\end{equation*}
$$

Then the following conditions are equivalent.
(a) every solution of (32) oscillates.
(b) The condition (9) holds.
(c) $\sum_{i=0}^{\infty} \sum_{j=n_{0}+i k}^{\infty} q_{j}=\infty$, for any fixed positive integer k and $n_{0}>0$.

Proof. We show that $(a) \Leftrightarrow(c)$ and $(a) \Leftrightarrow(b)$. Hence $(b) \Leftrightarrow(c)$. First let us prove $(a) \Leftrightarrow(c)$. Suppose that (a) holds.For the sake of contradiction, assume that (c) does not hold. Then

$$
\sum_{i=0}^{\infty} \sum_{j=n_{0}+i k}^{\infty} q_{j}<\infty
$$

Hence we can find an integer $n_{1}>0$ such that

$$
\begin{equation*}
k \sum_{i=n_{1}}^{\infty} \sum_{j=n_{0}+i k}^{\infty} q_{j}<1 / 3 \tag{33}
\end{equation*}
$$

Let $n_{2}=n_{0}+n_{1} k$. Then from (33), we obtain

$$
\begin{equation*}
k \sum_{i=0}^{\infty} \sum_{j=n+i k}^{\infty} q_{j}<1 / 3 \quad \text { for } \quad n \geq n_{2} \tag{34}
\end{equation*}
$$

Choose $N_{0} \geq n_{2}$ and $N_{1}>N_{0}$ such that $\sigma\left(N_{1}\right) \geq N_{0}$. Let $X=l_{\infty}^{N_{0}}$ be the Banach space of bounded real sequences $x=\left\{x_{n}\right\}, n \geq N_{0}$ with supremum norm $\|x\|=\sup \left\{\left|x_{n}\right|: n \geq N_{0}\right\}$. Define S to be a closed subset of X such that $S=\left\{y \in X: 1 \leq y_{n} \leq 3 / 2, n \geq N_{0}\right\}$. Then S is a metric space, where the metric is induced by the norm on X. For $x \in S$, define

$$
A x_{n}= \begin{cases}1, & N_{0} \leq n \leq N_{1} \\ 1+\sum_{i=N_{1}}^{n-1} \sum_{j=i}^{\infty} q_{j} x_{\sigma(j)}, & n \geq N_{1}\end{cases}
$$

Then for $n \geq N_{0}$,

$$
\begin{aligned}
1 \leq A x_{n} & <1+\sum_{i=N_{1}}^{\infty} \sum_{j=i}^{\infty} q_{j} x_{\sigma(j)} \\
& \leq 1+\sum_{p=0}^{\infty} \sum_{i=N_{1}+p k}^{N_{1}+p k+k-1} \sum_{j=i}^{\infty} q_{j} x_{\sigma(j)} \\
& \leq 1+k \sum_{p=0}^{\infty} \sum_{j=N_{1}+p k}^{\infty} q_{j} x_{\sigma(j)} \\
1 & +\frac{3}{2} k \sum_{p=0}^{\infty} \sum_{j=N_{1}+p k}^{\infty} q_{j} \leq 1+1 / 2 \leq 3 / 2
\end{aligned}
$$

Hence $A S \subset S$. Further, it may be shown that, for $x, y \in S,\|A x-A y\| \leq$ $\frac{1}{3}\|x-y\|$. Hence A is a contraction. Consequently A has a unique fixed point x in S. It is a positive bounded solution of (32) for $n \geq N_{2}$, a contradiction. Hence $(a) \Rightarrow(c)$ holds.

Next, suppose that (c) holds.Let $x=\left\{x_{n}\right\}$ be a bounded non-oscillatory solution of (32). We may take, with out any loss of generality $x_{n}>0$, $x_{\sigma(n)}>0$ for $n \geq n_{0}>0$. Then $\Delta^{2} x_{n} \leq 0$ for $n \geq n_{1} \geq n_{0}$. Hence x_{n} and Δx_{n} are monotonic and is of constant sign for $n \geq n_{2} \geq n_{1}$. Since
x_{n} is bounded, $\Delta x_{n}>0$ and $\lim _{n \rightarrow \infty} x_{n}=l>0$ and $\lim _{n \rightarrow \infty} \Delta x_{n}=0$. Let $x_{n}>\alpha>0$ for $n \geq n_{3} \geq n_{2}$. Summing (32) from n to ∞, we obtain $\Delta x_{n}=\sum_{i=n}^{\infty} q_{i} x_{\sigma(i)}$. Hence

$$
\begin{equation*}
\sum_{p=0}^{j} \sum_{n=n_{3}+p k}^{n_{3}+p k+k-1} \Delta x_{n}=\sum_{p=0}^{j} \sum_{n=n_{3}+p k}^{n_{3}+p k+k-1} \sum_{i=n}^{\infty} q_{i} x_{\sigma(i)} . \tag{35}
\end{equation*}
$$

This implies

$$
\begin{aligned}
x_{n_{3}+(j+1) k}-x_{n_{3}} & =\sum_{p=0}^{j} \sum_{n=n_{3}+p k}^{n_{3}+p k+k-1} \sum_{i=n}^{\infty} q_{i} x_{\sigma(i)} \\
& \geq \alpha k \sum_{p=0}^{j} \sum_{i=n_{3}+p k+k-1}^{\infty} q_{i} .
\end{aligned}
$$

Since $\left\{x_{n}\right\}$ is bounded, $\sum_{p=0}^{\infty} \sum_{i=n_{3}+p k+k-1}^{\infty} q_{i}<\infty$, a contradiction. Hence $(c) \Rightarrow(a)$ is proved.

Next, to show $(a) \Rightarrow(b)$. Suppose that (a) holds.For the sake of contradiction, assume (b) does not hold.That is $\sum_{i=0}^{\infty} i q_{i}<\infty$. Hence for any $n \geq n_{0}$, we have $\sum_{i=n}^{\infty}(i-n+1) q_{i}<\infty$. Then proceeding as in the proof of the case $(a) \Rightarrow(c)$, we find N_{0} such that $n \geq N_{0}$ implies $\sum_{i=n}^{\infty}(i-n+1) q_{i}<1 / 4$. Let $N_{1}>N_{0}$ such that $\sigma\left(N_{1}\right) \geq N_{0}$. Set $S=\left\{x_{n} \in X: 3 / 4 \leq x_{n} \leq 1, n \geq N_{0}\right\}$ and for $x \in S$,

$$
A x_{n}= \begin{cases}A x_{N_{1}}, & N_{0} \leq n \leq N_{1} \\ 1-\sum_{i=n}^{\infty}(i-n+1) q_{i} x_{\sigma(i)}, & n \geq N_{1}\end{cases}
$$

Clearly, $3 / 4 \leq A\left(x_{n}\right) \leq 1$. Hence $A(S) \subset S$ and A is a contraction. Hence A has a unique fixed point in S which is a positive bounded solution of (32), a contradiction. Hence (a) implies (b).

Next, suppose (b) holds. Let $\left\{x_{n}\right\}$ be a bounded non-oscillatory solution of (32) for $n \geq n_{0}>0$. Proceeding as in the proof of the case $(c) \Rightarrow(a)$, we obtain $\lim _{n \rightarrow \infty} x_{n}=l>0$ exists and $\lim _{n \rightarrow \infty} \Delta x_{n}=0$. From (32), using Lemma 2 for $p=2$ and $p^{*}=0$, we get $x_{n}=l-\sum_{i=n}^{\infty}(i-n+1) q_{i} x_{\sigma(i)}$. This implies $\sum_{i=n}^{\infty}(i-n+1) q_{i} x_{\sigma(i)}<\infty$. On the other hand,

$$
\sum_{i=n}^{\infty}(i-n+1) q_{i} x_{\sigma(i)}>\frac{l}{2} \sum_{i=n}^{\infty}(i-n+1) q_{i}=\infty
$$

a contradiction. Hence $(b) \Rightarrow(a)$. Thus the theorem is completely proved.

Remark 1. In the condition (12), if we substitute $\tau(n)=n-k$ i.e $\tau_{-1}(n)=n+k$ and $\tau_{-1}^{i}(n)=n+i k$, then from Theorem 6 , it follows that (12) $\Leftrightarrow(9)$.

From Remark 1 and Theorem 5 the following result follows.
Theorem 7. Every bounded solution of (8) oscillates if and only if (9) holds.

Remark 2. The above theorem improves Theorems 1, 2 and 3.
The following example illustrates the above Theorem 7.
Example. Consider the neutral difference equation

$$
\begin{equation*}
\Delta\left(y_{n}-y_{n-1}\right)+\frac{(n-2)\left(4 n^{6}+6 n^{2}-2\right)}{n^{3}(n-1)^{3}(n+1)^{3}} y_{n-2}^{1 / 3}=0, \quad n \geq 1 \tag{36}
\end{equation*}
$$

Here, $q_{n} \approx \frac{1}{n^{2}}$. Hence $\sum_{n=1}^{\infty} q_{n}<\infty$. However, $\sum_{n=1}^{\infty} n q_{n}=\infty$. Hence all the conditions of Theorem 7 are satisfied. Hence all it's solutions are oscillatory. In particular $y_{n}=\frac{(-1)^{n}}{n^{3}}$ is an oscillatory solution of (36). But the results of $[13,16,20]$, i.e. Theorems 1,2 and 3 fail to give any conclusion, because (3) is not satisfied. Note that both the conditions (5) and (6) required for the Theorems 2 and 3 respectively, independently impliy (3).

Acknowledgement. The authors are thankful and obliged to the referee for his or her various suggestions to improve the presentation of this paper.

References

[1] Agarwal R.P., Difference equations and inequalities, Marcel Dekker, New York 2000.
[2] Cheng S.S., Patula W.T., An existence theorem for a non linear difference equation, Nonlinear Analysis, 20(1993), 193-203.
[3] Das P., Misra N., A necessary and sufficient condition for the solution of a functional differential equation to be oscillatory or tend to zero, J. Math. Anal. Appl., 204(1997), 78-87.
[4] Elaydi S.N., An introduction to difference equations, Springer Verlag, New York 1996.
[5] Erbe L.H., Kong Q.K., Zhang B.G., Oscillation theory for functional differential equations, Marcel Dekker, New York 1995.
[6] Gyori I., Ladas G., Oscillation theory of delay differential equations with applications, Clarendon Press, Oxford 1991.
[7] Karpuz B., RathR.N., Rath S.K., On Oscillation and asymptotic behaviour of a higher order functional difference equation of neutral type, Communicated.
[8] Kelley W.G., Peterson A.C., Difference equations: An introduction with applications, Academic Press, New York 1991.
[9] Li Q., Liang H., Dong W., Zhang Z., Existence of non-oscillatory solutions to higher-order mixed difference equations, Electronic J. Differential Equations, 9(2007), 1-7.
[10] Lalli B.S., etal, On the oscillation of solutions and existence of positive solutions of neutral difference equations, J. Math. Anal. Appl., 158(1991), 213-233.
[11] Mickens R.E., Difference equations, Van Nostrand Reinhold Company Inc., New York 1987.
[12] Parhi N., Tripathy A.K., Oscillation criteria for forced non-linear neutral delay difference equations of first order, Diff. Eqs. and Dyn. Systems, 8(2000), 81-97.
[13] Parhi N., Tripathy A.K., On asymptotic behaviour and oscillation of forced first order nonlinear neutral difference equations, Fasc. Math., 32(2001), 83-95.
[14] Parhi N., Rath R.N., On oscillation and asymptotic behaviour of solutions of forced first order neutral differential equations, Proceedings of Indian Acad. Sci. Math. Sci., 111(2001), 337-350.
[15] Parhi N., Tripathy A.K., Oscillation of forced nonlinear neutral delay difference equations of first order, Czech. Math. J., 53(2003), 83-101.
[16] Parhi N., Tripathy A.K., Oscillation of a class of neutral difference equations of first order, J. of Diff. Equat. and Appl., 9(10)(2003), 933-946.
[17] Rath R.N., Misra N., Necessary and sufficient conditions for oscillatory behaviour of solutions of a forced nonlinear neutral equation of first order with positive and negative coefficients, Math. Slovaca, 54(2004), 255-266.
[18] Rath R.N., Padhy L.N., Necessary and sufficient conditions for oscillation of solutions of a first order forced nonlinear difference equation with several delays, Fasc. Math., 35(2005), 99-113.
[19] Rath R.N., Padhy L.N., Misra N., Oscillation and non-oscillation of neutral difference equations of first order with positive and negative coefficients, Fasc. Math., 37(2007), 57-65.
[20] Thandapani E., Arul R., Roja P.S., Oscillatory and asymptotic behaviour of solutions of non-homogeneous neutral difference equations, Studies of the University of Zilina Mathematical Series, 15(2002), 67-82.

Radhanath Rath
Department of Mathematics
V.S.S. University of Technology
Burla, Sambalpur, 768018 , Orissa, India
e-mail: radhanathmath@yahoo.co.in
Subhendu Kumar Rath
Department of Mathematics
Gandhi Eng. College
Bhubaneswar, Orissa, India

Received on 31.03.2008 and, in revised form, on 03.06.2009.

