$\frac{F A S C I C U L I M A T H E M A T I C I}{Nr 42}$

BINOD C. TRIPATHY AND HEMEN DUTTA

SOME DIFFERENCE PARANORMED SEQUENCE SPACES DEFINED BY ORLICZ FUNCTIONS

ABSTRACT. In this paper we introduce the difference paranormed sequence spaces $c_0(M, \Delta_m^n, p)$, $c(M, \Delta_m^n, p)$ and $\ell_{\infty}(M, \Delta_m^n, p)$ respectively. We study their different properties like completeness, solidity, monotonicity, symmetricity etc. We also obtain some relations between these spaces as well as prove some inclusion results. KEY WORDS: difference sequence, Orlicz function, paranormed space, completeness, solidity, symmetricity, convergence free, monotone space.

AMS Mathematics Subject Classification: 40A05, 46A45, 46E30.

1. Introduction

Throughout the paper w, ℓ_{∞} , c and c_0 denote the spaces of *all*, *bounded*, convergent and *null* sequences $x = (x_k)$ with complex terms respectively. The zero sequence is denoted by $\theta = (0, 0, ...)$.

The notion of difference sequence space was introduced by Kizmaz [2], who studied the difference sequence spaces $\ell_{\infty}(\Delta)$, $c(\Delta)$ and $c_0(\Delta)$. The notion was further generalized by Et and Colak [1] by introducing the spaces $\ell_{\infty}(\Delta^n)$, $c(\Delta^n)$ and $c_0(\Delta^n)$. Another type of generalization of the difference sequence spaces is due to Tripathy and Esi [13], who studied the spaces $\ell_{\infty}(\Delta_m)$, $c(\Delta_m)$ and $c_0(\Delta_m)$. Tripathy, Esi and Tripathy [14] generalized the above notions and unified these as follows:

Let m, n be non-negative integers, then for Z a given sequence space we have

$$Z(\Delta_m^n) = \{ x = (x_k) \in w : (\Delta_m^n x_k) \in Z \},\$$

where $\Delta_m^n x = (\Delta_m^n x_k) = (\Delta_m^{n-1} x_k - \Delta_m^{n-1} x_{k+m})$ and $\Delta_m^0 x_k = x_k$ for all $k \in N$, which is equivalent to the following binomial representation:

$$\Delta_m^n x_k = \sum_{v=0}^n (-1)^v \begin{pmatrix} n \\ v \end{pmatrix} x_{k+mv}.$$

Taking m = 1, we get the spaces $\ell_{\infty}(\Delta^n)$, $c(\Delta^n)$ and $c_0(\Delta^n)$ studied by Et and Colak [1]. Taking n=1, we get the spaces $\ell_{\infty}(\Delta_m)$, $c(\Delta_m)$ and $c_0(\Delta_m)$ studied by Tripathy and Esi [13]. Taking m=n=1, we get the spaces $\ell_{\infty}(\Delta)$, $c(\Delta)$ and $c_0(\Delta)$ introduced and studied by Kizmaz [2].

An Orlicz function is a function $M:[0, \infty) \to [0, \infty)$, which is continuous, non-decreasing and convex with M(0)=0, M(x) > 0 and $M(x) \to \infty$ as $x \to \infty$.

Lindenstrauss and Tzafriri [5] used the Orlicz function and introduced the sequence space ℓ_M as follows:

$$\ell_M = \{(x_k) \in w : \sum_{k=1}^{\infty} M(\frac{|x_k|}{\rho}) < \infty, \quad \text{for some } \rho > 0\}.$$

They proved that ℓ_M is a Banach space normed by

$$||(x_k)|| = \inf\{\rho > 0 : \sum_{k=1}^{\infty} M(\frac{|x_k|}{\rho}) \le 1\}.$$

Remark. An Orlicz function satisfies the inequality $M(\lambda x) \leq \lambda M(x)$ for all λ with $0 < \lambda < 1$.

The following inequality will be used throughout the article. Let $p = (p_k)$ be a positive sequence of real numbers with $0 < p_k \leq \sup p_k = G$, $D = \max\{1, 2^{G-1}\}$. Then for all $a_k, b_k \in C$ for all $k \in N$, we have

$$|a_k + b_k|^{p_k} \le D(|a_k|^{p_k} + |b_k|^{p_k}).$$

The studies on paranormed sequence spaces were initiated by Nakano [8] and Simons [11]. Later on it was further studied by Maddox [6], Nanda [9], Lascarides [3], Lascarides and Maddox [4], Tripathy and Sen [15] and many others. Parasar and Choudhary [10], Mursaleen, Khan and Qamaruddin [7] and many others studied paranormed sequence spaces using Orlicz functions.

2. Definitions and preliminaries

A sequence space E is said to be *solid* (or normal) if $(x_k) \in E$ implies $(\alpha_k x_k) \in E$ for all sequences of scalars (α_k) with $|\alpha_k| \leq 1$ for all $k \in N$.

A sequence space E is said to be *monotone* if it contains the canonical preimages of all its step spaces.

A sequence space E is said to be symmetric if $(x_{\pi(k)}) \in E$, where π is a permutation on N.

A sequence space E is said to be convergence free if $(y_k) \in E$ whenever $(x_k) \in E$ and $y_k = 0$ whenever $x_k = 0$.

A sequence space E is said to be a sequence algebra if $(x_k y_k) \in E$ whenever $(x_k) \in E$ and $(y_k) \in E$.

Let $p = (p_k)$ be any bounded sequence of positive real numbers. Then we define the following sequence spaces for an Orlicz function M:

$$c_0(M, \Delta_m^n, p) = \{x = (x_k) : \lim_{k \to \infty} (M(\frac{|\Delta_m^n x_k|}{\rho}))^{p_k} = 0, \text{ for some } \rho > 0\},$$

$$c(M, \Delta_m^n, p) = \{x = (x_k) : \lim_{k \to \infty} (M(\frac{|\Delta_m^n x_k - L|}{\rho}))^{p_k} = 0, \text{ for some } \rho > 0$$

and $L \in C\},$

$$\ell_\infty(M, \Delta_m^n, p) = \{x = (x_k) : \sup(M(\frac{|\Delta_m^n x_k|}{\rho}))^{p_k} < \infty, \text{ for some } \rho > 0\},$$

when $p_k = p$, a constant, for all k, then $c_0(M, \Delta_m^n, p) = c_0(M, \Delta_m^n)$, $c(M, \Delta_m^n, p) = c(M, \Delta_m^n)$ and $\ell_{\infty}(M, \Delta_m^n, p) = \ell_{\infty}(M, \Delta_m^n)$.

Lemma 1. If a sequence space E is solid, then E is monotone.

3. Main results

In this section we prove the results of this article. The proof of the following result is easy, so omitted.

Proposition 1. The classes of sequences $c_0(M, \Delta_m^n, p)$, $c(M, \Delta_m^n, p)$ and $\ell_{\infty}(M, \Delta_m^n, p)$ are linear spaces.

Theorem 1. For $Z = \ell_{\infty}$, c and c_0 , the spaces $Z(M, \Delta_m^n, p)$ are paranormed spaces, paranormed by

$$g(x) = \sum_{k=1}^{nm} |x_k| + \inf\{\rho^{\frac{p_k}{H}} : \sup_k M(\frac{|\Delta_m^n x_k|}{\rho}) \le 1\},\$$

where

$$H = \max(1, \sup_{k} p_k).$$

Proof. Clearly g(-x) = g(x), $g(\theta) = 0$. Let (x_k) and (y_k) be any two sequences belong to any one of the spaces $Z(M, \Delta_m^n, p)$, for $Z = c_0$, c and ℓ_{∞} . Then we have $\rho_1, \rho_2 > 0$ such that

$$\sup_{k} M(\frac{|\Delta_m^n x_k|}{\rho_1}) \le 1$$

and

$$\sup_{k} M(\frac{|\Delta_m^n y_k|}{\rho_2}) \le 1.$$

Let $\rho = \rho_1 + \rho_2$. Then by convexity of M, we have

$$\sup_{k} M(\frac{|\Delta_m^n(x_k+y_k)|}{\rho}) \le \left(\frac{\rho_1}{\rho_1+\rho_2}\right) \sup_{k} M(\frac{|\Delta_m^n x_k|}{\rho_1}) + \left(\frac{\rho_2}{\rho_1+\rho_2}\right) \sup_{k} M(\frac{|\Delta_m^n y_k|}{\rho_2}) \le 1.$$

Hence we have,

$$g(x+y) = \sum_{k=1}^{mn} |x_k + y_k| + \inf\{\rho_1^{\frac{p_k}{H}} : \sup_k M(\frac{|\Delta_m^n(x_k + y_k)|}{\rho}) \le 1\}$$

$$\le \sum_{k=1}^{mn} |x_k| + \inf\{\rho_1^{\frac{p_k}{H}} : \sup_k M(\frac{|\Delta_m^n x_k|}{\rho_1}) \le 1\}$$

$$+ \sum_{k=1}^{mn} |y_k| + \inf\{\rho_2^{\frac{p_k}{H}} : \sup_k M(\frac{|\Delta_m^n y_k|}{\rho_2}) \le 1\}.$$

This implies that

$$g(x+y) \le g(x) + g(y).$$

The continuity of the scalar multiplication follows from the following inequality:

$$g(\lambda x) = \sum_{k=1}^{mn} |\lambda x_k| + \inf\{\rho^{\frac{p_k}{H}} : \sup_k M(\frac{|\Delta_m^n \lambda x_k|}{\rho}) \le 1\} \\ = |\lambda| \sum_{k=1}^{mn} |x_k| + \inf\{(t|\lambda|)^{\frac{p_k}{H}} : \sup_k M(\frac{|\Delta_m^n x_k|}{t}) \le 1\}, \text{ where } t = \frac{\rho}{|\lambda|}.$$

Hence the space $Z(M, \Delta_m^n, p)$, for $Z = c_0$, c and ℓ_{∞} are paranormed spaces, paranormed by g.

Theorem 2. For $Z = \ell_{\infty}$, c and c_0 , the spaces $Z(M, \Delta_m^n, p)$ are complete paranormed spaces, paranormed by

$$g(x) = \sum_{k=1}^{nm} |x_k| + \inf\{\rho^{\frac{p_k}{H}} : \sup_k M(\frac{|\Delta_m^n x_k|}{\rho}) \le 1\},\$$

where

$$H = \max(1, \sup_k p_k).$$

Proof. We prove for the space $\ell_{\infty}(M, \Delta_m^n, p)$ and for the other spaces it will follow on applying similar arguments.

Let (x^i) be any Cauchy sequence in $\ell_{\infty}(M, \Delta_m^n, p)$. Let $x_0 > 0$ be fixed and t > 0 be such that for a given $0 < \varepsilon < 1$, $\frac{\varepsilon}{x_0 t} > 0$, and $x_0 t \ge 1$. Then there exists a positive integer n_0 such that

$$g(x^i - x^j) < \frac{\varepsilon}{x_0 t}$$
, for all $i, j \ge n_0$.

Using the definition of paranorm, we get

(1)
$$\sum_{k=1}^{mn} |x_k^i - x_k^j| + \inf\{\rho^{\frac{p_k}{H}} : \sup_k M(\frac{|\Delta_m^n (x_k^i - x_k^j)|}{\rho}) \le 1\} < \frac{\varepsilon}{x_0 t},$$
 for all $i, j \ge n_0.$

Hence we have,

$$\sum_{k=1}^{mn} |x_k^i - x_k^j| < \varepsilon, \text{ for all } i, j \ge n_0$$

This implies

$$|x_k^i - x_k^j| < \varepsilon$$
, for all $i, j \ge n_0$ and $1 \le k \le nm$.

Thus (x_k^i) is a Cauchy sequence in C for k = 1, 2, ..., nm. Hence (x_k^i) is convergent in C for k = 1, 2, ..., nm.

(2) Let
$$\lim_{k \to \infty} x_k^i = x_k$$
, say for $k = 1, 2, \dots, nm$.

Again from (1) we have,

$$\inf\{\rho^{\frac{p_k}{H}}: \sup_k M(\frac{|\Delta_m^n(x_k^i - x_k^j)|}{\rho}) \le 1\} < \varepsilon, \text{ for all } i, j \ge n_0.$$

Hence we get

$$\sup_{k} M(\frac{|\Delta_m^n(x_k^i - x_k^j)|}{g(x^i - x^j)}) \le 1, \text{ for all } i, j \ge n_0$$

It follows that $M(\frac{|\Delta_m^n(x_k^i - x_k^j)|}{g(x^i - x^j)}) \leq 1$, for each $k \geq 1$ and for all $i, j \geq n_0$. For t > 0 with $M(\frac{tx_0}{2}) \geq 1$, we have

$$M(\frac{|\Delta_m^n(x_k^i - x_k^j)|}{g(x^i - x^j)}) \le M(\frac{tx_0}{2}).$$

This implies

$$|\Delta_m^n x_k^i - \Delta_m^n x_k^j| \le \frac{tx_0}{2} \frac{\varepsilon}{tx_0} = \frac{\varepsilon}{2}.$$

Hence $(\Delta_m^n x_k^i)$ is a Cauchy sequence in C for all $k \in N$.

This implies that $(\Delta_m^n x_k^i)$ is convergent in C for all $k \in N$. Let $\lim_{i \to \infty} \Delta_m^n x_k^i$ $= y_k$ for each $k \in N$.

Let k = 1. Then we have

(3)
$$\lim_{i \to \infty} \Delta_m^n x_1^i = \lim_{i \to \infty} \sum_{v=0}^n (-1)^v \begin{pmatrix} n \\ v \end{pmatrix} x_{1+mv}^i = y_1.$$

We have by (2) and (3) $\lim_{i\to\infty} x^i_{mn+1} = x_{mn+1}$, exists. Proceeding in this way inductively, we have $\lim_{i\to\infty} x_k^i = x_k$ exists for each $k \in N$. Now we have for all $i, j \ge n_0$,

$$\sum_{k=1}^{mn} |x_k^i - x_k^j| + \inf\{\rho^{\frac{p_k}{H}} : \sup_k M(\frac{|\Delta_m^n (x_k^i - x_k^j)|}{\rho}) \le 1\} < \varepsilon.$$

This implies that

$$\lim_{j \to \infty} \{ \sum_{k=1}^{mn} |x_k^i - x_k^j| + \inf\{ \rho^{\frac{p_k}{H}} : \sup_k M(\frac{|\Delta_m^n(x_k^i - x_k^j)|}{\rho}) \le 1 \} \} < \varepsilon,$$

for all $i \geq n_0$. Using the continuity of M, we have

$$\sum_{k=1}^{nm} |x_k^i - x_k| + \inf\{\rho^{\frac{p_k}{H}} : \sup_k M(\frac{|\Delta_m^n x_k^i - \Delta_m^n x_k|}{\rho}) \le 1\} < \varepsilon,$$

for all $i \geq n_0$. It follows that $(x^i - x) \in \ell_{\infty}(M, \Delta_m^n, p)$. Since $(x^i) \in$ $\ell_{\infty}(M, \Delta_m^n, p)$ and $\ell_{\infty}(M, \Delta_m^n, p)$ is a linear space, so we have $x = x^i - (x^i - (x^i$ $x) \in \ell_{\infty}(M, \Delta_m^n, p).$

This completes the proof of the Theorem.

Theorem 3. If $0 < p_k \leq q_k < \infty$ for each k, then $Z(M, \Delta_m^n, p) \subseteq$ $Z(M, \Delta_m^n, q), \text{ for } Z = c_0 \text{ and } c.$

Proof. We prove the result for the case $Z = c_0$ and for the other case it will follow on applying similar arguments.

Let $(x_k) \in c_0(M, \Delta_m^n, p)$. Then there exists some $\rho > 0$ such that

$$\lim_{k \to \infty} (M(\frac{|\Delta_m^n x_k|}{\rho}))^{p_k} = 0.$$

This implies that $M(\frac{|\Delta_m^n x_k|}{\rho}) < \varepsilon(0 < \varepsilon < 1)$ for sufficiently large k. Hence we get

$$\lim_{k \to \infty} (M(\frac{|\Delta_m^n x_k|}{\rho}))^{q_k} \le \lim_{k \to \infty} (M(\frac{|\Delta_m^n x_k|}{\rho}))^{p_k} = 0.$$

This implies that $(x_k) \in c_0(M, \Delta_m^n, q)$. This completes the proof.

The following result is a consequence of Theorem 4.

Corollary. (a) If $0 < \inf p_k \le p_k \le 1$, for each k, then $Z(M, \Delta_m^n, p) \subseteq Z(M, \Delta_m^n)$, for $Z = c_0$ and c.

(b) If $1 \leq p_k \leq \sup p_k < \infty$, for each k, then $Z(M, \Delta_m^n) \subseteq Z(M, \Delta_m^n, p)$, for $Z = c_0$ and c.

Theorem 4. If M_1 and M_2 be two Orlicz functions. Then

- (i) $Z(M_1, \Delta_m^n, p) \subseteq Z(M_2 \circ M_1, \Delta_m^n, p),$
- (ii) $Z(M_1, \Delta_m^n, p) \cap Z(M_2, \Delta_m^n, p) \subseteq Z(M_1 + M_2, \Delta_m^n, p)$, for $Z = \ell_{\infty}$, c and c_0 .

Proof. We prove this part for $Z = \ell_{\infty}$ and the rest of the cases will follow similarly.

Let $(x_k) \in \ell_{\infty}(M_1, \Delta_m^n, p)$. Then there exists $0 < U < \infty$ such that

$$(M_1(\frac{|\Delta_m^n x_k|}{\rho}))^{p_k} \le U, \text{ for all } k \in N.$$

Let $y_k = M_1(\frac{|\Delta_m^n x_k|}{\rho})$. Then $y_k \leq U^{\frac{1}{p_k}} \leq V$, say for all $k \in N$. Hence we have

$$((M_2 \circ M_1)(\frac{|\Delta_m^n x_k|}{\rho}))^{p_k} = (M_2(y_k))^{p_k} \le (M_2(V))^{p_k} < \infty, \text{ for all } k \in N.$$

Hence $\sup_k ((M_2 \circ M_1)(\frac{|\Delta_m^n x_k|}{\rho}))^{p_k} < \infty$. Thus $(x_k) \in \ell_\infty(M_2 \circ M_1, \Delta_m^n, p)$.

(*ii*) We prove the result for the case $Z = c_0$ and for the other cases it will follow on applying similar arguments.

Let $(x_k) \in c_0(M_1, \Delta_m^n, p) \cap c_0(M_2, \Delta_m^n, p)$. Then there exist some ρ_1 , $\rho_2 > 0$ such that

$$\lim_{k \to \infty} (M_1(\frac{|\Delta_m^n x_k|}{\rho_1}))^{p_k} = 0 \text{ and } \lim_{k \to \infty} (M_2(\frac{|\Delta_m^n x_k|}{\rho_2}))^{p_k} = 0.$$

Let $\rho = \rho_1 + \rho_2$. Then we have

$$((M_1 + M_2)(\frac{|\Delta_m^n x_k|}{\rho}))^{p_k} \leq D[\frac{\rho_1}{\rho_1 + \rho_2} M_1(\frac{\Delta_m^n x_k}{\rho_1})]^{p_k} + D[\frac{\rho_2}{\rho_1 + \rho_2} M_2(\frac{\Delta_m^n x_k}{\rho_2})]^{p_k}.$$

This implies that

$$\lim_{k \to \infty} ((M_1 + M_2)(\frac{|\Delta_m^n x_k|}{\rho}))^{p_k} = 0.$$

Thus $(x_k) \in c_0(M_1 + M_2, \Delta_m^n, p)$. This completes the proof.

Theorem 5. $Z(M, \Delta_m^{n-1}, p) \subset Z(M, \Delta_m^n, p)$ (in general $Z(M, \Delta_m^i, p) \subset Z(M, \Delta_m^n, p)$, for i = 1, 2, ..., n-1, for $Z = \ell_{\infty}$, c and c_0 .

Proof. We prove the result for $Z = \ell_{\infty}$ and for the other cases it will follow on applying similar arguments.

Let $x = (x_k) \in \ell_{\infty}(M, \Delta_m^{n-1}, p)$. Then we can have $\rho > 0$ such that

(4)
$$(M(\frac{|\Delta_m^{n-1}x_k|}{\rho}))^{p_k} < \infty, \text{ for all } k \in N$$

On considering 2ρ and using the convexity of M, we have

$$M(\frac{|\Delta_m^n x_k|}{2\rho}) \le \frac{1}{2}M(\frac{|\Delta_m^{n-1} x_k|}{\rho}) + \frac{1}{2}M(\frac{|\Delta_m^{n-1} x_{k+m}|}{\rho}).$$

Hence we have

$$\left(M\left(\frac{|\Delta_m^n x_k|}{2\rho}\right)\right)^{p_k} \le D\left\{\left(\frac{1}{2}M\left(\frac{|\Delta_m^{n-1} x_k|}{\rho}\right)\right)^{p_k} + \left(\frac{1}{2}M\left(\frac{|\Delta_m^{n-1} x_{k+m}|}{\rho}\right)\right)^{p_k}\right\}.$$

Then using (4), we have

$$(M(\frac{|\Delta_m^n x_k|}{\rho}))^{p_k} < \infty, \text{ for all } k \in N.$$

Thus $\ell_{\infty}(M, \Delta_m^{n-1}, p) \subset \ell_{\infty}(M, \Delta_m^n, p).$

The inclusion is strict follows from the following example.

Example 1. Let m = 3, n = 2, $M(x) = x^2$, for all $x \in [0, \infty)$ and $p_k = 4$ for all k odd and $p_k = 3$ for all k even. Consider the sequence $x = (x_k) = (k)$. Then $\Delta_3^2 x_k = 0$, for all $k \in N$. Hence x belongs to $c_0(M, \Delta_3^2, p)$. Again we have $\Delta_3^1 x_k = -3$, for all $k \in N$. Hence x does not belong to $c_0(M, \Delta_3^1, p)$. Thus the inclusion is strict.

Theorem 6. Let M be an Orlicz function. Then

$$c_0(M, \Delta_m^n, p) \subset c(M, \Delta_m^n, p) \subset \ell_\infty(M, \Delta_m^n, p).$$

The inclusions are proper.

Proof. It is obvious that $c_0(M, \Delta_m^n, p) \subset c(M, \Delta_m^n, p)$. We shall prove that $c(M, \Delta_m^n, p) \subset \ell_{\infty}(M, \Delta_m^n, p)$.

Let $(x_k) \in c(M, \Delta_m^n, p)$. Then there exists some $\rho > 0$ and $L \in C$ such that

$$\lim_{k \to \infty} (M(\frac{|\Delta_m^n x_k - L|}{\rho}))^{p_k} = 0$$

On taking $\rho_1 = 2\rho$, we have

$$(M(\frac{|\Delta_m^n x_k|}{\rho_1}))^{p_k} \leq D[\frac{1}{2}(M(\frac{|\Delta_m^n x_k - L|}{\rho}))]^{p_k} + D[\frac{1}{2}M(\frac{|L|}{\rho})]^{p_k} \\ \leq D(\frac{1}{2})^{p_k}[M(\frac{|\Delta_m^n x_k - L|}{\rho})]^{p_k} + D(\frac{1}{2})^{p_k}\max(1, (M(\frac{|L|}{\rho}))^H).$$

where $H = \max(1, \sup p_k)$. Thus we get $(x_k) \in \ell_{\infty}(M, \Delta_m^n, p)$.

The inclusions are strict follow from the following examples.

Example 2. Let m = 2, n = 2, $M(x) = x^4$, for all $x \in [0, \infty)$ and $p_k = 1$, for all $k \in N$. Consider the sequence $x = (x_k) = (k^2)$. Then x belongs to $c(M, \Delta_2^2, p)$, but x does not belong to $c_0(M, \Delta_2^2, p)$.

Example 3. Let $m = 2, n = 2, M(x) = x^2$, for all $x \in [0, \infty)$ and $p_k = 2$, for all k odd and $p_k = 3$, for all k even. Consider the sequence $x = (x_k) = \{1, 3, 2, 4, 5, 7, 6, 8, 9, 11, 10, 12, ...\}$. Then x belongs to $\ell_{\infty}(M, \Delta_2^2, p)$, but x does not belong to $c(M, \Delta_2^2, p)$.

Theorem 7. The spaces $\ell_{\infty}(M, \Delta_m^n, p)$, $c(M, \Delta_m^n, p)$ and $c_0(M, \Delta_m^n, p)$ are not monotone and as such are not solid in general.

Proof. The proof follows from the following example.

Example 4. Let $n = 2, m = 3, p_k = 1$, for all k odd and $p_k = 2$, for all k even and $M(x) = x^2$, for all $x \in [0, \infty)$. Then $\Delta_3^2 x_k = x_k - 2x_{k+3} + x_{k+6}$, for all $k \in N$. Consider the J^{th} step space of a sequence space E defined by $(x_k), (y_k) \in E^J$ implies that $y_k = x_k$, for k odd and $y_k = 0$, for k even. Consider the sequence (x_k) defined by $x_k = k$, for all $k \in N$. Then (x_k) belongs to $Z(M, \Delta_3^2, p)$, for $Z = \ell_{\infty}, c$ and c_0 , but its J^{th} canonical pre-image does not belong to $Z(M, \Delta_3^2, p)$, for $Z = \ell_{\infty}, c$ and c_0 . Hence the spaces $\ell_{\infty}(M, \Delta_m^n, p), c(M, \Delta_m^n, p)$ and $c_0(M, \Delta_m^n, p)$ are not monotone and as such are not solid in general.

Theorem 8. The spaces $\ell_{\infty}(M, \Delta_m^n, p)$, $c(M, \Delta_m^n, p)$ and $c_0(M, \Delta_m^n, p)$ are not symmetric in general.

Proof. The proof follows from the following example.

Example 5. Let n = 2, m = 2, $p_k = 2$, for all k odd and $p_k = 3$, for all k even and $M(x) = x^2$, for all $x \in [0, \infty)$. Then $\Delta_2^2 x_k = x_k - 2x_{k+2} + x_{k+4}$, for all $k \in N$. Consider the sequence (x_k) defined by $x_k = k$, for k odd and $x_k = 0$, for k even. Then $\Delta_2^2 x_k = 0$, for all $k \in N$. Hence (x_k) belongs to $Z(M, \Delta_2^2, p)$, for $Z = \ell_{\infty}$, c and c_0 . Consider the rearranged sequence, (y_k) of (x_k) defined by

$$(y_k) = (x_1, x_3, x_2, x_4, x_5, x_7, x_6, x_8, x_9, x_{11}, x_{10}, x_{12}, \dots).$$

Then (y_k) does not belong to $Z(M, \Delta_2^2, p)$, for $Z = \ell_{\infty}$, c and c_0 . Hence the spaces $\ell_{\infty}(M, \Delta_m^n, p)$, $c(M, \Delta_m^n, p)$ and $c_0(M, \Delta_m^n, p)$ are not symmetric in general.

Theorem 9. The spaces $\ell_{\infty}(M, \Delta_m^n, p)$, $c(M, \Delta_m^n, p)$ and $c_0(M, \Delta_m^n, p)$ are not convergence free in general.

Proof. The proof follows from the following example.

Example 6. Let m = 3, n = 1, $p_k = 6$, for all $k \in N$ and $M(x) = x^3$, for all $x \in [0, \infty)$. Then $\Delta_3^1 x_k = x_k - x_{k+3}$, for all $k \in N$. Consider the sequences (x_k) and (y_k) defined by $x_k = 4$ for all $k \in N$ and $y_k = k^2$, for all $k \in N$. Then (x_k) belongs to $Z(M, \Delta_3^1, p)$, but (y_k) does not belong to $Z(M, \Delta_3^1, p)$, for $Z = \ell_{\infty}$, c and c_0 . Hence the spaces $\ell_{\infty}(M, \Delta_m^n, p)$, $c(M, \Delta_m^n, p)$ and $c_0(M, \Delta_m^n, p)$ are not convergence free in general.

Theorem 10. The spaces $\ell_{\infty}(M, \Delta_m^n, p)$, $c(M, \Delta_m^n, p)$ and $c_0(M, \Delta_m^n, p)$ are not sequence algebra in general.

Proof. The proof follows from the following examples.

Example 7. Let $n = 2, m = 1, p_k = 1$, for all $k \in N$ and $M(x) = x^3$, for all $x \in [0, \infty)$. Then $\Delta_1^2 x_k = x_k - 2x_{k+1} + x_{k+2}$, for all $k \in N$. Let x = (k) and $y = (k^2)$. Then x, y both belong to $Z(M, \Delta_1^2, p)$, for $Z = \ell_{\infty}$ and c, but xy does not belong to $Z(M, \Delta_1^2, p)$, for $Z = \ell_{\infty}$ and c. Hence the spaces $\ell_{\infty}(M, \Delta_m^n, p)$ and $c(M, \Delta_m^n, p)$ are not sequence algebra in general.

Example 8. Let n = 2, m = 1, $p_k = 7$, for all $k \in N$ and $M(x) = x^7$, for all $x \in [0, \infty)$. Then $\Delta_1^2 x_k = x_k - 2x_{k+1} + x_{k+2}$, for all $k \in N$. Let x = (k) and y = (k). Then x, y both belong to $c_0(M, \Delta_1^2, p)$, but xy does not belong to $c_0(M, \Delta_1^2, p)$. Hence the space $c_0(M, \Delta_m^n, p)$ is not sequence algebra in general.

References

 ET M., COLOK R., On generalized difference sequence spaces, Soochow J. Math., 21(4)(1995), 377-386.

- [2] KIZMAZ H., On certain sequence spaces, Canad. Math. Bull., 24(2)(1981), 169-176.
- [3] LASCARIDES C.G., A study of certain sequence spaces of Maddox and generalization of a theorem of Iyer, *Pacific Jour. Math.*, 38(2)(1971), 487-500.
- [4] LASCARIDES C.G., MADDOX I.J., Matrix transformation between some classes of sequences, Proc. Camb. Phil. Soc., 68(1970), 99-104.
- [5] LINDENSTRAUSS J., TZAFRIRI L., On Orlicz sequence spaces, Israel J. Math., 10(1971), 379-390.
- [6] MADDOX I.J., Paranormed sequence spaces generated by infinite matrices, *Proc. Camb. Phil. Soc.*, 64(1968), 335-340.
- [7] MURSALEEN, KHAN A., QAMARUDDIN, Difference sequence spaces defined by Orlicz functions, *Demonstratio Mathematica*, XXXII(1)(1999), 145-150.
- [8] NAKANO H., Modular sequence spaces, Proc. Japan Acad., 27(1951), 508-512.
- [9] NANDA S., Some sequence spaces and almost convergence, J. Austral. Math. Soc. Ser. A, 22(1976), 446-455.
- [10] PARASAR S.D., CHOUDHARY B., Sequence spaces defined by Orlicz functions, Indian J. Pure Appl. Math, 25(4)(1994), 419-428.
- [11] SIMONS S., The sequence spaces $\ell(p_v)$ and $m(p_v)$, Proc. London Math. Soc., 15(1965), 422-436.
- [12] TRIPATHY B.C., A class of difference sequences related to the *p*-normed space ℓ^p , Demonstratio Math., 36(4)(2003), 867-872.
- [13] TRIPATHY B.C., ESI A., A new type of difference sequence spaces, Internat. J. Sci. Technol., (1)(2006), 11-14.
- [14] TRIPATHY B.C., ESI A., TRIPATHY B.K., On a new type of generalized difference Cesàro sequence spaces, *Soochow J. Math.*, 31(3)(2005), 333-340.
- [15] TRIPATHY B.C., SEN M., On generalized statistically convergent sequence spaces, *Indian J. Pure Appl. Math.*, 32(11)(2001), 1689-1694.

BINOD CHANDRA TRIPATHY MATHEMATICAL SCIENCES DIVISION INSTITUTE OF ADVANCED STUDY IN SCIENCE AND TECHNOLOGY PASCHIM BORAGAON, GARCHUK, GUWAHATI-781035; INDIA

e-mail: tripathybc@yahoo.com *or* tripathybc@rediffmail.com

HEMEN DUTTA

DEPARTMENT OF MATHEMATICS A.D.P. COLLEGE, NAGAON-782002, ASSAM, INDIA *e-mail:* hemen_dutta@rediffmail.com

Received on 26.02.2008 and, in revised form, on 13.02.2009.