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ABSTRACT. In this paper we introduce the difference paranormed
sequence spaces co(M, Al . p), ¢(M, A p) and lo. (M, A, p) re-
spectively. We study their different properties like completeness,
solidity, monotonicity, symmetricity etc. We also obtain some rela-
tions between these spaces as well as prove some inclusion results.

Key woRrbDS: difference sequence, Orlicz function, paranormed
space, completeness, solidity, symmetricity, convergence free, mo-
notone space.

AMS Mathematics Subject Classification: 40A05, 46A45, 46E30.

1. Introduction

Throughout the paper w, £, ¢ and ¢y denote the spaces of all, bounded,
convergent and null sequences x = (x) with complex terms respectively.
The zero sequence is denoted by 6=(0, 0, . . .).

The notion of difference sequence space was introduced by Kizmaz [2],
who studied the difference sequence spaces (oo (A), ¢(A) and co(A). The
notion was further generalized by Et and Colak [1] by introducing the spaces
loo(A™), ¢(A™) and ¢o(A™). Another type of generalization of the difference
sequence spaces is due to Tripathy and Esi [13], who studied the spaces
loo(An), c(Ap) and co(Ay,). Tripathy, Esi and Tripathy [14] generalized
the above notions and unified these as follows:

Let m, n be non-negative integers, then for Z a given sequence space we
have

Z(AY) =z = (xx) ew: (AL xk) € Z},

where Az = (AP x) = (A% oy — Aoy, ,) and Az, = ay, for all
k € N, which is equivalent to the following binomial representation:

Al xyp = Z(—l)” < Z ) Thtmu -

v=0
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Taking m = 1, we get the spaces loo(A™), c(A™) and ¢o(A™) studied
by Et and Colak [1]. Taking n=1, we get the spaces loo(Ay,), c(Ay,) and
co(A,) studied by Tripathy and Esi [13]. Taking m=n=1, we get the spaces
loo(A), ¢(A) and ¢g(A) introduced and studied by Kizmaz [2].

An Orlicz function is a function M:[0, co) — [0, 0o), which is continuous,
non-decreasing and convex with M (0)=0, M(z) > 0 and M(z) — oo as
T — 00.

Lindenstrauss and Tzafriri [5] used the Orlicz function and introduced
the sequence space £,y as follows:

Oy = {(xg) € w: ZM(LTPH) < o0, for some p > 0}.
k=1

They proved that £;; is a Banach space normed by

Jall = int{p > 0: 3wl <1y,
=1 P

Remark. An Orlicz function satisfies the inequality M (Az) < AM(x)
for all A with 0 < A < 1.

The following inequality will be used throughout the article. Let p = (px
be a positive sequence of real numbers with 0 < pp < suppr = G, D =
max{1,2¢71}. Then for all a, b, € C for all k € N, we have

|ar, + bk ["* < D([ax|P* + |be[**).

The studies on paranormed sequence spaces were initiated by Nakano [8]
and Simons [11]. Later on it was further studied by Maddox [6], Nanda [9],
Lascarides [3], Lascarides and Maddox [4], Tripathy and Sen [15] and many
others. Parasar and Choudhary [10], Mursaleen, Khan and Qamaruddin [7]
and many others studied paranormed sequence spaces using Orlicz functions.

2. Definitions and preliminaries

A sequence space E is said to be solid (or normal) if (zy) € E implies
(agzy) € E for all sequences of scalars (ay) with |ag| <1 for all k € N.

A sequence space E is said to be monotone if it contains the canonical
preimages of all its step spaces.

A sequence space E is said to be symmetric if (x,r(k)) € E, where 7 is a
permutation on /N.

A sequence space E is said to be convergence free if (yx) € E whenever
(zx) € FE and y, = 0 whenever z; = 0.
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A sequence space E is said to be a sequence algebra if (zxyx) € E when-
ever (z) € E and (yx) € E.

Let p = (px) be any bounded sequence of positive real numbers. Then
we define the following sequence spaces for an Orlicz function M:

co(M, A" p) = {z = (z3) : klggo(M(%))m =0, for some p > 0},

(M, AT p) ={z = (xp) : kh_@o(M(w))pk =0, for some p >0

and L € C},

loo(M, A2, p) = {z = (z) : sup(M(222£1))2e < o, for some p > 0},
k>1
when pr = p, a constant, for all k, then co(M,A},p) = co(M,A}),

(M, A p) =c(M,A},) and loo (M, AL, p) = loo(M, AT).

Lemma 1. If a sequence space E is solid, then E is monotone.

3. Main results

In this section we prove the results of this article. The proof of the
following result is easy, so omitted.

Proposition 1. The classes of sequences co(M, A", p), ¢(M, Al p) and
loo(M, A}, p) are linear spaces.

Theorem 1. For Z = l, ¢ and cy, the spaces Z(M, Al p) are para-
normed spaces, paranormed by

|A7, x|
p

g(@) = > |ax| + inf{p# : sup M( ) <13,
k=1 k
where

H = max(1,suppg).
k

Proof. Clearly g(—z) = g(x), g() = 0. Let (zx) and (yx) be any two
sequences belong to any one of the spaces Z(M, A}, p), for Z = ¢y, ¢ and
loo. Then we have p1, p2 > 0 such that

|A, Tk

P1

sup M( ) <1
k

and
|AT k|
P2

sup M ( ) < 1.
k
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Let p = p1 + p2. Then by convexity of M, we have

|AD (zr + Y1) |A7, x|

P1
< sup M
,01-1-/)2) k ( 1 )

ATL
+(7p2 ) sup M(7| mUk|
p1L+p27 & P2

sup M (
k
) < 1.

Hence we have,

mn

. P
gz +y) = E |z + y| + inf{p®H :SLI1€pM(
k=1

| A7k + Y|

mn PL AP
S Jol + int{py : sup Ar(I2ml
pt k p1

mn i AP
+ > lywl +inf{pg : Sup M(M) <1}
k=1

IN

) <1}

P2
This implies that
g(@+y) < g(@) + 9(y).

The continuity of the scalar multiplication follows from the following in-
equality:

g(Az) = Z |Azk| + inf{ppﬁk :supM(M) <1}
1 k p
mn An
= Y Jax] +inf{ (A # csup MBI - 1y here 1= 2
— k t A

Hence the space Z(M, A}, p), for Z = ¢y, ¢ and { are paranormed spaces,
paranormed by g. |

Theorem 2. For Z = l, ¢ and ¢y, the spaces Z (M, AL, p) are complete
paranormed spaces, paranormed by

|AL |

, ) sth

nm
g(x) = Z || + inf{p%k : sipM(
k=1

where

H = max(1,suppg).
k
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Proof. We prove for the space ¢ (M, A7, p) and for the other spaces it
will follow on applying similar arguments.

Let (') be any Cauchy sequence in £ (M, A% p). Let x9 > 0 be fixed
and t > 0 be such that for a given 0 < ¢ < 1, Iiot > 0, and xgt > 1. Then
there exists a positive integer ng such that

gla® —a7) < a:iof for all 7,5 > no.

Using the definition of paranorm, we get

mn ' A (i ;
L > | — 2] +inf{pH : sgpM(W(xkka) <1} < xiOt?
k=1

for all 4,5 > nyg.

Hence we have,
mn

Z |2k, — xi\ <eg, forall i,j > no.
k=1

This implies

|x};—xi|<6, for all i,j >ng and 1 <k < nm.

Thus (x%) is a Cauchy sequence in C for k = 1,2,...,nm. Hence (z) is

convergent in C for k= 1,2, ..., nm.

(2) Let lim x} =z, say for k=1,2,...,nm.

1— 00

Again from (1) we have,

A7 (2] — )]

inf{p%k s sup M ( ) <1} <e, forall 4,j > ng.
k

Hence we get

A" (2 — ]
M)Sl’ for all 7,7 > ng.

It follows that M(W) < 1, for each k > 1 and for all 7, j > ny.
g(z'—a7)
For t > 0 with M (%) > 1, we have

AT (2, — o))

M= @ =)

) < M(—=
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This implies
. ; trg € €
Ay, — ARy < 2 tme 2
Hence (A7,zt) is a Cauchy sequence in C for all k € N.
This implies that (A7} ) is convergent in C for all k € N. Let zlig)lo Al zh

=y, for each k € N.
Let £ = 1. Then we have

3) Jim At = tim 301" ()t =
v=0

We have by (2) and (3) lim z¢,, .| = Zynt1, exists. Proceeding in this way
1—00
inductively, we have lim xj = x}, exists for each k € V.
1— 00
Now we have for all ¢, j > ng,

mn i 1

. . AT (pt _:L,J

E |z}, — 7| + inf{p%k : sup M(—’ m(Z — 7|
k

k=1

) <1} <e.

This implies that

mn ) . . AP i o
lim {Z |}, — x| + inf{p%k : SupM(| m(@h = 73|
k

k=1

Jj—0o0

) <13} <e,

for all ¢ > ng. Using the continuity of M, we have

ALk — Ajl

p

nm
Z\x};—xk\+inf{p% :sup M( ) <1} <e,
k

k=1

for all i > ng. It follows that (z¢ — x) € lo(M, A%, p). Since (z) €
loo (M, A" p) and Lo (M, A7 p) is a linear space, so we have z = 2% — (2% —
2)E ba(M, AL, ).

This completes the proof of the Theorem. |

Theorem 3. If 0 < pp < qx < oo for each k, then Z(M,A}, . p) C
Z(M,AY . q), for Z =cy and c.

Proof. We prove the result for the case Z = ¢y and for the other case it
will follow on applying similar arguments.
Let (xf) € co(M, A}, p). Then there exists some p > 0 such that
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This implies that M(IA xk‘) < e(0 < e < 1) for sufficiently large k.
Hence we get

AT AT
lim (M(7| mxk|))q’“ < lim (M(7| mxk|))Pk =0.
k—oo P k—o0 P
This implies that (xy) € co(M, A}, q). This completes the proof. [ |

The following result is a consequence of Theorem 4.

Corollary. (a) If 0 < infpg < px < 1, for each k, then Z(M, A p) C
Z(M,Am), for Z = ¢y and c.

(b)If 1 < pr < suppy < o0, for each k, then Z(M,A") C Z(M, AL, p),
for Z = ¢y and c.

Theorem 4. If My and My be two Orlicz functions. Then

(i) Z(M, A%, p) € Z(Mz 0 My, AL, p),

( ) (MlvAnap)mZ(MQaAn’p)CZ(M1+M27 ) fOTZ_EOO)

c and cp.

Proof. We prove this part for Z = /., and the rest of the cases will
follow similarly.
Let (xf) € loo(My, AL, p). Then there exists 0 < U < oo such that

(BT o < 1 o all ke N

n 1
Let yp = My(“2525). Then yy, < U <V, say for all k € N.
Hence we have
|AT 2|
P

Hence supy,((Ms o Ml)(%))pk < 0o. Thus (xf) € loo(My o My, AT p).

(7i) We prove the result for the case Z = ¢y and for the other cases it will
follow on applying similar arguments.

Let (zr) € co(Mi,A},,p) N co(Ma,A},,p). Then there exist some py,
p2 > 0 such that

((Ma o My)( NP = (Ma(ye))Ps < (My(V))Ps < oo, for allk € N.

: | A%k . | Ak
lim (M (1 =mZkl e — d Lim (Mo('=m2k\ype — .
Qi (M=) =0 and lim (Mp(=) =) =0
Let p = p1 + p2. Then we have
\A”xk\ P1 An{L‘k
My + My)(—2—=))P < D My (—2—=)]P*
(4 2) (SR < DLy (S
An
+ D[22 TRy

p1+ p2 P2
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This implies that

ATL
Jim ((M: + Mz)(' mH )P = 0.
Thus (zx) € co(My + Mz, A}, p). This completes the proof. |

Theorem 5. Z(M, A" ' p) C Z(M,A",,p) (in general Z(M, Al  p) C
Z(M,A" p), fori=1,2,....n—1, for Z = l, ¢ and cy.

Proof. We prove the result for Z = ¢, and for the other cases it will
follow on applying similar arguments.
Let 2 = (z) € £oo(M, A1 p). Then we can have p > 0 such that

|An Ly

(4) (M=

))PE < oo, forall ke N

On considering 2p and using the convexity of M, we have

|A7 |

2p

|A%_1$k’) + EM( |A:Ln_1xk+m|

M( 5
p p

K%M( ).

Hence we have

e (B5))" = o Gor(B52)) = G (B5==)) )

Then using (4), we have

|A7, |

P
Thus oo (M, A% p) C Loo(M, AL, ).

(M ( )Pk < oo, forall ke N.

The inclusion is strict follows from the following example.

Example 1. Let m = 3, n = 2, M(z) = 22, for all z € [0,00) and p;, = 4
for all k odd and py, = 3 for all k even. Consider the sequence z = (zy) = (k).
Then A3z, = 0, for all kK € N. Hence z belongs to co(M, A2, p). Again we
have Alx, = —3, for all k € N. Hence = does not belong to co(M, AL, p).
Thus the inclusion is strict. |

Theorem 6. Let M be an Orlicz function. Then
co(M, A%, p) C (M, A%, p) C loo(M, A7, p).

The inclusions are proper.
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Proof. It is obvious that co(M, AT, p) C ¢(M,A},,p). We shall prove
that ¢(M, A}, p) C loo(M, AT, D).

Let (zx) € c¢(M, A7, ,p). Then there exists some p > 0 and L € C such
that

; M PE —
kILIEO(M( P )Pk =0.
On taking p; = 2p, we have
An 1, |ARz, — L LIl
Y e e YL
P1 2 2 p
< D(%)pk [M(W)]pk + D(%)”’“ max(1, (M(’?»H),

where H = max(1,sup px). Thus we get (zx) € loo(M, AT, D).

The inclusions are strict follow from the following examples.

Example 2. Let m = 2, n = 2, M(x) = %, for all z € [0,00) and
pr = 1, for all k € N. Consider the sequence z = (z}) = (k?). Then x
belongs to ¢(M, A3, p), but z does not belong to co(M, A2, p).

Example 3. Let m = 2, n = 2, M(x) = 22, for all z € [0,00) and
pr = 2, for all k£ odd and p = 3, for all k even. Consider the sequence = =
() = {1,3,2,4,5,7,6,8,9,11,10,12,...}. Then = belongs to £ (M, A3, p),
but = does not belong to ¢(M, A3, p). [ ]

Theorem 7. The spaces loo (M, A}, p), c(M,AT,p) and co(M, A}, p)
are not monotone and as such are not solid in general.

Proof. The proof follows from the following example.

Example 4. Let n =2, m = 3, pr = 1, for all k odd and pg = 2, for all
k even and M (x) = 22, for all z € [0, 00). Then A2x), = x4 — 22543 + Tio,
for all k € N. Consider the J* step space of a sequence space E defined
by (x1), (yx) € EY implies that y; = 3, for k odd and gy = 0, for k even.
Consider the sequence (z) defined by z, = k, for all k € N. Then (xy)
belongs to Z (M, A%,p), for Z = o, c and cg, but its J* canonical pre-image
does not belong to Z(M,A%,p), for Z =, ¢ and c¢y. Hence the spaces
loo (M, AT D), (M, AT p) and co(M, A}, p) are not monotone and as such
are not solid in general. |

Theorem 8. The spaces loo(M, AV p), c(M, AL, p) and co(M, AT, p)
are not symmetric in general.

Proof. The proof follows from the following example.
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Example 5. Let n =2, m = 2, pr = 2, for all £ odd and p; = 3, for all
k even and M (x) = 22, for all z € [0,00). Then Adzy = zp — 22410 + Tpra,
for all k € N. Consider the sequence (z) defined by xj = k, for k£ odd and
xr = 0, for k even. Then A%xk =0, for all kK € N. Hence (xj) belongs to
Z(M,A2,p), for Z = l, c and cg. Consider the rearranged sequence, (yy)
of (z) defined by

(yk) = (ZIZ‘l, X3,T2,T4,T5,L7,T6,T8, L9, T11,L10,L12, )

Then (yj) does not belong to Z(M, A3, p), for Z = {+, c and cy. Hence the
spaces loo(M, AT D), c(M, Al p) and co(M, A, p) are not symmetric in
general. |

Theorem 9. The spaces boo(M, AT, p), c¢(M, A p) and co(M, AT, p)
are not convergence free in general.

Proof. The proof follows from the following example.

Example 6. Let m =3, n =1, p; = 6, for all k € N and M(z) = 23,
for all x € [0,00). Then Az, = ) — x)43, for all k € N. Consider the
sequences () and (yy) defined by x;, = 4 for all K € N and y;, = k2, for
all k € N. Then (zj) belongs to Z(M, A} p), but (yx) does not belong
to Z(M, AL p), for Z = ly, c and c¢y. Hence the spaces lo (M, AT p),
(M, A p)and co(M, Al p) are not convergence free in general. [

Theorem 10. The spaces loo (M, AV, p), c(M, A}, p) and co(M, A}, p)
are not sequence algebra in general.

Proof. The proof follows from the following examples.

Example 7. Let n =2, m =1, p = 1, for all k € N and M(z) = 23,
for all z € [0,00). Then A2z, = x}, — 2Tk 41 + Tpio, for all K € N. Let
z = (k) and y = (k?). Then z,y both belong to Z(M, A2 p), for Z =l
and ¢, but zy does not belong to Z(M, A%, p), for Z = {4, and c. Hence the
spaces loo (M, AL p) and ¢(M, A, p) are not sequence algebra in general.

Example 8. Let n =2, m =1, p = 7, for all k € N and M(z) = 27,
for all x € [0,00). Then A%xk = ) — 2Tk11 + Tpao, for all k € N. Let
x = (k) and y = (k). Then z,y both belong to co(M, A2, p), but zy does
not belong to co(M, A2, p). Hence the space co(M, A", p) is not sequence
algebra in general. |
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