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xn+1 = α + xn−2

xk
n

Abstract. In this paper, we investigate the global behavior of
the difference equation of order three

xn+1 = α +
xn−2

xk
n

, n = 0, 1, . . .

where the parameters α, k ∈ (0,∞) and the initial values x−2, x−1

and x0 are arbitrary positive real numbers.
Key words: difference equation, global asymptotic stability,
equilibrium point, periodicity, semicycle, boundedness.

AMS Mathematics Subject Classification: 39A10.

1. Introduction

Although difference equations are relatively simple in form, it is, unfor-
tunately, extremely difficult to understand thoroughly the global behavior
of their solutions. See, for example, [1-13] and the relevant references cited
therein.

Difference equations appear naturally as a discrete analogues and as a
numerical solutions of differential and delay differential equations having
applications various scientific branches, such as in ecology, economy, physics,
technics, sociology, biology, etc.

Hamza and Morsy in [8] investigated the global behavior of the difference
equation

(1) xn+1 = α +
xn−1

xk
n

, n = 0, 1, . . .

where the parameters α, k ∈ (0,∞) and the initial values x−1 and x0 are
arbitrary positive real numbers.

Eq. (1) was investigated when k = 1 where α ∈ (0,∞), see [1] and [6].
There are some other examples of the research regarding Eq. (1). For ex-
amples [7] and [11].
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In this paper, we consider the following difference equation of order three

(2) xn+1 = α +
xn−2

xk
n

, n = 0, 1, . . .

where the parameters α, k ∈ (0,∞) and the initial values x−2, x−1 and x0

are arbitrary positive real numbers.
Here, we review some results which will be useful in our investigation of

the behaviour of Eq. (2) solutions.(c.f. [13])

Definition 1. Let I be an interval of real numbers and let f : Ik+1 → I
be a continuously differentiable function where k is a non-negative integer.
Consider the difference equation

(3) xn+1 = f (xn, xn−1, . . . , xn−k) , n = 0, 1, . . . ,

with the initial values x−k, . . . , x0 ∈ I. A point x called an equilibrium point
of Eq. (3) if

x = f (x, x, . . . , x) .

Definition 2. Let x be an equilibrium point of Eq. (3).

(a) The equilibrium x is called locally stable if for every ε > 0, there
exists δ > 0 such that x0, . . . , x−k ∈ I and |x0 − x| + · · · + |x−k − x| < δ,
then

|xn − x| < ε, for all n ≥ −k.

(b) The equilibrium x is called locally asymptotically stable if it is locally
stable and if there exists γ > 0 such that if x0, . . . , x−k ∈ I and |x0 − x|+
· · ·+ |x−k − x| < γ, then

lim
n→∞

xn = x.

(c) The equilibrium x is called global attractor if for every x0, . . . , x−k ∈ I
we have

lim
n→∞

xn = x.

(d) The equilibrium x is called globally asymptotically stable if it is lo-
cally stable and is a global attractor.

(e) The equilibrium x is called unstable if is not stable.

Definition 3. Let ai =
∂f

∂ui
(x, . . . , x) for each i = 0, 1, . . . , k, denote

the partial derivatives of f (u0, u1, . . . , uk) evaluated at an equilibrium x of
Eq. (3). Then the equation

(4) zn+1 = a0zn + a1zn−1+ · · ·+ akzn−k, n = 0, 1, . . .

is called the linearized equation of Eq. (3) about the equilibrium point x.
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Theorem 1 (Clark’s Theorem). Consider the difference equation (4).
Then,

k∑
i=0

|ai| < 1

is a sufficient condition for the locally asymptotically stability of Eq. (3).

Definition 4. The sequence {xn} is said to be periodic with period p if
xn+p = xn for n = 0, 1, . . . (c. f.[5]).

2. Main results

In this section we investigate the global behavior, the boundedness and
some periodicity of Eq. (2).

A point x ∈ R is an equilibrium point of Eq. (2) if and only if it is a root
for the function,

(5) g(x) = x− x1−k − α

that is
x− x1−k − α = 0.

Lemma 1. Eq. (2) has a unique equilibrium point x > 1.

Proof. Case 1: Assume that k = 1, then Eq. (2) has a unique equilib-
rium point x = α + 1 > 1.

Case 2: Assume that 0 < k < 1. The function g defined by Eq. (5)
is decreasing on [0, (1 − k)1/k] and increasing on [(1 − k)1/k,∞). Since
g(1) = −α and lim

x→∞
g(x) = ∞, then g has a unique root x > 1.

Case 3: Assume that 1 < k. Since g increasing on [0,∞), g(1) = −α
and lim

x→∞
g(x) = ∞, then g has a unique root x > 1,

Therefore, the proof is complete. �

Theorem 2. Assume that x is the equilibrium point of Eq (2). If k(k +
1)

1−k
k < α, then x is locally asymptotically stable.

Proof. From Equations (3)-(4), we see that

f(u0, u1, u2) = α + u−k
0 u2,

then
a0 =

−k

xk
, a1 = 0, a2 =

1
xk

.

By using Clark’s Theorem, we get that x is locally asymptotically stable
if xk > k + 1.
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Let k(k + 1)
1−k

k < α, a simple calculations shows that

g((k + 1)1/k) = k(k + 1)
1−k

k − α < 0

where g is defined by Eq. (5). Then, since lim
x→∞

g(x) = ∞, x > (k + 1)1/k

and xk > k + 1. Therefore, the proof is complete. �

Lemma 2. If α > 1, then every solution of Eq. (2) is bounded and
persists.

Proof. We get that

α < xn+1 < α + βxn−2

where β = 1
αk .

By induction we obtain

α < x3n+i < α
1− βn

1− β
+ βnxi for i ∈ {−1, 0, 1} .

Also, we see that if α > 1,

α < x3n+i <
α

1− β
+ xi for i ∈ {−1, 0, 1} .

Therefore, the proof is complete. �

Theorem 3. Assume that x is the equilibrium point of Eq. (2). If
α > k1/k ≥ 1, then x is globally asymptotically stable.

Proof. We must show that the equilibrium point x of Eq. (2) is both
locally asymptotically stable and lim

n→∞
xn = x.

Firstly, since k ≥ 1, then k ≥ k(k + 1)
1−k

k and since α > k1/k, we get
α > k(k + 1)

1−k
k . By Theorem 2, x is locally asymptotically stable.

Let {xn}∞n=−2 be a solution of Eq. (2). By Lemma 2, {xn}∞n=−2 is
bounded.

Let us introduce

Λ1 = lim
n→∞

inf xn and Λ2 = lim
n→∞

supxn.

Then for all ε ∈ (0,Λ1) there exists n0 ∈ N such that for all n ≥ n0 we
get

Λ1 − ε ≤ xn ≤ Λ2 + ε.
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This implies that

α +
Λ1 − ε

(Λ2 + ε)k
≤ xn+1 ≤ α +

Λ2 + ε

(Λ1 − ε)k
for n ≥ n0 + 1.

Then we obtain

α +
Λ1 − ε

(Λ2 + ε)k
≤ Λ1 ≤ Λ2 ≤ α +

Λ2 + ε

(Λ1 − ε)k
,

and from the above inequality

α +
Λ1

Λ2
k
≤ Λ1 ≤ Λ2 ≤ α +

Λ2

Λ1
k
,

which implies that

(αΛ2
kΛ1

k−1 + Λ1
k) ≤ Λk

1Λ
k
2 ≤ (αΛ2

k−1Λ1
k + Λ2

k).

Consequently, we obtain

αΛ2
k−1Λ1

k−1(Λ2 − Λ1) ≤ (Λk
2 − Λk

1).

Suppose that Λ1 6= Λ2 we get that

αΛ2
k−1Λ1

k−1 ≤ Λk
2 − Λk

1

Λ2 − Λ1
.

There exists γ ∈ (Λ1,Λ2) such that

Λk
2 − Λk

1

Λ2 − Λ1
= kγk−1 ≤ kΛk−1

2 .

This implies that αk ≤ k, which is a contradiction. Hence, Λ1 = Λ2 = x.
So, we have shown that

lim
n→∞

xn = x.

Therefore, the proof is complete. �

Theorem 4. Eq. (2) has a period three solution (not necessary prime)
{xn}∞n=−2 if and only if (x−2, x−1, x0) is a solution of the system

(6) x = α + x
zk , y = α + y

xk , z = α + z
yk .

Moreover, if at least one of the initial values of Eq. (2) is different from
the others, then {xn}∞n=−2 has a prime period three solution.
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Proof. First, assume that {xn}∞n=−2 is a period three solution of Eq. (2),
then

x−2 = x1 = α +
x−2

xk
0

,

x−1 = x2 = α +
x−1

xk
1

= α +
x−1

xk
−2

,

and
x0 = x3 = α +

x0

xk
2

= α +
x0

xk
−1

.

Then (x−2, x−1, x0) is a solution of the system (6).
Second, assume that (x−2, x−1, x0) is a solution of the system (6) then

x1 = α +
x−2

xk
0

= x−2,

x2 = α +
x−1

xk
1

= α +
x−1

xk
−2

= x−1,

and
x3 = α +

x0

xk
2

= α +
x0

xk
−1

= x0.

By induction we see that

xn+3 = xn for all n ≥ −2.

In the case where at least one of the initial values of Eq. (2) is different
from the others, clearly {xn}∞n=−2 is a prime period three solution. �

Conclusion. The author believe that these results in this paper can be
conveniently extended the following higher order diffrence equation

xn+1 = α +
xn−m

xk
n

, for m > 2.
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