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1. Introduction

Throughout the paper w, `∞, c and c0 denote the spaces of all, bounded,
convergent and null sequences x = (xk) with complex terms respectively.
The zero sequence is denoted by θ=(0, 0, . . .).

The notion of difference sequence space was introduced by Kizmaz [2],
who studied the difference sequence spaces `∞(∆), c(∆) and c0(∆). The
notion was further generalized by Et and Colak [1] by introducing the spaces
`∞(∆n), c(∆n) and c0(∆n). Another type of generalization of the difference
sequence spaces is due to Tripathy and Esi [13], who studied the spaces
`∞(∆m), c(∆m) and c0(∆m). Tripathy, Esi and Tripathy [14] generalized
the above notions and unified these as follows:

Let m, n be non-negative integers, then for Z a given sequence space we
have

Z(∆n
m) = {x = (xk) ∈ w : (∆n

mxk) ∈ Z},

where ∆n
mx = (∆n

mxk) = (∆n−1
m xk − ∆n−1

m xk+m) and ∆0
mxk = xk for all

k ∈ N , which is equivalent to the following binomial representation:

∆n
mxk =

n∑
v=0

(−1)v

(
n
v

)
xk+mv .
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Taking m = 1, we get the spaces `∞(∆n), c(∆n) and c0(∆n) studied
by Et and Colak [1]. Taking n=1, we get the spaces `∞(∆m), c(∆m) and
c0(∆m) studied by Tripathy and Esi [13]. Taking m=n=1, we get the spaces
`∞(∆), c(∆) and c0(∆) introduced and studied by Kizmaz [2].

An Orlicz function is a function M :[0, ∞) → [0, ∞), which is continuous,
non-decreasing and convex with M(0)=0, M(x) > 0 and M(x) → ∞ as
x →∞.

Lindenstrauss and Tzafriri [5] used the Orlicz function and introduced
the sequence space `M as follows:

`M = {(xk) ∈ w :
∞∑

k=1

M(
|xk|
ρ

) < ∞, for some ρ > 0}.

They proved that `M is a Banach space normed by

‖(xk)‖ = inf{ρ > 0 :
∞∑

k=1

M(
|xk|
ρ

) ≤ 1}.

Remark. An Orlicz function satisfies the inequality M(λx) ≤ λM(x)
for all λ with 0 < λ < 1.

The following inequality will be used throughout the article. Let p = (pk)
be a positive sequence of real numbers with 0 < pk ≤ sup pk = G, D =
max{1, 2G−1}. Then for all ak, bk ∈ C for all k ∈ N , we have

|ak + bk|pk ≤ D(|ak|pk + |bk|pk).

The studies on paranormed sequence spaces were initiated by Nakano [8]
and Simons [11]. Later on it was further studied by Maddox [6], Nanda [9],
Lascarides [3], Lascarides and Maddox [4], Tripathy and Sen [15] and many
others. Parasar and Choudhary [10], Mursaleen, Khan and Qamaruddin [7]
and many others studied paranormed sequence spaces using Orlicz functions.

2. Definitions and preliminaries

A sequence space E is said to be solid (or normal) if (xk) ∈ E implies
(αkxk) ∈ E for all sequences of scalars (αk) with |αk| ≤ 1 for all k ∈ N .

A sequence space E is said to be monotone if it contains the canonical
preimages of all its step spaces.

A sequence space E is said to be symmetric if (xπ(k)) ∈ E, where π is a
permutation on N .

A sequence space E is said to be convergence free if (yk) ∈ E whenever
(xk) ∈ E and yk = 0 whenever xk = 0.
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A sequence space E is said to be a sequence algebra if (xkyk) ∈ E when-
ever (xk) ∈ E and (yk) ∈ E.

Let p = (pk) be any bounded sequence of positive real numbers. Then
we define the following sequence spaces for an Orlicz function M :

c0(M,∆n
m, p) = {x = (xk) : lim

k→∞
(M( |∆

n
mxk|
ρ ))pk = 0, for some ρ > 0},

c(M,∆n
m, p) = {x = (xk) : lim

k→∞
(M( |∆

n
mxk−L|

ρ ))pk = 0, for some ρ > 0

and L ∈ C},
`∞(M,∆n

m, p) = {x = (xk) : sup
k≥1

(M( |∆
n
mxk|
ρ ))pk < ∞, for some ρ > 0},

when pk = p, a constant, for all k, then c0(M,∆n
m, p) = c0(M,∆n

m),
c(M,∆n

m, p) = c(M,∆n
m) and `∞(M,∆n

m, p) = `∞(M,∆n
m).

Lemma 1. If a sequence space E is solid, then E is monotone.

3. Main results

In this section we prove the results of this article. The proof of the
following result is easy, so omitted.

Proposition 1. The classes of sequences c0(M,∆n
m, p), c(M,∆n

m, p) and
`∞(M,∆n

m, p) are linear spaces.

Theorem 1. For Z = `∞, c and c0, the spaces Z(M,∆n
m, p) are para-

normed spaces, paranormed by

g(x) =
nm∑
k=1

|xk|+ inf{ρ
pk
H : sup

k
M(

|∆n
mxk|
ρ

) ≤ 1},

where
H = max(1, sup

k
pk).

Proof. Clearly g(−x) = g(x), g(θ) = 0. Let (xk) and (yk) be any two
sequences belong to any one of the spaces Z(M,∆n

m, p), for Z = c0, c and
`∞. Then we have ρ1, ρ2 > 0 such that

sup
k

M(
|∆n

mxk|
ρ1

) ≤ 1

and

sup
k

M(
|∆n

myk|
ρ2

) ≤ 1.
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Let ρ = ρ1 + ρ2. Then by convexity of M , we have

sup
k

M(
|∆n

m(xk + yk)|
ρ

) ≤ (
ρ1

ρ1 + ρ2
) sup

k
M(

|∆n
mxk|
ρ1

)

+(
ρ2

ρ1 + ρ2
) sup

k
M(

|∆n
myk|
ρ2

) ≤ 1.

Hence we have,

g(x + y) =
mn∑
k=1

|xk + yk|+ inf{ρ
pk
H : sup

k
M(

|∆n
m(xk + yk)|

ρ
) ≤ 1}

≤
mn∑
k=1

|xk|+ inf{ρ
pk
H
1 : sup

k
M(

|∆n
mxk|
ρ1

) ≤ 1}

+
mn∑
k=1

|yk|+ inf{ρ
pk
H
2 : sup

k
M(

|∆n
myk|
ρ2

) ≤ 1}.

This implies that
g(x + y) ≤ g(x) + g(y).

The continuity of the scalar multiplication follows from the following in-
equality:

g(λx) =
mn∑
k=1

|λxk|+ inf{ρ
pk
H : sup

k
M(

|∆n
mλxk|
ρ

) ≤ 1}

= |λ|
mn∑
k=1

|xk|+ inf{(t|λ|)
pk
H : sup

k
M(

|∆n
mxk|
t

) ≤ 1}, where t =
ρ

|λ|
.

Hence the space Z(M,∆n
m, p), for Z = c0, c and `∞ are paranormed spaces,

paranormed by g. �

Theorem 2. For Z = `∞, c and c0, the spaces Z(M,∆n
m, p) are complete

paranormed spaces, paranormed by

g(x) =
nm∑
k=1

|xk|+ inf{ρ
pk
H : sup

k
M(

|∆n
mxk|
ρ

) ≤ 1},

where
H = max(1, sup

k
pk).
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Proof. We prove for the space `∞(M,∆n
m, p) and for the other spaces it

will follow on applying similar arguments.
Let (xi) be any Cauchy sequence in `∞(M,∆n

m, p). Let x0 > 0 be fixed
and t > 0 be such that for a given 0 < ε < 1, ε

x0t > 0, and x0t ≥ 1. Then
there exists a positive integer n0 such that

g(xi − xj) <
ε

x0t
, for all i, j ≥ n0.

Using the definition of paranorm, we get

mn∑
k=1

|xi
k − xj

k|+ inf{ρ
pk
H : sup

k
M(

|∆n
m(xi

k − xj
k)|

ρ
) ≤ 1} <

ε

x0t
,(1)

for all i, j ≥ n0.

Hence we have,
mn∑
k=1

|xi
k − xj

k| < ε, for all i, j ≥ n0.

This implies

|xi
k − xj

k| < ε, for all i, j ≥ n0 and 1 ≤ k ≤ nm.

Thus (xi
k) is a Cauchy sequence in C for k = 1, 2, ..., nm. Hence (xi

k) is
convergent in C for k = 1, 2, ..., nm.

(2) Let lim
i→∞

xi
k = xk, say for k = 1, 2, . . . , nm.

Again from (1) we have,

inf{ρ
pk
H : sup

k
M(

|∆n
m(xi

k − xj
k)|

ρ
) ≤ 1} < ε, for all i, j ≥ n0.

Hence we get

sup
k

M(
|∆n

m(xi
k − xj

k)|
g(xi − xj)

) ≤ 1, for all i, j ≥ n0.

It follows that M( |∆
n
m(xi

k−xj
k)|

g(xi−xj)
) ≤ 1, for each k ≥ 1 and for all i, j ≥ n0.

For t > 0 with M( tx0
2 ) ≥ 1, we have

M(
|∆n

m(xi
k − xj

k)|
g(xi − xj)

) ≤ M(
tx0

2
).
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This implies

|∆n
mxi

k −∆n
mxj

k| ≤
tx0

2
ε

tx0
=

ε

2
.

Hence (∆n
mxi

k) is a Cauchy sequence in C for all k ∈ N .

This implies that (∆n
mxi

k) is convergent in C for all k ∈ N . Let lim
i→∞

∆n
mxi

k

= yk for each k ∈ N .
Let k = 1. Then we have

(3) lim
i→∞

∆n
mxi

1 = lim
i→∞

n∑
v=0

(−1)v

(
n
v

)
xi

1+mv = y1.

We have by (2) and (3) lim
i→∞

xi
mn+1 = xmn+1, exists. Proceeding in this way

inductively, we have lim
i→∞

xi
k = xk exists for each k ∈ N .

Now we have for all i, j ≥ n0,

mn∑
k=1

|xi
k − xj

k|+ inf{ρ
pk
H : sup

k
M(

|∆n
m(xi

k − xj
k)|

ρ
) ≤ 1} < ε.

This implies that

lim
j→∞

{
mn∑
k=1

|xi
k − xj

k|+ inf{ρ
pk
H : sup

k
M(

|∆n
m(xi

k − xj
k)|

ρ
) ≤ 1}} < ε,

for all i ≥ n0. Using the continuity of M , we have

nm∑
k=1

|xi
k − xk|+ inf{ρ

pk
H : sup

k
M(

|∆n
mxi

k −∆n
mxk|

ρ
) ≤ 1} < ε,

for all i ≥ n0. It follows that (xi − x) ∈ `∞(M,∆n
m, p). Since (xi) ∈

`∞(M,∆n
m, p) and `∞(M,∆n

m, p) is a linear space, so we have x = xi− (xi−
x)∈ `∞(M,∆n

m, p).
This completes the proof of the Theorem. �

Theorem 3. If 0 < pk ≤ qk < ∞ for each k, then Z(M,∆n
m, p) ⊆

Z(M,∆n
m, q), for Z = c0 and c.

Proof. We prove the result for the case Z = c0 and for the other case it
will follow on applying similar arguments.

Let (xk) ∈ c0(M,∆n
m, p). Then there exists some ρ > 0 such that

lim
k→∞

(M(
|∆n

mxk|
ρ

))pk = 0.
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This implies that M( |∆
n
mxk|
ρ ) < ε(0 < ε < 1) for sufficiently large k.

Hence we get

lim
k→∞

(M(
|∆n

mxk|
ρ

))qk ≤ lim
k→∞

(M(
|∆n

mxk|
ρ

))pk = 0.

This implies that (xk) ∈ c0(M,∆n
m, q). This completes the proof. �

The following result is a consequence of Theorem 4.

Corollary. (a) If 0 < inf pk ≤ pk ≤ 1, for each k, then Z(M,∆n
m, p) ⊆

Z(M,∆n
m), for Z = c0 and c.

(b)If 1 ≤ pk ≤ sup pk < ∞, for each k, then Z(M,∆n
m) ⊆ Z(M,∆n

m, p),
for Z = c0 and c.

Theorem 4. If M1 and M2 be two Orlicz functions. Then
(i) Z(M1,∆n

m, p) ⊆ Z(M2 ◦M1,∆n
m, p),

(ii) Z(M1,∆n
m, p) ∩ Z(M2,∆n

m, p) ⊆ Z(M1 + M2,∆n
m, p), for Z = `∞,

c and c0.

Proof. We prove this part for Z = `∞ and the rest of the cases will
follow similarly.

Let (xk) ∈ `∞(M1,∆n
m, p). Then there exists 0 < U < ∞ such that

(M1(
|∆n

mxk|
ρ

))pk ≤ U, for all k ∈ N.

Let yk = M1(
|∆n

mxk|
ρ ). Then yk ≤ U

1
pk ≤ V , say for all k ∈ N .

Hence we have

((M2 ◦M1)(
|∆n

mxk|
ρ

))pk = (M2(yk))pk ≤ (M2(V ))pk < ∞, for allk ∈ N.

Hence supk((M2 ◦M1)(
|∆n

mxk|
ρ ))pk < ∞. Thus (xk) ∈ `∞(M2 ◦M1,∆n

m, p).
(ii) We prove the result for the case Z = c0 and for the other cases it will

follow on applying similar arguments.
Let (xk) ∈ c0(M1,∆n

m, p) ∩ c0(M2,∆n
m, p). Then there exist some ρ1,

ρ2 > 0 such that

lim
k→∞

(M1(
|∆n

mxk|
ρ1

))pk = 0 and lim
k→∞

(M2(
|∆n

mxk|
ρ2

))pk = 0.

Let ρ = ρ1 + ρ2. Then we have

((M1 + M2)(
|∆n

mxk|
ρ

))pk ≤ D[
ρ1

ρ1 + ρ2
M1(

∆n
mxk

ρ1
)]pk

+ D[
ρ2

ρ1 + ρ2
M2(

∆n
mxk

ρ2
)]pk .
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This implies that

lim
k→∞

((M1 + M2)(
|∆n

mxk|
ρ

))pk = 0.

Thus (xk) ∈ c0(M1 + M2,∆n
m, p). This completes the proof. �

Theorem 5. Z(M,∆n−1
m , p) ⊂ Z(M,∆n

m, p) (in general Z(M,∆i
m, p) ⊂

Z(M,∆n
m, p), for i = 1, 2, . . . , n− 1, for Z = `∞, c and c0.

Proof. We prove the result for Z = `∞ and for the other cases it will
follow on applying similar arguments.

Let x = (xk) ∈ `∞(M,∆n−1
m , p). Then we can have ρ > 0 such that

(4) (M(
|∆n−1

m xk|
ρ

))pk < ∞, for all k ∈ N

On considering 2ρ and using the convexity of M , we have

M(
|∆n

mxk|
2ρ

) ≤ 1
2
M(

|∆n−1
m xk|
ρ

) +
1
2
M(

|∆n−1
m xk+m|

ρ
).

Hence we have(
M

(
|∆n

mxk|
2ρ

))pk

≤ D

{(
1
2
M

(
|∆n−1

m xk|
ρ

))pk

+
(

1
2
M

(
|∆n−1

m xk+m|
ρ

))pk
}

.

Then using (4), we have

(M(
|∆n

mxk|
ρ

))pk < ∞, for all k ∈ N.

Thus `∞(M,∆n−1
m , p) ⊂ `∞(M,∆n

m, p).

The inclusion is strict follows from the following example.

Example 1. Let m = 3, n = 2, M(x) = x2, for all x ∈ [0,∞) and pk = 4
for all k odd and pk = 3 for all k even. Consider the sequence x = (xk) = (k).
Then ∆2

3xk = 0, for all k ∈ N . Hence x belongs to c0(M,∆2
3, p). Again we

have ∆1
3xk = −3, for all k ∈ N . Hence x does not belong to c0(M,∆1

3, p).
Thus the inclusion is strict. �

Theorem 6. Let M be an Orlicz function. Then

c0(M,∆n
m, p) ⊂ c(M,∆n

m, p) ⊂ `∞(M,∆n
m, p).

The inclusions are proper.
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Proof. It is obvious that c0(M,∆n
m, p) ⊂ c(M,∆n

m, p). We shall prove
that c(M,∆n

m, p) ⊂ `∞(M,∆n
m, p).

Let (xk) ∈ c(M,∆n
m, p). Then there exists some ρ > 0 and L ∈ C such

that

lim
k→∞

(M(
|∆n

mxk − L|
ρ

))pk = 0.

On taking ρ1 = 2ρ, we have

(M(
|∆n

mxk|
ρ1

))pk ≤ D[
1
2
(M(

|∆n
mxk − L|

ρ
))]pk + D[

1
2
M(

|L|
ρ

)]pk

≤ D(
1
2
)pk [M(

|∆n
mxk − L|

ρ
)]pk + D(

1
2
)pk max(1, (M(

|L|
ρ

))H),

where H = max(1, sup pk). Thus we get (xk) ∈ `∞(M,∆n
m, p).

The inclusions are strict follow from the following examples.

Example 2. Let m = 2, n = 2, M(x) = x4, for all x ∈ [0,∞) and
pk = 1, for all k ∈ N . Consider the sequence x = (xk) = (k2). Then x
belongs to c(M,∆2

2, p), but x does not belong to c0(M,∆2
2, p).

Example 3. Let m = 2, n = 2, M(x) = x2, for all x ∈ [0,∞) and
pk = 2, for all k odd and pk = 3, for all k even. Consider the sequence x =
(xk) = {1, 3, 2, 4, 5, 7, 6, 8, 9, 11, 10, 12, ...}. Then x belongs to `∞(M,∆2

2, p),
but x does not belong to c(M,∆2

2, p). �

Theorem 7. The spaces `∞(M,∆n
m, p), c(M,∆n

m, p) and c0(M,∆n
m, p)

are not monotone and as such are not solid in general.

Proof. The proof follows from the following example.

Example 4. Let n = 2, m = 3, pk = 1, for all k odd and pk = 2, for all
k even and M(x) = x2, for all x ∈ [0,∞). Then ∆2

3xk = xk − 2xk+3 + xk+6,
for all k ∈ N . Consider the J th step space of a sequence space E defined
by (xk), (yk) ∈ EJ implies that yk = xk, for k odd and yk = 0, for k even.
Consider the sequence (xk) defined by xk = k, for all k ∈ N . Then (xk)
belongs to Z(M,∆2

3, p), for Z = `∞, c and c0, but its J th canonical pre-image
does not belong to Z(M,∆2

3, p), for Z = `∞, c and c0. Hence the spaces
`∞(M,∆n

m, p), c(M,∆n
m, p) and c0(M,∆n

m, p) are not monotone and as such
are not solid in general. �

Theorem 8. The spaces `∞(M,∆n
m, p), c(M,∆n

m, p) and c0(M,∆n
m, p)

are not symmetric in general.

Proof. The proof follows from the following example.
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Example 5. Let n = 2, m = 2, pk = 2, for all k odd and pk = 3, for all
k even and M(x) = x2, for all x ∈ [0,∞). Then ∆2

2xk = xk − 2xk+2 + xk+4,
for all k ∈ N . Consider the sequence (xk) defined by xk = k, for k odd and
xk = 0, for k even. Then ∆2

2xk = 0, for all k ∈ N . Hence (xk) belongs to
Z(M,∆2

2, p), for Z = `∞, c and c0. Consider the rearranged sequence, (yk)
of (xk) defined by

(yk) = (x1, x3, x2, x4, x5, x7, x6, x8, x9, x11, x10, x12, ...).

Then (yk) does not belong to Z(M,∆2
2, p), for Z = `∞, c and c0. Hence the

spaces `∞(M,∆n
m, p), c(M,∆n

m, p) and c0(M,∆n
m, p) are not symmetric in

general. �

Theorem 9. The spaces `∞(M,∆n
m, p), c(M,∆n

m, p) and c0(M,∆n
m, p)

are not convergence free in general.

Proof. The proof follows from the following example.

Example 6. Let m = 3, n = 1, pk = 6, for all k ∈ N and M(x) = x3,
for all x ∈ [0,∞). Then ∆1

3xk = xk − xk+3, for all k ∈ N . Consider the
sequences (xk) and (yk) defined by xk = 4 for all k ∈ N and yk = k2, for
all k ∈ N . Then (xk) belongs to Z(M,∆1

3, p), but (yk) does not belong
to Z(M,∆1

3, p), for Z = `∞, c and c0. Hence the spaces `∞(M,∆n
m, p),

c(M,∆n
m, p) and c0(M,∆n

m, p) are not convergence free in general. �

Theorem 10. The spaces `∞(M,∆n
m, p), c(M,∆n

m, p) and c0(M,∆n
m, p)

are not sequence algebra in general.

Proof. The proof follows from the following examples.

Example 7. Let n = 2, m = 1, pk = 1, for all k ∈ N and M(x) = x3,
for all x ∈ [0,∞). Then ∆2

1xk = xk − 2xk+1 + xk+2, for all k ∈ N . Let
x = (k) and y = (k2). Then x, y both belong to Z(M,∆2

1, p), for Z = `∞
and c, but xy does not belong to Z(M,∆2

1, p), for Z = `∞ and c. Hence the
spaces `∞(M,∆n

m, p) and c(M,∆n
m, p) are not sequence algebra in general.

Example 8. Let n = 2, m = 1, pk = 7, for all k ∈ N and M(x) = x7,
for all x ∈ [0,∞). Then ∆2

1xk = xk − 2xk+1 + xk+2, for all k ∈ N . Let
x = (k) and y = (k). Then x, y both belong to c0(M,∆2

1, p), but xy does
not belong to c0(M,∆2

1, p). Hence the space c0(M,∆n
m, p) is not sequence

algebra in general. �
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