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ABSTRACT. In this paper, we investigate the global behavior of
the difference equation of order three
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where the parameters a, k € (0, 00) and the initial values ©_o,2_1
and x( are arbitrary positive real numbers.
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1. Introduction

Although difference equations are relatively simple in form, it is, unfor-
tunately, extremely difficult to understand thoroughly the global behavior
of their solutions. See, for example, [1-13] and the relevant references cited
therein.

Difference equations appear naturally as a discrete analogues and as a
numerical solutions of differential and delay differential equations having
applications various scientific branches, such as in ecology, economy, physics,
technics, sociology, biology, etc.

Hamza and Morsy in [8] investigated the global behavior of the difference
equation

Tp_1
(1) Tptl = O+ Z‘ﬁ’ n=0,1,...
where the parameters o,k € (0,00) and the initial values z_; and z( are
arbitrary positive real numbers.
Eq. (1) was investigated when k& = 1 where a € (0, 00), see [1] and [6].
There are some other examples of the research regarding Eq. (1). For ex-
amples [7] and [11].
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In this paper, we consider the following difference equation of order three

Ln—2
(2) Tpt1 = @+ s n=0,1,...
where the parameters «, k € (0,00) and the initial values x_o, z_1 and xg
are arbitrary positive real numbers.
Here, we review some results which will be useful in our investigation of
the behaviour of Eq. (2) solutions.(c.f. [13])

Definition 1. Let I be an interval of real numbers and let f : IFT1 — T
be a continuously differentiable function where k is a non-negative integer.
Consider the difference equation

(3) Tnt1 = f (@, Tp—1,.. ., Tpg), n=0,1,...,
with the initial values x_y, ..., xq € I. A point T called an equilibrium point
of Eq. (3) if

z=f(z,%,...,7).

Definition 2. Let T be an equilibrium point of Eq. (3).

(a) The equilibrium T is called locally stable if for every e > 0, there
exists § > 0 such that xg,...,x_ € I and |xg —T| + -+ + |[x_p — T| < 0,
then

|z, —Z| <e, forall n>—k.

(b) The equilibrium T is called locally asymptotically stable if it is locally
stable and if there exists v > 0 such that if xg,...,z_p € I and |zo — T| +
st |rog — T <7, then

lim z,, = 7.
n—oo

(¢) The equilibrium T is called global attractor if for every xo,...,x_p € I

we have
lim z,, = 7.
n—oo

(d) The equilibrium T is called globally asymptotically stable if it is lo-

cally stable and is a global attractor.

(e) The equilibrium T is called unstable if is not stable.

0
Definition 3. Let a; = 8f (Z,...,T) for each i = 0,1,...,k, denote
Uy
the partial derivatives of f (ug,u1,...,ug) evaluated at an equilibrium T of
Eq. (3). Then the equation

(4) Zn4l = @0%n + @12n—14 0+ QpZnk, n=0,1,...

is called the linearized equation of Eq. (3) about the equilibrium point T.
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Theorem 1 (Clark’s Theorem). Consider the difference equation (4).
Then,

k
Z |al\ <1
=0

is a sufficient condition for the locally asymptotically stability of Eq. (3).

Definition 4. The sequence {x,} is said to be periodic with period p if
Tptp = Ty forn=0,1,... (c. f]9]).

2. Main results

In this section we investigate the global behavior, the boundedness and
some periodicity of Eq. (2).

A point T € R is an equilibrium point of Eq. (2) if and only if it is a root
for the function,

() gl)=z—2""" —a

that is

-7 F _—a=0.

Lemma 1. Eq. (2) has a unique equilibrium point T > 1.

Proof. Case 1: Assume that k£ = 1, then Eq. (2) has a unique equilib-
rium point T =a+1 > 1.
Case 2: Assume that 0 < k < 1. The function g defined by Eq. (5)

is decreasing on [0, (1 — k)'/*] and increasing on [(1 — k)Y/* o0). Since
g(1) = —a and lim g(x) = oo, then g has a unique root T > 1.
Tr— 00
Case 3: Assume that 1 < k. Since g increasing on [0,00), ¢g(1) = —«

and lim g(z) = oo, then g has a unique root = > 1,
T— 00
Therefore, the proof is complete. |
Theorem 2. Assume that T is the equilibrium point of Eq (2). If k(k+

1)% < a, then T is locally asymptotically stable.

Proof. From Equations (3)-(4), we see that
f g, w1, uz) = a + ugMus,

then
—k 1

ag=—, a1 =0, a2 = —.
Tk’ ’ Tk

By using Clark’s Theorem, we get that T is locally asymptotically stable
if 78 > k+1.
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1—

Let k(k + 1)Tk < «, a simple calculations shows that

1—k
k

g(k+D)"*) =k(k+1)F —a<0

where g is defined by Eq. (5). Then, since lim g(z) = oo, T > (k + 1)!/*

T— 00

and " > k + 1. Therefore, the proof is complete. |

Lemma 2. If o > 1, then every solution of Eq. (2) is bounded and
Ppersists.

Proof. We get that

< Tpt1 < o+ Brp_o

where § = ﬁ

By induction we obtain

1-p"
1-p

Also, we see that if o > 1,

a < Typp < @ + f"x; for i€ {-1,0,1}.

a < T3p4q < +x; for i€ {—1,0, 1} .

o
1-p
Therefore, the proof is complete. |

Theorem 3. Assume that T is the equilibrium point of Eq. (2). If
a > kY% > 1, then T is globally asymptotically stable.

Proof. We must show that the equilibrium point T of Eq. (2) is both

locally asymptotically stable and lim z,, = .
n—oo

Firstly, since k > 1, then & > k(k + 1)% and since a > k%, we get
a> k(k+ 1)% By Theorem 2, 7 is locally asymptotically stable.

Let {z,},~ 5 be a solution of Eq. (2). By Lemma 2, {z,},~ _, is
bounded.

Let us introduce

A1 = lim infx, and As = lim supax,.
n—oo n—oo
Then for all € € (0,A1) there exists ng € N such that for all n > ng we
get
A —e<az,<Ay+e
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This implies that

A — A
1—° <ZL‘n+1<Oé+27+€ for n>ng+1.

T Mo S (AL —e)F

Then we obtain

and from the above inequality

Ay 2
at+——<M<A<a+—,
A 1 2 NG
which implies that
(AP AL ALRY < ARAL < (@AFTIAR + ASR).
Consequently, we obtain

AP TIAF T (A — Ay) < (A5 — AD).

Suppose that A; # Ay we get that

A5 — A%
Al P IA T < 22 T8
T ANy
There exists v € (A1, A2) such that
AL — A}
= kyF 7l < kAR
A=A

This implies that o < k, which is a contradiction. Hence, Ay = Ay = .
So, we have shown that

lim z,, = 7.
n—oo

Therefore, the proof is complete. |

Theorem 4. Eq. (2) has a period three solution (not necessary prime)
{xn}ol o if and only if (x_2,x_1,20) is a solution of the system

(6) r=a+k, y=atk, z=at

Moreover, if at least one of the initial values of Eq. (2) is different from

the others, then {x,} 2 _, has a prime period three solution.

n=-—2
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Proof. First, assume that {z,},. _, is a period three solution of Eq. (2),
then

T_o
T2=T1=Q+ —,
)
1 -1
x—1—$2—a+T:a+Ta
Ty T g
and

o

Tro =23 =0+ - = + %

) T4

Then (z_9,x_1,x0) is a solution of the system (6).
Second, assume that (z_g,x_1, ) is a solution of the system (6) then

T_
Ty =a+ —5 =T-2,
Lo
-1 1
:EQ—O("‘T_ +T—1‘71y
xy ¥,
and
0 Zo
) T2y

By induction we see that
Tp+s = Ty for all n > —2.

In the case where at least one of the initial values of Eq. (2) is different
from the others, clearly {z,},~ _, is a prime period three solution. |

Conclusion. The author believe that these results in this paper can be
conveniently extended the following higher order diffrence equation

Tn—m

Tp+l = @+ for m > 2.

k )
"BTL
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