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1. Introduction

Difference equations appear naturally as discrete analogues and as nu-
merical solutions of differential and delay differential equations having ap-
plications in biology, ecelogy, physics, etc. [9]

Recenlty there has been an increasing interest in the study of global
behavior of rational difference equations. Although difference equations’
forms very simple, it is extremely difficult to understand thoroughly the
global behaviors of their solutions. For example see Refs. [1-8].

El-Owaidy et al. [2] studied the difference equation xn+1 = αxn−1

β+γxp
n−2

with
non-negative parameters and non-negative initial conditions.

In this paper, we investigate the global asymptotic behavior and the
periodic character of the solutions of the difference equation

(1) xn+1 =
axn−k

b + cxp
n
, n = 0, 1, 2, . . .

where the parameters a, b, c and p are non-negative real numbers, k is an odd
number and the initial conditions xi(i = 0,−1,−2, . . . ,−k) are non-negative
real numbers such that b + cxp

n > 0, n = 0, 1, 2, . . .
The following cases can be obtained (for k = 1, 3, 5, . . . and n = 0, 1, 2, . . .).



142 İbrahim Yalçinkaya and Cengiz Çinar

When a = 0 :

(2) xn+1 = 0 .

When b = 0 :

(3) xn+1 =
axn−k

cxp
n

.

When p = 0 :

(4) xn+1 =
axn−k

b + c
.

When c = 0 :

(5) xn+1 =
axn−k

b
.

When b = p = 0 :

(6) xn+1 =
axn−k

c
.

In each of the above five equations, we assume that all parameters in the
equations are positive. Eq. (2) is trivial and Eqs. (4)-(6) are linear. Eq. (3)
can be also reduced to a linear difference equation by the change of variables
xn = eyn .

We need the following definitions and theorem [8]:

Definition 1. Let I be an interval of real numbers and let f : Ik+1 → I
be a continuously differentiable function. Consider the difference equation

(7) xn+1 = f (xn, xn−1, ..., xn−k) , n = 0, 1, 2, ...

with x−k, ..., x0 ∈ I . Let x be the equilibrium point of Eq. (7).
The linearized equation of Eq. (7) about the equilibrium point x is

(8) yn+1 = c1yn + c2yn−1+... + c(k+1)yn−k, n = 0, 1, 2, . . .

Where

c1 =
∂f

∂xn
(x, ..., x), c2 =

∂f

∂xn−1
(x, ..., x), ..., c(k+1) =

∂f

∂xn−k
(x, ..., x) .

The characteristic equation of Eq. (8) is

(9) λ(k+1) − c1λ
k − c2λ

(k−1) − ...− ckλ− c(k+1) = 0 .



On the dynamics of the difference . . . 143

Definition 2. A positive semicycle of a solution {xn}∞n=−kof Eq.(7)
consists of a ”string” of terms {xl, xl+1, ..., xm} , all greater than or equal
to equilibrium x with l ≥ −k and m ≤ ∞ such that either l = −k or l > −k
and xl−1 < x and either m = ∞ or m ≤ ∞ and xm+1 < x.

A negative semicycle of a solution {xn}∞n=−k of Eq. (7) consists of a
”string” of terms {xl, xl+1, ..., xm} all less than x with l ≥ −k and m ≤ ∞
such that either l = −k or l > −k and xl−1 ≥ x and either m = ∞ or
m ≤ ∞ and xm+1 ≥ x.

Definition 3. A solution {xn}∞n=−k of Eq. (7) is called nonoscillatory if
there exists N ≥ −k such that either

xn > x for ∀n ≥ N or xn < x for ∀n ≥ N,

and it is called oscillatory if it is not nonoscillatory.

Theorem 1. (i) If all roots of Eq. (9) have absolute values less than
one, then the equilibrium point x of Eq. (7) is locally asymptotically stable.

(ii) If at least one of the roots of Eq. (9) has absolute value greater than
one, then the equilibrium point xof Eq. (7) is unstable.

2. Dynamics of equation (1)

In this section, we investigate the dynamics of Eq. (1) under the as-
sumptions that all parameters in the equation are positive and the initial
conditions are non-negative.

The change of variables xn = (
b

c
)

1
p yn reduces Eq. (1) to the difference

equation

(10) yn+1 =
ryn−k

1 + yp
n

for k = 1, 3, 5, ... and n = 0, 1, 2, . . .

where r =
a

b
> 0. Note that y1 = 0 is always an equilibrium point of

Eq. (10). When r > 1, Eq. (10) also possesses the unique positive equilib-
rium y2 = (r − 1)

1
p .

Lemma 1. The following statements are true:
(i) If r < 1, then the equilibrium point y1 = 0 of Eq. (10) is locally

asymptotically stable,
(ii) If r > 1, then the equilibrium point y1 = 0 of Eq. (10) is unstable.

Proof. The linearized equation of Eq. (10) about the equilibrium point
y1 = 0 is

zn+1 = rzn−k for k = 1, 3, 5, ... and n = 0, 1, 2, ...
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so the characteristic equation of Eq. (10) about the equilibrium point y1 = 0
is

λk+1 − r = 0

and hence the proof of (i) and (ii) follows from Theorem 1. This completes
the proof. �

Theorem 2. Assume that r > 1 and let {yn}∞n=−k be a solution of
Eq. (10) such that

(11) y−(k−1), y−(k−3), ..., y0 ≥ y2 and y−k, y−(k−2), ..., y−1 < y2

or

(12) y−(k−1), y−(k−3), ..., y0 < y2 and y−k, y−(k−2), ..., y−1 ≥ y2 .

Then, {yn}∞n=−k oscillates about y2 = (r − 1)
1
p with semicycles of length

one.

Proof. Assume that (11) holds. Then,

y1 =
ry−k

1 + yp
0

< y2 and y2 =
ry−(k−1)

1 + yp
1

> y2

then, the proof follows by induction. The case where (12) holds is similar
and will be omitted. �

Theorem 3. Assume that r < 1, then the equilibrium point y1 = 0 of
Eq. (10) is globally asymptotically stable.

Proof. We know by Lemma 1 that the equilibrium point y1 = 0 of
Eq. (10) is locally asymptotically stable. So, let {yn}∞n=−k be a solution of
Eq. (10). It suffices to show that

lim
n→∞

yn = 0 .

Since
0 ≤ yn+1 =

ryn−k

1 + yp
n
≤ ryn−k .

We obtain
yn+1 ≤ ryn−k .

Then, we can write,

yt(k+1)+1 ≤ r(t+1)y−k

yt(k+1)+2 ≤ r(t+1)y−(k−1)

. . .

yt(k+1)+(k+1) ≤ r(t+1)y0 for t = 0, 1, . . .
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If r < 1, then lim
t→∞

r(t+1) = 0. So, lim
n→∞

yn = 0. This completes the proof. �

Theorem 4. If Eq. (10) possesses the prime period (k + 1) solution, all
of which aren’t equal with each other at the same time, then both r = 1 and
these solutions are at least in number k+1

2 equal to 0 and at least in number
1 greater than 0.

Proof. Let ϕ0, ϕ1, ..., ϕk, all of which aren’t equal with each other at the
same time, be the solutions of Eq. (10)’s prime period. That’s to say,

..., ϕ0, ϕ1, ..., ϕk, ϕ0, ϕ1, ..., ϕk, ...

be a period (k+1) solution of Eq. (10). Then,

ϕk =
rϕk

1 + ϕp
(k−1)

, ϕk−1 =
rϕk−1

1 + ϕp
(k−2)

, ..., ϕ1 =
rϕ1

1 + ϕp
0

, ϕ0 =
rϕ0

1 + ϕp
k

.

So, if ϕk = 0 and r 6= 1 then,

ϕ0 = ϕ1 = ... = ϕk = 0

which is impossible (ϕk = 0 and r 6= 1 is a conradiction).
If ϕk 6= 0 and r 6= 1 then,

ϕ0 = ϕ1 = ... = ϕk = y2

which is impossible (ϕk 6= 0 and r 6= 1 is a conradiction). This result in
r = 1.

To complete the proof, we use r = 1 at above equalities

ϕk =
ϕk

1 + ϕp
(k−1)

, ϕk−1 =
ϕk−1

1 + ϕp
(k−2)

, ..., ϕ1 =
ϕ1

1 + ϕp
0

, ϕ0 =
ϕ0

1 + ϕp
k

.

Let’s do the proof with induction. Assume that k = 1,

ϕ1 =
ϕ1

1 + ϕp
0

, ϕ0 =
ϕ0

1 + ϕp
1

.

So one of the solutions is certainly equal to 0. (ϕ1 = 0 or ϕ0 = 0)
Assume that k = t− 2 (t > 5 is an odd number),

ϕt−2 =
ϕt−2

1 + ϕp
(t−3)

, ϕt−3 =
ϕt−3

1 + ϕp
(t−4)

, ..., ϕ1 =
ϕ1

1 + ϕp
0

, ϕ0 =
ϕ0

1 + ϕp
(t−2)

these solutions must be at least in number (t−2)+1
2 = t−1

2 equal to 0.
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Assume that k = t,

ϕt =
ϕt

1 + ϕp
(t−1)

, ϕt−1 =
ϕt−1

1 + ϕp
(t−2)

, ..., ϕ1 =
ϕ1

1 + ϕp
0

, ϕ0 =
ϕ0

1 + ϕp
t

.

We separete and then search the above equalities, with result of k = t
assumption. Hence, if k = t we get these solutions are at least in number
t+1
2 equal to 0. Now let’s indicate that one of these solutions is greater than

0. All the solutions will be positive so it is equal or greater than 0. Let
none of them be greater than 0. If they aren’t greater than 0, then all the
solutions equal to 0. This conrasts that all of the solutions which aren’t
equal to with each other at the same time hypothesis. Then at least one
solution certainly greater than 0. This completes the proof. �

Theorem 5. Assume that r > 1, then Eq. (10) possesses an unbounded
solution.

Proof. From Theorem 2, we can assume that (11) holds, without loss of
generality that the solution {yn}∞n=−k of Eq. (10) is such that

y2n+1 < y2 and y2n+2 > y2 for n > 0.

The
y2n+1 =

ry2n−k

1 + yp
2n

< y2n−k

and
y2n+2 =

ry2n−(k−1)

1 + yp
2n+1

> y2n−(k−1)

and so {y2n} increases to ∞ and {y2n+1} decreases to 0. Similarly, we can
assume that (12) holds, then {y2n} decreases to 0 and {y2n+1} increases to
∞ .The proof is complete. �

3. Numerical results

Example 1. Let xn+1 = axn−k

b+cxp
n
, n = 0, 1, 2, ..., 199 and k = a = b = c =

1, p = 2, x−1 = 3, x0 = 2. Then we have the following results:

n xn n xn

1 0, 6 149 0, 2989994484.10−35

2 1, 470588235 150 1, 413199333
49 0, 2046286738.10−11 199 0, 3614284505.10−47

50 1, 413199333 200 1, 413199333
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Example 2. Let xn+1 = axn−k

b+cxp
n
, n = 0, 1, 2, ..., 199 and k = 3, a = 5, b =

1, c = 2, p = 3, x−3 = 0.2, x−2 = 3, x−1 = 0.1, x0 = 2. Then we have the
following results:

n xn n xn

1 0 149 0
2 15 150 0, 1091396342.1028

49 0 199 0
50 0, 3662109375.1010 200 0, 1776356838.1036

Example 3. Let xn+1 = axn−k

b+cxp
n
, n = 0, 1, 2, ..., 199 and k = 5, a = 5, b =

1, c = 3, p = 2, x−5 = 1, x−4 = 5, x−3 = 1.5, x−2 = 3, x−1 = 1, x0 = 2. Then
we have the following results:

n xn n xn

1 0, 3846153846 149 0, 2296104668.10−472

2 17, 31557377 150 0, 5959486030.1018

49 0, 1648660085.10−53 199 0, 6264846310.10−797

50 0, 6763067275.107 200 0, 2015551112.1025

A note A slightly different version of the paper, was submitted for pub-
lication in the Chaos, Solitons & Fractals in September 2007. However, it
was withdrawn since we had not received any reply in a reasonable long
period of time.
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