F A S C I C U L I M A T H E M A T I C I

Binod C. Tripathy and Hemen Dutta

SOME DIFFERENCE PARANORMED SEQUENCE SPACES DEFINED BY ORLICZ FUNCTIONS

Abstract

In this paper we introduce the difference paranormed sequence spaces $c_{0}\left(M, \Delta_{m}^{n}, p\right), c\left(M, \Delta_{m}^{n}, p\right)$ and $\ell_{\infty}\left(M, \Delta_{m}^{n}, p\right)$ respectively. We study their different properties like completeness, solidity, monotonicity, symmetricity etc. We also obtain some relations between these spaces as well as prove some inclusion results. Key words: difference sequence, Orlicz function, paranormed space, completeness, solidity, symmetricity, convergence free, monotone space.

AMS Mathematics Subject Classification: 40A05, 46A45, 46E30.

1. Introduction

Throughout the paper w, ℓ_{∞}, c and c_{0} denote the spaces of all, bounded, convergent and null sequences $x=\left(x_{k}\right)$ with complex terms respectively. The zero sequence is denoted by $\theta=(0,0, \ldots)$.

The notion of difference sequence space was introduced by Kizmaz [2], who studied the difference sequence spaces $\ell_{\infty}(\Delta), c(\Delta)$ and $c_{0}(\Delta)$. The notion was further generalized by Et and Colak [1] by introducing the spaces $\ell_{\infty}\left(\Delta^{n}\right), c\left(\Delta^{n}\right)$ and $c_{0}\left(\Delta^{n}\right)$. Another type of generalization of the difference sequence spaces is due to Tripathy and Esi [13], who studied the spaces $\ell_{\infty}\left(\Delta_{m}\right), c\left(\Delta_{m}\right)$ and $c_{0}\left(\Delta_{m}\right)$. Tripathy, Esi and Tripathy [14] generalized the above notions and unified these as follows:

Let m, n be non-negative integers, then for Z a given sequence space we have

$$
Z\left(\Delta_{m}^{n}\right)=\left\{x=\left(x_{k}\right) \in w:\left(\Delta_{m}^{n} x_{k}\right) \in Z\right\},
$$

where $\Delta_{m}^{n} x=\left(\Delta_{m}^{n} x_{k}\right)=\left(\Delta_{m}^{n-1} x_{k}-\Delta_{m}^{n-1} x_{k+m}\right)$ and $\Delta_{m}^{0} x_{k}=x_{k}$ for all $k \in N$, which is equivalent to the following binomial representation:

$$
\Delta_{m}^{n} x_{k}=\sum_{v=0}^{n}(-1)^{v}\binom{n}{v} x_{k+m v}
$$

Taking $m=1$, we get the spaces $\ell_{\infty}\left(\Delta^{n}\right), c\left(\Delta^{n}\right)$ and $c_{0}\left(\Delta^{n}\right)$ studied by Et and Colak [1]. Taking $n=1$, we get the spaces $\ell_{\infty}\left(\Delta_{m}\right), c\left(\Delta_{m}\right)$ and $c_{0}\left(\Delta_{m}\right)$ studied by Tripathy and Esi [13]. Taking $m=n=1$, we get the spaces $\ell_{\infty}(\Delta), c(\Delta)$ and $c_{0}(\Delta)$ introduced and studied by Kizmaz [2].

An Orlicz function is a function $M:[0, \infty) \rightarrow[0, \infty)$, which is continuous, non-decreasing and convex with $M(0)=0, M(x)>0$ and $M(x) \rightarrow \infty$ as $x \rightarrow \infty$.

Lindenstrauss and Tzafriri [5] used the Orlicz function and introduced the sequence space ℓ_{M} as follows:

$$
\ell_{M}=\left\{\left(x_{k}\right) \in w: \sum_{k=1}^{\infty} M\left(\frac{\left|x_{k}\right|}{\rho}\right)<\infty, \quad \text { for some } \rho>0\right\}
$$

They proved that ℓ_{M} is a Banach space normed by

$$
\left\|\left(x_{k}\right)\right\|=\inf \left\{\rho>0: \sum_{k=1}^{\infty} M\left(\frac{\left|x_{k}\right|}{\rho}\right) \leq 1\right\}
$$

Remark. An Orlicz function satisfies the inequality $M(\lambda x) \leq \lambda M(x)$ for all λ with $0<\lambda<1$.

The following inequality will be used throughout the article. Let $p=\left(p_{k}\right)$ be a positive sequence of real numbers with $0<p_{k} \leq \sup p_{k}=G, D=$ $\max \left\{1,2^{G-1}\right\}$. Then for all $a_{k}, b_{k} \in C$ for all $k \in N$, we have

$$
\left|a_{k}+b_{k}\right|^{p_{k}} \leq D\left(\left|a_{k}\right|^{p_{k}}+\left|b_{k}\right|^{p_{k}}\right) .
$$

The studies on paranormed sequence spaces were initiated by Nakano [8] and Simons [11]. Later on it was further studied by Maddox [6], Nanda [9], Lascarides [3], Lascarides and Maddox [4], Tripathy and Sen [15] and many others. Parasar and Choudhary [10], Mursaleen, Khan and Qamaruddin [7] and many others studied paranormed sequence spaces using Orlicz functions.

2. Definitions and preliminaries

A sequence space E is said to be solid (or normal) if $\left(x_{k}\right) \in E$ implies $\left(\alpha_{k} x_{k}\right) \in E$ for all sequences of scalars $\left(\alpha_{k}\right)$ with $\left|\alpha_{k}\right| \leq 1$ for all $k \in N$.

A sequence space E is said to be monotone if it contains the canonical preimages of all its step spaces.

A sequence space E is said to be symmetric if $\left(x_{\pi(k)}\right) \in E$, where π is a permutation on N.

A sequence space E is said to be convergence free if $\left(y_{k}\right) \in E$ whenever $\left(x_{k}\right) \in E$ and $y_{k}=0$ whenever $x_{k}=0$.

A sequence space E is said to be a sequence algebra if $\left(x_{k} y_{k}\right) \in E$ whenever $\left(x_{k}\right) \in E$ and $\left(y_{k}\right) \in E$.

Let $p=\left(p_{k}\right)$ be any bounded sequence of positive real numbers. Then we define the following sequence spaces for an Orlicz function M :

$$
\begin{aligned}
& c_{0}\left(M, \Delta_{m}^{n}, p\right)=\left\{x=\left(x_{k}\right): \lim _{k \rightarrow \infty}\left(M\left(\frac{\left|\Delta_{m}^{n} x_{k}\right|}{\rho}\right)\right)^{p_{k}}=0, \text { for some } \rho>0\right\}, \\
& c\left(M, \Delta_{m}^{n}, p\right)=\left\{x=\left(x_{k}\right): \lim _{k \rightarrow \infty}\left(M\left(\frac{\left|\Delta_{m}^{n} x_{k}-L\right|}{\rho}\right)\right)^{p_{k}}=0, \text { for some } \rho>0\right. \\
& \text { and } L \in C\}, \\
& \ell_{\infty}\left(M, \Delta_{m}^{n}, p\right)=\left\{x=\left(x_{k}\right): \sup _{k \geq 1}\left(M\left(\frac{\left|\Delta_{m}^{n} x_{k}\right|}{\rho}\right)\right)^{p_{k}}<\infty, \text { for some } \rho>0\right\},
\end{aligned}
$$

when $p_{k}=p$, a constant, for all k, then $c_{0}\left(M, \Delta_{m}^{n}, p\right)=c_{0}\left(M, \Delta_{m}^{n}\right)$, $c\left(M, \Delta_{m}^{n}, p\right)=c\left(M, \Delta_{m}^{n}\right)$ and $\ell_{\infty}\left(M, \Delta_{m}^{n}, p\right)=\ell_{\infty}\left(M, \Delta_{m}^{n}\right)$.

Lemma 1. If a sequence space E is solid, then E is monotone.

3. Main results

In this section we prove the results of this article. The proof of the following result is easy, so omitted.

Proposition 1. The classes of sequences $c_{0}\left(M, \Delta_{m}^{n}, p\right), c\left(M, \Delta_{m}^{n}, p\right)$ and $\ell_{\infty}\left(M, \Delta_{m}^{n}, p\right)$ are linear spaces.

Theorem 1. For $Z=\ell_{\infty}, c$ and c_{0}, the spaces $Z\left(M, \Delta_{m}^{n}, p\right)$ are paranormed spaces, paranormed by

$$
g(x)=\sum_{k=1}^{n m}\left|x_{k}\right|+\inf \left\{\rho^{\frac{p_{k}}{H}}: \sup _{k} M\left(\frac{\left|\Delta_{m}^{n} x_{k}\right|}{\rho}\right) \leq 1\right\}
$$

where

$$
H=\max \left(1, \sup _{k} p_{k}\right)
$$

Proof. Clearly $g(-x)=g(x), g(\theta)=0$. Let $\left(x_{k}\right)$ and $\left(y_{k}\right)$ be any two sequences belong to any one of the spaces $Z\left(M, \Delta_{m}^{n}, p\right)$, for $Z=c_{0}, c$ and ℓ_{∞}. Then we have $\rho_{1}, \rho_{2}>0$ such that

$$
\sup _{k} M\left(\frac{\left|\Delta_{m}^{n} x_{k}\right|}{\rho_{1}}\right) \leq 1
$$

and

$$
\sup _{k} M\left(\frac{\left|\Delta_{m}^{n} y_{k}\right|}{\rho_{2}}\right) \leq 1
$$

Let $\rho=\rho_{1}+\rho_{2}$. Then by convexity of M, we have

$$
\begin{aligned}
\sup _{k} M\left(\frac{\left|\Delta_{m}^{n}\left(x_{k}+y_{k}\right)\right|}{\rho}\right) \leq & \left(\frac{\rho_{1}}{\rho_{1}+\rho_{2}}\right) \sup _{k} M\left(\frac{\left|\Delta_{m}^{n} x_{k}\right|}{\rho_{1}}\right) \\
& +\left(\frac{\rho_{2}}{\rho_{1}+\rho_{2}}\right) \sup _{k} M\left(\frac{\left|\Delta_{m}^{n} y_{k}\right|}{\rho_{2}}\right) \leq 1 .
\end{aligned}
$$

Hence we have,

$$
\begin{aligned}
g(x+y)= & \sum_{k=1}^{m n}\left|x_{k}+y_{k}\right|+\inf \left\{\rho^{\frac{p_{k}}{H}}: \sup _{k} M\left(\frac{\left|\Delta_{m}^{n}\left(x_{k}+y_{k}\right)\right|}{\rho}\right) \leq 1\right\} \\
\leq & \sum_{k=1}^{m n}\left|x_{k}\right|+\inf \left\{\rho_{1}^{\frac{p_{k}}{H}}: \sup _{k} M\left(\frac{\left|\Delta_{m}^{n} x_{k}\right|}{\rho_{1}}\right) \leq 1\right\} \\
& +\sum_{k=1}^{m n}\left|y_{k}\right|+\inf \left\{\rho_{2}^{\frac{p_{k}}{H}}: \sup _{k} M\left(\frac{\left|\Delta_{m}^{n} y_{k}\right|}{\rho_{2}}\right) \leq 1\right\} .
\end{aligned}
$$

This implies that

$$
g(x+y) \leq g(x)+g(y)
$$

The continuity of the scalar multiplication follows from the following inequality:

$$
\begin{aligned}
g(\lambda x) & =\sum_{k=1}^{m n}\left|\lambda x_{k}\right|+\inf \left\{\rho^{\frac{p_{k}}{H}}: \sup _{k} M\left(\frac{\left|\Delta_{m}^{n} \lambda x_{k}\right|}{\rho}\right) \leq 1\right\} \\
& =|\lambda| \sum_{k=1}^{m n}\left|x_{k}\right|+\inf \left\{(t|\lambda|)^{\frac{p_{k}}{H}}: \sup _{k} M\left(\frac{\left|\Delta_{m}^{n} x_{k}\right|}{t}\right) \leq 1\right\}, \quad \text { where } t=\frac{\rho}{|\lambda|} .
\end{aligned}
$$

Hence the space $Z\left(M, \Delta_{m}^{n}, p\right)$, for $Z=c_{0}, c$ and ℓ_{∞} are paranormed spaces, paranormed by g.

Theorem 2. For $Z=\ell_{\infty}, c$ and c_{0}, the spaces $Z\left(M, \Delta_{m}^{n}, p\right)$ are complete paranormed spaces, paranormed by

$$
g(x)=\sum_{k=1}^{n m}\left|x_{k}\right|+\inf \left\{\rho^{\frac{p_{k}}{H}}: \sup _{k} M\left(\frac{\left|\Delta_{m}^{n} x_{k}\right|}{\rho}\right) \leq 1\right\}
$$

where

$$
H=\max \left(1, \sup _{k} p_{k}\right)
$$

Proof. We prove for the space $\ell_{\infty}\left(M, \Delta_{m}^{n}, p\right)$ and for the other spaces it will follow on applying similar arguments.

Let $\left(x^{i}\right)$ be any Cauchy sequence in $\ell_{\infty}\left(M, \Delta_{m}^{n}, p\right)$. Let $x_{0}>0$ be fixed and $t>0$ be such that for a given $0<\varepsilon<1, \frac{\varepsilon}{x_{0} t}>0$, and $x_{0} t \geq 1$. Then there exists a positive integer n_{0} such that

$$
g\left(x^{i}-x^{j}\right)<\frac{\varepsilon}{x_{0} t}, \text { for all } i, j \geq n_{0}
$$

Using the definition of paranorm, we get

$$
\begin{align*}
\sum_{k=1}^{m n}\left|x_{k}^{i}-x_{k}^{j}\right|+\inf \left\{\rho^{\frac{p_{k}}{H}}: \sup _{k} M\left(\frac{\left|\Delta_{m}^{n}\left(x_{k}^{i}-x_{k}^{j}\right)\right|}{\rho}\right) \leq\right. & 1\}<\frac{\varepsilon}{x_{0} t} \tag{1}\\
& \text { for all } i, j \geq n_{0}
\end{align*}
$$

Hence we have,

$$
\sum_{k=1}^{m n}\left|x_{k}^{i}-x_{k}^{j}\right|<\varepsilon, \text { for all } i, j \geq n_{0}
$$

This implies

$$
\left|x_{k}^{i}-x_{k}^{j}\right|<\varepsilon, \text { for all } i, j \geq n_{0} \text { and } 1 \leq k \leq n m
$$

Thus $\left(x_{k}^{i}\right)$ is a Cauchy sequence in C for $k=1,2, \ldots, n m$. Hence $\left(x_{k}^{i}\right)$ is convergent in C for $k=1,2, \ldots, n m$.

$$
\begin{equation*}
\text { Let } \lim _{i \rightarrow \infty} x_{k}^{i}=x_{k}, \text { say for } k=1,2, \ldots, n m \tag{2}
\end{equation*}
$$

Again from (1) we have,

$$
\inf \left\{\rho^{\frac{p_{k}}{H}}: \sup _{k} M\left(\frac{\left|\Delta_{m}^{n}\left(x_{k}^{i}-x_{k}^{j}\right)\right|}{\rho}\right) \leq 1\right\}<\varepsilon, \text { for all } i, j \geq n_{0}
$$

Hence we get

$$
\sup _{k} M\left(\frac{\left|\Delta_{m}^{n}\left(x_{k}^{i}-x_{k}^{j}\right)\right|}{g\left(x^{i}-x^{j}\right)}\right) \leq 1, \text { for all } i, j \geq n_{0}
$$

It follows that $M\left(\frac{\left|\Delta_{m}^{n}\left(x_{k}^{i}-x_{k}^{j}\right)\right|}{g\left(x^{i}-x^{j}\right)}\right) \leq 1$, for each $k \geq 1$ and for all $i, j \geq n_{0}$.
For $t>0$ with $M\left(\frac{t x_{0}}{2}\right) \geq 1$, we have

$$
M\left(\frac{\left|\Delta_{m}^{n}\left(x_{k}^{i}-x_{k}^{j}\right)\right|}{g\left(x^{i}-x^{j}\right)}\right) \leq M\left(\frac{t x_{0}}{2}\right)
$$

This implies

$$
\left|\Delta_{m}^{n} x_{k}^{i}-\Delta_{m}^{n} x_{k}^{j}\right| \leq \frac{t x_{0}}{2} \frac{\varepsilon}{t x_{0}}=\frac{\varepsilon}{2}
$$

Hence $\left(\Delta_{m}^{n} x_{k}^{i}\right)$ is a Cauchy sequence in C for all $k \in N$.
This implies that $\left(\Delta_{m}^{n} x_{k}^{i}\right)$ is convergent in C for all $k \in N$. Let $\lim _{i \rightarrow \infty} \Delta_{m}^{n} x_{k}^{i}$ $=y_{k}$ for each $k \in N$.

Let $k=1$. Then we have

$$
\begin{equation*}
\lim _{i \rightarrow \infty} \Delta_{m}^{n} x_{1}^{i}=\lim _{i \rightarrow \infty} \sum_{v=0}^{n}(-1)^{v}\binom{n}{v} x_{1+m v}^{i}=y_{1} \tag{3}
\end{equation*}
$$

We have by (2) and (3) $\lim _{i \rightarrow \infty} x_{m n+1}^{i}=x_{m n+1}$, exists. Proceeding in this way inductively, we have $\lim _{i \rightarrow \infty} x_{k}^{i}=x_{k}$ exists for each $k \in N$.

Now we have for all $i, j \geq n_{0}$,

$$
\sum_{k=1}^{m n}\left|x_{k}^{i}-x_{k}^{j}\right|+\inf \left\{\rho^{\frac{p_{k}}{H}}: \sup _{k} M\left(\frac{\left|\Delta_{m}^{n}\left(x_{k}^{i}-x_{k}^{j}\right)\right|}{\rho}\right) \leq 1\right\}<\varepsilon
$$

This implies that

$$
\lim _{j \rightarrow \infty}\left\{\sum_{k=1}^{m n}\left|x_{k}^{i}-x_{k}^{j}\right|+\inf \left\{\rho^{\frac{p_{k}}{H}}: \sup _{k} M\left(\frac{\left|\Delta_{m}^{n}\left(x_{k}^{i}-x_{k}^{j}\right)\right|}{\rho}\right) \leq 1\right\}\right\}<\varepsilon
$$

for all $i \geq n_{0}$. Using the continuity of M, we have

$$
\sum_{k=1}^{n m}\left|x_{k}^{i}-x_{k}\right|+\inf \left\{\rho^{\frac{p_{k}}{H}}: \sup _{k} M\left(\frac{\left|\Delta_{m}^{n} x_{k}^{i}-\Delta_{m}^{n} x_{k}\right|}{\rho}\right) \leq 1\right\}<\varepsilon
$$

for all $i \geq n_{0}$. It follows that $\left(x^{i}-x\right) \in \ell_{\infty}\left(M, \Delta_{m}^{n}, p\right)$. Since $\left(x^{i}\right) \in$ $\ell_{\infty}\left(M, \Delta_{m}^{n}, p\right)$ and $\ell_{\infty}\left(M, \Delta_{m}^{n}, p\right)$ is a linear space, so we have $x=x^{i}-\left(x^{i}-\right.$ $x) \in \ell_{\infty}\left(M, \Delta_{m}^{n}, p\right)$.

This completes the proof of the Theorem.
Theorem 3. If $0<p_{k} \leq q_{k}<\infty$ for each k, then $Z\left(M, \Delta_{m}^{n}, p\right) \subseteq$ $Z\left(M, \Delta_{m}^{n}, q\right)$, for $Z=c_{0}$ and c.

Proof. We prove the result for the case $Z=c_{0}$ and for the other case it will follow on applying similar arguments.

Let $\left(x_{k}\right) \in c_{0}\left(M, \Delta_{m}^{n}, p\right)$. Then there exists some $\rho>0$ such that

$$
\lim _{k \rightarrow \infty}\left(M\left(\frac{\left|\Delta_{m}^{n} x_{k}\right|}{\rho}\right)\right)^{p_{k}}=0
$$

This implies that $M\left(\frac{\left|\Delta_{m}^{n} x_{k}\right|}{\rho}\right)<\varepsilon(0<\varepsilon<1)$ for sufficiently large k.
Hence we get

$$
\lim _{k \rightarrow \infty}\left(M\left(\frac{\left|\Delta_{m}^{n} x_{k}\right|}{\rho}\right)\right)^{q_{k}} \leq \lim _{k \rightarrow \infty}\left(M\left(\frac{\left|\Delta_{m}^{n} x_{k}\right|}{\rho}\right)\right)^{p_{k}}=0
$$

This implies that $\left(x_{k}\right) \in c_{0}\left(M, \Delta_{m}^{n}, q\right)$. This completes the proof.
The following result is a consequence of Theorem 4.
Corollary. (a) If $0<\inf p_{k} \leq p_{k} \leq 1$, for each k, then $Z\left(M, \Delta_{m}^{n}, p\right) \subseteq$ $Z\left(M, \Delta_{m}^{n}\right)$, for $Z=c_{0}$ and c.
(b)If $1 \leq p_{k} \leq \sup p_{k}<\infty$, for each k, then $Z\left(M, \Delta_{m}^{n}\right) \subseteq Z\left(M, \Delta_{m}^{n}, p\right)$, for $Z=c_{0}$ and c.

Theorem 4. If M_{1} and M_{2} be two Orlicz functions. Then
(i) $Z\left(M_{1}, \Delta_{m}^{n}, p\right) \subseteq Z\left(M_{2} \circ M_{1}, \Delta_{m}^{n}, p\right)$,
(ii) $Z\left(M_{1}, \Delta_{m}^{n}, p\right) \cap Z\left(M_{2}, \Delta_{m}^{n}, p\right) \subseteq Z\left(M_{1}+M_{2}, \Delta_{m}^{n}, p\right)$, for $Z=\ell_{\infty}$, c and c_{0}.
Proof. We prove this part for $Z=\ell_{\infty}$ and the rest of the cases will follow similarly.

Let $\left(x_{k}\right) \in \ell_{\infty}\left(M_{1}, \Delta_{m}^{n}, p\right)$. Then there exists $0<U<\infty$ such that

$$
\left(M_{1}\left(\frac{\left|\Delta_{m}^{n} x_{k}\right|}{\rho}\right)\right)^{p_{k}} \leq U, \text { for all } k \in N
$$

Let $y_{k}=M_{1}\left(\frac{\left|\Delta_{m}^{n} x_{k}\right|}{\rho}\right)$. Then $y_{k} \leq U^{\frac{1}{p_{k}}} \leq V$, say for all $k \in N$.
Hence we have

$$
\left(\left(M_{2} \circ M_{1}\right)\left(\frac{\left|\Delta_{m}^{n} x_{k}\right|}{\rho}\right)\right)^{p_{k}}=\left(M_{2}\left(y_{k}\right)\right)^{p_{k}} \leq\left(M_{2}(V)\right)^{p_{k}}<\infty, \quad \text { for all } k \in N
$$

Hence $\sup _{k}\left(\left(M_{2} \circ M_{1}\right)\left(\frac{\left|\Delta_{m}^{n} x_{k}\right|}{\rho}\right)\right)^{p_{k}}<\infty$. Thus $\left(x_{k}\right) \in \ell_{\infty}\left(M_{2} \circ M_{1}, \Delta_{m}^{n}, p\right)$.
(ii) We prove the result for the case $Z=c_{0}$ and for the other cases it will follow on applying similar arguments.

Let $\left(x_{k}\right) \in c_{0}\left(M_{1}, \Delta_{m}^{n}, p\right) \cap c_{0}\left(M_{2}, \Delta_{m}^{n}, p\right)$. Then there exist some ρ_{1}, $\rho_{2}>0$ such that

$$
\lim _{k \rightarrow \infty}\left(M_{1}\left(\frac{\left|\Delta_{m}^{n} x_{k}\right|}{\rho_{1}}\right)\right)^{p_{k}}=0 \text { and } \lim _{k \rightarrow \infty}\left(M_{2}\left(\frac{\left|\Delta_{m}^{n} x_{k}\right|}{\rho_{2}}\right)\right)^{p_{k}}=0
$$

Let $\rho=\rho_{1}+\rho_{2}$. Then we have

$$
\begin{aligned}
\left(\left(M_{1}+M_{2}\right)\left(\frac{\left|\Delta_{m}^{n} x_{k}\right|}{\rho}\right)\right)^{p_{k}} \leq & D\left[\frac{\rho_{1}}{\rho_{1}+\rho_{2}} M_{1}\left(\frac{\Delta_{m}^{n} x_{k}}{\rho_{1}}\right)\right]^{p_{k}} \\
& +D\left[\frac{\rho_{2}}{\rho_{1}+\rho_{2}} M_{2}\left(\frac{\Delta_{m}^{n} x_{k}}{\rho_{2}}\right)\right]^{p_{k}}
\end{aligned}
$$

This implies that

$$
\lim _{k \rightarrow \infty}\left(\left(M_{1}+M_{2}\right)\left(\frac{\left|\Delta_{m}^{n} x_{k}\right|}{\rho}\right)\right)^{p_{k}}=0
$$

Thus $\left(x_{k}\right) \in c_{0}\left(M_{1}+M_{2}, \Delta_{m}^{n}, p\right)$. This completes the proof.
Theorem 5. $Z\left(M, \Delta_{m}^{n-1}, p\right) \subset Z\left(M, \Delta_{m}^{n}, p\right)\left(\right.$ in general $Z\left(M, \Delta_{m}^{i}, p\right) \subset$ $Z\left(M, \Delta_{m}^{n}, p\right)$, for $i=1,2, \ldots, n-1$, for $Z=\ell_{\infty}, c$ and c_{0}.

Proof. We prove the result for $Z=\ell_{\infty}$ and for the other cases it will follow on applying similar arguments.

Let $x=\left(x_{k}\right) \in \ell_{\infty}\left(M, \Delta_{m}^{n-1}, p\right)$. Then we can have $\rho>0$ such that

$$
\begin{equation*}
\left(M\left(\frac{\left|\Delta_{m}^{n-1} x_{k}\right|}{\rho}\right)\right)^{p_{k}}<\infty, \text { for all } k \in N \tag{4}
\end{equation*}
$$

On considering 2ρ and using the convexity of M, we have

$$
M\left(\frac{\left|\Delta_{m}^{n} x_{k}\right|}{2 \rho}\right) \leq \frac{1}{2} M\left(\frac{\left|\Delta_{m}^{n-1} x_{k}\right|}{\rho}\right)+\frac{1}{2} M\left(\frac{\left|\Delta_{m}^{n-1} x_{k+m}\right|}{\rho}\right) .
$$

Hence we have

$$
\left(M\left(\frac{\left|\Delta_{m}^{n} x_{k}\right|}{2 \rho}\right)\right)^{p_{k}} \leq D\left\{\left(\frac{1}{2} M\left(\frac{\left|\Delta_{m}^{n-1} x_{k}\right|}{\rho}\right)\right)^{p_{k}}+\left(\frac{1}{2} M\left(\frac{\left|\Delta_{m}^{n-1} x_{k+m}\right|}{\rho}\right)\right)^{p_{k}}\right\} .
$$

Then using (4), we have

$$
\left(M\left(\frac{\left|\Delta_{m}^{n} x_{k}\right|}{\rho}\right)\right)^{p_{k}}<\infty, \text { for all } k \in N .
$$

Thus $\ell_{\infty}\left(M, \Delta_{m}^{n-1}, p\right) \subset \ell_{\infty}\left(M, \Delta_{m}^{n}, p\right)$.
The inclusion is strict follows from the following example.
Example 1. Let $m=3, n=2, M(x)=x^{2}$, for all $x \in[0, \infty)$ and $p_{k}=4$ for all k odd and $p_{k}=3$ for all k even. Consider the sequence $x=\left(x_{k}\right)=(k)$. Then $\Delta_{3}^{2} x_{k}=0$, for all $k \in N$. Hence x belongs to $c_{0}\left(M, \Delta_{3}^{2}, p\right)$. Again we have $\Delta_{3}^{1} x_{k}=-3$, for all $k \in N$. Hence x does not belong to $c_{0}\left(M, \Delta_{3}^{1}, p\right)$. Thus the inclusion is strict.

Theorem 6. Let M be an Orlicz function. Then

$$
c_{0}\left(M, \Delta_{m}^{n}, p\right) \subset c\left(M, \Delta_{m}^{n}, p\right) \subset \ell_{\infty}\left(M, \Delta_{m}^{n}, p\right)
$$

The inclusions are proper.

Proof. It is obvious that $c_{0}\left(M, \Delta_{m}^{n}, p\right) \subset c\left(M, \Delta_{m}^{n}, p\right)$. We shall prove that $c\left(M, \Delta_{m}^{n}, p\right) \subset \ell_{\infty}\left(M, \Delta_{m}^{n}, p\right)$.

Let $\left(x_{k}\right) \in c\left(M, \Delta_{m}^{n}, p\right)$. Then there exists some $\rho>0$ and $L \in C$ such that

$$
\lim _{k \rightarrow \infty}\left(M\left(\frac{\left|\Delta_{m}^{n} x_{k}-L\right|}{\rho}\right)\right)^{p_{k}}=0
$$

On taking $\rho_{1}=2 \rho$, we have

$$
\begin{aligned}
\left(M\left(\frac{\left|\Delta_{m}^{n} x_{k}\right|}{\rho_{1}}\right)\right)^{p_{k}} & \leq D\left[\frac{1}{2}\left(M\left(\frac{\left|\Delta_{m}^{n} x_{k}-L\right|}{\rho}\right)\right)\right]^{p_{k}}+D\left[\frac{1}{2} M\left(\frac{|L|}{\rho}\right)\right]^{p_{k}} \\
& \leq D\left(\frac{1}{2}\right)^{p_{k}}\left[M\left(\frac{\left|\Delta_{m}^{n} x_{k}-L\right|}{\rho}\right)\right]^{p_{k}}+D\left(\frac{1}{2}\right)^{p_{k}} \max \left(1,\left(M\left(\frac{|L|}{\rho}\right)\right)^{H}\right)
\end{aligned}
$$

where $H=\max \left(1, \sup p_{k}\right)$. Thus we get $\left(x_{k}\right) \in \ell_{\infty}\left(M, \Delta_{m}^{n}, p\right)$.
The inclusions are strict follow from the following examples.
Example 2. Let $m=2, n=2, M(x)=x^{4}$, for all $x \in[0, \infty)$ and $p_{k}=1$, for all $k \in N$. Consider the sequence $x=\left(x_{k}\right)=\left(k^{2}\right)$. Then x belongs to $c\left(M, \Delta_{2}^{2}, p\right)$, but x does not belong to $c_{0}\left(M, \Delta_{2}^{2}, p\right)$.

Example 3. Let $m=2, n=2, M(x)=x^{2}$, for all $x \in[0, \infty)$ and $p_{k}=2$, for all k odd and $p_{k}=3$, for all k even. Consider the sequence $x=$ $\left(x_{k}\right)=\{1,3,2,4,5,7,6,8,9,11,10,12, \ldots\}$. Then x belongs to $\ell_{\infty}\left(M, \Delta_{2}^{2}, p\right)$, but x does not belong to $c\left(M, \Delta_{2}^{2}, p\right)$.

Theorem 7. The spaces $\ell_{\infty}\left(M, \Delta_{m}^{n}, p\right), c\left(M, \Delta_{m}^{n}, p\right)$ and $c_{0}\left(M, \Delta_{m}^{n}, p\right)$ are not monotone and as such are not solid in general.

Proof. The proof follows from the following example.
Example 4. Let $n=2, m=3, p_{k}=1$, for all k odd and $p_{k}=2$, for all k even and $M(x)=x^{2}$, for all $x \in[0, \infty)$. Then $\Delta_{3}^{2} x_{k}=x_{k}-2 x_{k+3}+x_{k+6}$, for all $k \in N$. Consider the $J^{t h}$ step space of a sequence space E defined by $\left(x_{k}\right),\left(y_{k}\right) \in E^{J}$ implies that $y_{k}=x_{k}$, for k odd and $y_{k}=0$, for k even. Consider the sequence $\left(x_{k}\right)$ defined by $x_{k}=k$, for all $k \in N$. Then $\left(x_{k}\right)$ belongs to $Z\left(M, \Delta_{3}^{2}, p\right)$, for $Z=\ell_{\infty}, c$ and c_{0}, but its $J^{t h}$ canonical pre-image does not belong to $Z\left(M, \Delta_{3}^{2}, p\right)$, for $Z=\ell_{\infty}, c$ and c_{0}. Hence the spaces $\ell_{\infty}\left(M, \Delta_{m}^{n}, p\right), c\left(M, \Delta_{m}^{n}, p\right)$ and $c_{0}\left(M, \Delta_{m}^{n}, p\right)$ are not monotone and as such are not solid in general.

Theorem 8. The spaces $\ell_{\infty}\left(M, \Delta_{m}^{n}, p\right), c\left(M, \Delta_{m}^{n}, p\right)$ and $c_{0}\left(M, \Delta_{m}^{n}, p\right)$ are not symmetric in general.

Proof. The proof follows from the following example.

Example 5. Let $n=2, m=2, p_{k}=2$, for all k odd and $p_{k}=3$, for all k even and $M(x)=x^{2}$, for all $x \in[0, \infty)$. Then $\Delta_{2}^{2} x_{k}=x_{k}-2 x_{k+2}+x_{k+4}$, for all $k \in N$. Consider the sequence $\left(x_{k}\right)$ defined by $x_{k}=k$, for k odd and $x_{k}=0$, for k even. Then $\Delta_{2}^{2} x_{k}=0$, for all $k \in N$. Hence $\left(x_{k}\right)$ belongs to $Z\left(M, \Delta_{2}^{2}, p\right)$, for $Z=\ell_{\infty}, c$ and c_{0}. Consider the rearranged sequence, $\left(y_{k}\right)$ of $\left(x_{k}\right)$ defined by

$$
\left(y_{k}\right)=\left(x_{1}, x_{3}, x_{2}, x_{4}, x_{5}, x_{7}, x_{6}, x_{8}, x_{9}, x_{11}, x_{10}, x_{12}, \ldots\right)
$$

Then $\left(y_{k}\right)$ does not belong to $Z\left(M, \Delta_{2}^{2}, p\right)$, for $Z=\ell_{\infty}, c$ and c_{0}. Hence the spaces $\ell_{\infty}\left(M, \Delta_{m}^{n}, p\right), c\left(M, \Delta_{m}^{n}, p\right)$ and $c_{0}\left(M, \Delta_{m}^{n}, p\right)$ are not symmetric in general.

Theorem 9. The spaces $\ell_{\infty}\left(M, \Delta_{m}^{n}, p\right), c\left(M, \Delta_{m}^{n}, p\right)$ and $c_{0}\left(M, \Delta_{m}^{n}, p\right)$ are not convergence free in general.

Proof. The proof follows from the following example.
Example 6. Let $m=3, n=1, p_{k}=6$, for all $k \in N$ and $M(x)=x^{3}$, for all $x \in[0, \infty)$. Then $\Delta_{3}^{1} x_{k}=x_{k}-x_{k+3}$, for all $k \in N$. Consider the sequences $\left(x_{k}\right)$ and $\left(y_{k}\right)$ defined by $x_{k}=4$ for all $k \in N$ and $y_{k}=k^{2}$, for all $k \in N$. Then $\left(x_{k}\right)$ belongs to $Z\left(M, \Delta_{3}^{1}, p\right)$, but $\left(y_{k}\right)$ does not belong to $Z\left(M, \Delta_{3}^{1}, p\right)$, for $Z=\ell_{\infty}, c$ and c_{0}. Hence the spaces $\ell_{\infty}\left(M, \Delta_{m}^{n}, p\right)$, $c\left(M, \Delta_{m}^{n}, p\right)$ and $c_{0}\left(M, \Delta_{m}^{n}, p\right)$ are not convergence free in general.

Theorem 10. The spaces $\ell_{\infty}\left(M, \Delta_{m}^{n}, p\right), c\left(M, \Delta_{m}^{n}, p\right)$ and $c_{0}\left(M, \Delta_{m}^{n}, p\right)$ are not sequence algebra in general.

Proof. The proof follows from the following examples.
Example 7. Let $n=2, m=1, p_{k}=1$, for all $k \in N$ and $M(x)=x^{3}$, for all $x \in[0, \infty)$. Then $\Delta_{1}^{2} x_{k}=x_{k}-2 x_{k+1}+x_{k+2}$, for all $k \in N$. Let $x=(k)$ and $y=\left(k^{2}\right)$. Then x, y both belong to $Z\left(M, \Delta_{1}^{2}, p\right)$, for $Z=\ell_{\infty}$ and c, but $x y$ does not belong to $Z\left(M, \Delta_{1}^{2}, p\right)$, for $Z=\ell_{\infty}$ and c. Hence the spaces $\ell_{\infty}\left(M, \Delta_{m}^{n}, p\right)$ and $c\left(M, \Delta_{m}^{n}, p\right)$ are not sequence algebra in general.

Example 8. Let $n=2, m=1, p_{k}=7$, for all $k \in N$ and $M(x)=x^{7}$, for all $x \in[0, \infty)$. Then $\Delta_{1}^{2} x_{k}=x_{k}-2 x_{k+1}+x_{k+2}$, for all $k \in N$. Let $x=(k)$ and $y=(k)$. Then x, y both belong to $c_{0}\left(M, \Delta_{1}^{2}, p\right)$, but $x y$ does not belong to $c_{0}\left(M, \Delta_{1}^{2}, p\right)$. Hence the space $c_{0}\left(M, \Delta_{m}^{n}, p\right)$ is not sequence algebra in general.

References

[1] Et M., Colok R., On generalized difference sequence spaces, Soochow J. Math., 21(4)(1995), 377-386.
[2] Kizmaz H., On certain sequence spaces, Canad. Math. Bull., 24(2)(1981), 169-176.
[3] Lascarides C.G., A study of certain sequence spaces of Maddox and generalization of a theorem of Iyer, Pacific Jour. Math., 38(2)(1971), 487-500.
[4] Lascarides C.G., Maddox I.J., Matrix transformation between some classes of sequences, Proc. Camb. Phil. Soc., 68(1970), 99-104.
[5] Lindenstrauss J., Tzafriri L., On Orlicz sequence spaces, Israel J. Math., 10(1971), 379-390.
[6] Maddox I.J., Paranormed sequence spaces generated by infinite matrices, Proc. Camb. Phil. Soc., 64(1968), 335-340.
[7] Mursaleen, Khan A., Qamaruddin, Difference sequence spaces defined by Orlicz functions, Demonstratio Mathematica, XXXII(1)(1999), 145-150.
[8] Nakano H., Modular sequence spaces, Proc. Japan Acad., 27(1951), 508-512.
[9] Nanda S., Some sequence spaces and almost convergence, J. Austral. Math. Soc. Ser. A, 22(1976), 446-455.
[10] Parasar S.D., Choudhary B., Sequence spaces defined by Orlicz functions, Indian J. Pure Appl. Math, 25(4)(1994), 419-428.
[11] Simons S., The sequence spaces $\ell\left(p_{v}\right)$ and $m\left(p_{v}\right)$, Proc. London Math. Soc., 15(1965), 422-436.
[12] Tripathy B.C., A class of difference sequences related to the p-normed space ℓ^{p}, Demonstratio Math., 36(4)(2003), 867-872.
[13] Tripathy B.C., Esi A., A new type of difference sequence spaces, Internat. J. Sci. Technol., (1)(2006), 11-14.
[14] Tripathy B.C., Esi A., Tripathy B.K., On a new type of generalized difference Cesàro sequence spaces, Soochow J. Math., 31(3)(2005), 333-340.
[15] Tripathy B.C., Sen M., On generalized statistically convergent sequence spaces, Indian J. Pure Appl. Math., 32(11)(2001), 1689-1694.

Binod Chandra Tripathy
Mathematical Sciences Division
Institute of Advanced Study in Science and Technology
Paschim Boragaon, Garchuk, Guwahati-781035; India
e-mail: tripathybc@yahoo.com or tripathybc@rediffmail.com

Hemen Dutta

Department of Mathematics
A.D.P. COLLEGE, Nagaon-782002, Assam, India
e-mail: hemen_dutta@rediffmail.com
Received on 26.02.2008 and, in revised form, on 13.02.2009.

