F A S C I C U L I M A T H E M A T I C I

Nr 42

İbrahim Yalģinkaya

ON THE DIFFERENCE EQUATION

$$
x_{n+1}=\alpha+\frac{x_{n-2}}{x_{n}^{k}}
$$

Abstract. In this paper, we investigate the global behavior of the difference equation of order three

$$
x_{n+1}=\alpha+\frac{x_{n-2}}{x_{n}^{k}}, \quad n=0,1, \ldots
$$

where the parameters $\alpha, k \in(0, \infty)$ and the initial values x_{-2}, x_{-1} and x_{0} are arbitrary positive real numbers.
KEY words: difference equation, global asymptotic stability, equilibrium point, periodicity, semicycle, boundedness.

AMS Mathematics Subject Classification: 39A10.

1. Introduction

Although difference equations are relatively simple in form, it is, unfortunately, extremely difficult to understand thoroughly the global behavior of their solutions. See, for example, [1-13] and the relevant references cited therein.

Difference equations appear naturally as a discrete analogues and as a numerical solutions of differential and delay differential equations having applications various scientific branches, such as in ecology, economy, physics, technics, sociology, biology, etc.

Hamza and Morsy in [8] investigated the global behavior of the difference equation

$$
\begin{equation*}
x_{n+1}=\alpha+\frac{x_{n-1}}{x_{n}^{k}}, \quad n=0,1, \ldots \tag{1}
\end{equation*}
$$

where the parameters $\alpha, k \in(0, \infty)$ and the initial values x_{-1} and x_{0} are arbitrary positive real numbers.

Eq. (1) was investigated when $k=1$ where $\alpha \in(0, \infty)$, see [1] and [6]. There are some other examples of the research regarding Eq. (1). For examples [7] and [11].

In this paper, we consider the following difference equation of order three

$$
\begin{equation*}
x_{n+1}=\alpha+\frac{x_{n-2}}{x_{n}^{k}}, \quad n=0,1, \ldots \tag{2}
\end{equation*}
$$

where the parameters $\alpha, k \in(0, \infty)$ and the initial values x_{-2}, x_{-1} and x_{0} are arbitrary positive real numbers.

Here, we review some results which will be useful in our investigation of the behaviour of Eq. (2) solutions.(c.f. [13])

Definition 1. Let I be an interval of real numbers and let $f: I^{k+1} \rightarrow I$ be a continuously differentiable function where k is a non-negative integer. Consider the difference equation

$$
\begin{equation*}
x_{n+1}=f\left(x_{n}, x_{n-1}, \ldots, x_{n-k}\right), \quad n=0,1, \ldots, \tag{3}
\end{equation*}
$$

with the initial values $x_{-k}, \ldots, x_{0} \in I$. A point \bar{x} called an equilibrium point of Eq. (3) if

$$
\bar{x}=f(\bar{x}, \bar{x}, \ldots, \bar{x}) .
$$

Definition 2. Let \bar{x} be an equilibrium point of Eq. (3).
(a) The equilibrium \bar{x} is called locally stable if for every $\varepsilon>0$, there exists $\delta>0$ such that $x_{0}, \ldots, x_{-k} \in I$ and $\left|x_{0}-\bar{x}\right|+\cdots+\left|x_{-k}-\bar{x}\right|<\delta$, then

$$
\left|x_{n}-\bar{x}\right|<\varepsilon, \text { for all } n \geq-k .
$$

(b) The equilibrium \bar{x} is called locally asymptotically stable if it is locally stable and if there exists $\gamma>0$ such that if $x_{0}, \ldots, x_{-k} \in I$ and $\left|x_{0}-\bar{x}\right|+$ $\cdots+\left|x_{-k}-\bar{x}\right|<\gamma$, then

$$
\lim _{n \rightarrow \infty} x_{n}=\bar{x} .
$$

(c) The equilibrium \bar{x} is called global attractor if for every $x_{0}, \ldots, x_{-k} \in I$ we have

$$
\lim _{n \rightarrow \infty} x_{n}=\bar{x} .
$$

(d) The equilibrium \bar{x} is called globally asymptotically stable if it is locally stable and is a global attractor.
(e) The equilibrium \bar{x} is called unstable if is not stable.

Definition 3. Let $a_{i}=\frac{\partial f}{\partial u_{i}}(\bar{x}, \ldots, \bar{x})$ for each $i=0,1, \ldots, k$, denote the partial derivatives of $f\left(u_{0}, u_{1}, \ldots, u_{k}\right)$ evaluated at an equilibrium \bar{x} of Eq. (3). Then the equation

$$
\begin{equation*}
z_{n+1}=a_{0} z_{n}+a_{1} z_{n-1+} \cdots+a_{k} z_{n-k}, \quad n=0,1, \ldots \tag{4}
\end{equation*}
$$

is called the linearized equation of Eq. (3) about the equilibrium point \bar{x}.

Theorem 1 (Clark's Theorem). Consider the difference equation (4). Then,

$$
\sum_{i=0}^{k}\left|a_{i}\right|<1
$$

is a sufficient condition for the locally asymptotically stability of Eq. (3).
Definition 4. The sequence $\left\{x_{n}\right\}$ is said to be periodic with period p if $x_{n+p}=x_{n}$ for $n=0,1, \ldots$ (c.f.[5]).

2. Main results

In this section we investigate the global behavior, the boundedness and some periodicity of Eq. (2).

A point $\bar{x} \in \mathbb{R}$ is an equilibrium point of Eq. (2) if and only if it is a root for the function,

$$
\begin{equation*}
g(x)=x-x^{1-k}-\alpha \tag{5}
\end{equation*}
$$

that is

$$
\bar{x}-\bar{x}^{1-k}-\alpha=0
$$

Lemma 1. Eq. (2) has a unique equilibrium point $\bar{x}>1$.
Proof. Case 1: Assume that $k=1$, then Eq. (2) has a unique equilibrium point $\bar{x}=\alpha+1>1$.

Case 2: Assume that $0<k<1$. The function g defined by Eq. (5) is decreasing on $\left[0,(1-k)^{1 / k}\right]$ and increasing on $\left[(1-k)^{1 / k}, \infty\right)$. Since $g(1)=-\alpha$ and $\lim _{x \rightarrow \infty} g(x)=\infty$, then g has a unique root $\bar{x}>1$.

Case 3: Assume that $1<k$. Since g increasing on $[0, \infty), g(1)=-\alpha$ and $\lim _{x \rightarrow \infty} g(x)=\infty$, then g has a unique root $\bar{x}>1$,

Therefore, the proof is complete.

Theorem 2. Assume that \bar{x} is the equilibrium point of Eq (2). If $k(k+$ $1)^{\frac{1-k}{k}}<\alpha$, then \bar{x} is locally asymptotically stable.

Proof. From Equations (3)-(4), we see that

$$
f\left(u_{0}, u_{1}, u_{2}\right)=\alpha+u_{0}^{-k} u_{2}
$$

then

$$
a_{0}=\frac{-k}{\bar{x}^{k}}, \quad a_{1}=0, \quad a_{2}=\frac{1}{\bar{x}^{k}} .
$$

By using Clark's Theorem, we get that \bar{x} is locally asymptotically stable if $\bar{x}^{k}>k+1$.

Let $k(k+1)^{\frac{1-k}{k}}<\alpha$, a simple calculations shows that

$$
g\left((k+1)^{1 / k}\right)=k(k+1)^{\frac{1-k}{k}}-\alpha<0
$$

where g is defined by Eq. (5). Then, since $\lim _{x \rightarrow \infty} g(x)=\infty, \bar{x}>(k+1)^{1 / k}$ and $\bar{x}^{k}>k+1$. Therefore, the proof is complete.

Lemma 2. If $\alpha>1$, then every solution of Eq. (2) is bounded and persists.

Proof. We get that

$$
\alpha<x_{n+1}<\alpha+\beta x_{n-2}
$$

where $\beta=\frac{1}{\alpha^{k}}$.
By induction we obtain

$$
\alpha<x_{3 n+i}<\alpha \frac{1-\beta^{n}}{1-\beta}+\beta^{n} x_{i} \quad \text { for } i \in\{-1,0,1\} .
$$

Also, we see that if $\alpha>1$,

$$
\alpha<x_{3 n+i}<\frac{\alpha}{1-\beta}+x_{i} \quad \text { for } \quad i \in\{-1,0,1\}
$$

Therefore, the proof is complete.

Theorem 3. Assume that \bar{x} is the equilibrium point of Eq. (2). If $\alpha>k^{1 / k} \geq 1$, then \bar{x} is globally asymptotically stable.

Proof. We must show that the equilibrium point \bar{x} of Eq. (2) is both locally asymptotically stable and $\lim _{n \rightarrow \infty} x_{n}=\bar{x}$.

Firstly, since $k \geq 1$, then $k \geq k(k+1)^{\frac{1-k}{k}}$ and since $\alpha>k^{1 / k}$, we get $\alpha>k(k+1)^{\frac{1-k}{k}}$. By Theorem 2, \bar{x} is locally asymptotically stable.

Let $\left\{x_{n}\right\}_{n=-2}^{\infty}$ be a solution of Eq. (2). By Lemma 2, $\left\{x_{n}\right\}_{n=-2}^{\infty}$ is bounded.

Let us introduce

$$
\Lambda_{1}=\lim _{n \rightarrow \infty} \inf x_{n} \quad \text { and } \quad \Lambda_{2}=\lim _{n \rightarrow \infty} \sup x_{n}
$$

Then for all $\varepsilon \in\left(0, \Lambda_{1}\right)$ there exists $n_{0} \in \mathbb{N}$ such that for all $n \geq n_{0}$ we get

$$
\Lambda_{1}-\varepsilon \leq x_{n} \leq \Lambda_{2}+\varepsilon
$$

This implies that

$$
\alpha+\frac{\Lambda_{1}-\varepsilon}{\left(\Lambda_{2}+\varepsilon\right)^{k}} \leq x_{n+1} \leq \alpha+\frac{\Lambda_{2}+\varepsilon}{\left(\Lambda_{1}-\varepsilon\right)^{k}} \quad \text { for } \quad n \geq n_{0}+1
$$

Then we obtain

$$
\alpha+\frac{\Lambda_{1}-\varepsilon}{\left(\Lambda_{2}+\varepsilon\right)^{k}} \leq \Lambda_{1} \leq \Lambda_{2} \leq \alpha+\frac{\Lambda_{2}+\varepsilon}{\left(\Lambda_{1}-\varepsilon\right)^{k}}
$$

and from the above inequality

$$
\alpha+\frac{\Lambda_{1}}{\Lambda_{2}^{k}} \leq \Lambda_{1} \leq \Lambda_{2} \leq \alpha+\frac{\Lambda_{2}}{\Lambda_{1}^{k}}
$$

which implies that

$$
\left(\alpha \Lambda_{2}^{k} \Lambda_{1}^{k-1}+\Lambda_{1}^{k}\right) \leq \Lambda_{1}^{k} \Lambda_{2}^{k} \leq\left(\alpha \Lambda_{2}^{k-1} \Lambda_{1}^{k}+\Lambda_{2}^{k}\right)
$$

Consequently, we obtain

$$
\alpha \Lambda_{2}^{k-1} \Lambda_{1}^{k-1}\left(\Lambda_{2}-\Lambda_{1}\right) \leq\left(\Lambda_{2}^{k}-\Lambda_{1}^{k}\right)
$$

Suppose that $\Lambda_{1} \neq \Lambda_{2}$ we get that

$$
\alpha \Lambda_{2}^{k-1} \Lambda_{1}^{k-1} \leq \frac{\Lambda_{2}^{k}-\Lambda_{1}^{k}}{\Lambda_{2}-\Lambda_{1}}
$$

There exists $\gamma \in\left(\Lambda_{1}, \Lambda_{2}\right)$ such that

$$
\frac{\Lambda_{2}^{k}-\Lambda_{1}^{k}}{\Lambda_{2}-\Lambda_{1}}=k \gamma^{k-1} \leq k \Lambda_{2}^{k-1}
$$

This implies that $\alpha^{k} \leq k$, which is a contradiction. Hence, $\Lambda_{1}=\Lambda_{2}=\bar{x}$. So, we have shown that

$$
\lim _{n \rightarrow \infty} x_{n}=\bar{x}
$$

Therefore, the proof is complete.
Theorem 4. Eq. (2) has a period three solution (not necessary prime) $\left\{x_{n}\right\}_{n=-2}^{\infty}$ if and only if $\left(x_{-2}, x_{-1}, x_{0}\right)$ is a solution of the system

$$
\begin{equation*}
x=\alpha+\frac{x}{z^{k}}, \quad y=\alpha+\frac{y}{x^{k}}, \quad z=\alpha+\frac{z}{y^{k}} . \tag{6}
\end{equation*}
$$

Moreover, if at least one of the initial values of Eq. (2) is different from the others, then $\left\{x_{n}\right\}_{n=-2}^{\infty}$ has a prime period three solution.

Proof. First, assume that $\left\{x_{n}\right\}_{n=-2}^{\infty}$ is a period three solution of Eq. (2), then

$$
\begin{gathered}
x_{-2}=x_{1}=\alpha+\frac{x_{-2}}{x_{0}^{k}} \\
x_{-1}=x_{2}=\alpha+\frac{x_{-1}}{x_{1}^{k}}=\alpha+\frac{x_{-1}}{x_{-2}^{k}}
\end{gathered}
$$

and

$$
x_{0}=x_{3}=\alpha+\frac{x_{0}}{x_{2}^{k}}=\alpha+\frac{x_{0}}{x_{-1}^{k}} .
$$

Then $\left(x_{-2}, x_{-1}, x_{0}\right)$ is a solution of the system (6).
Second, assume that $\left(x_{-2}, x_{-1}, x_{0}\right)$ is a solution of the system (6) then

$$
\begin{gathered}
x_{1}=\alpha+\frac{x_{-2}}{x_{0}^{k}}=x_{-2}, \\
x_{2}=\alpha+\frac{x_{-1}}{x_{1}^{k}}=\alpha+\frac{x_{-1}}{x_{-2}^{k}}=x_{-1}
\end{gathered}
$$

and

$$
x_{3}=\alpha+\frac{x_{0}}{x_{2}^{k}}=\alpha+\frac{x_{0}}{x_{-1}^{k}}=x_{0}
$$

By induction we see that

$$
x_{n+3}=x_{n} \text { for all } n \geq-2 .
$$

In the case where at least one of the initial values of Eq. (2) is different from the others, clearly $\left\{x_{n}\right\}_{n=-2}^{\infty}$ is a prime period three solution.

Conclusion. The author believe that these results in this paper can be conveniently extended the following higher order diffrence equation

$$
x_{n+1}=\alpha+\frac{x_{n-m}}{x_{n}^{k}}, \quad \text { for } m>2 .
$$

Acknowledgement. We are grateful to the anonymous referees for their valuable suggestions that improved the quality of this study.

References

[1] Amleh A.M., Grove E.A., Ladas G., On the recursive sequence $x_{n+1}=$ $\alpha+\left(x_{n-1} / x_{n}\right)$, J. Math. Anal. Appl., 233(2)(1999), 790-798.
[2] Cinar C., On the positive solutions of the difference equation $x_{n+1}=$ $\left(a x_{n-1}\right) /\left(1+b x_{n} x_{n-1}\right)$, Appl. Math. Comp., 156(2004), 587-590.
[3] Cinar C., On the positive solutions of the difference equation $x_{n+1}=$ $\left(x_{n-1}\right) /\left(-1+a x_{n} x_{n-1}\right)$, Appl. Math. Comp., 158(3)(2004), 793-797.
[4] Cinar C., On the positive solutions of the difference equation $x_{n+1}=$ $\left(x_{n-1}\right) /\left(1+a x_{n} x_{n-1}\right)$, Appl. Math. Comp., 158(3)(2004), 809-812.
[5] Elaydi S.N., An Introduction to Difference Equations, Springer-Verlag, New-York, Ink, (1996).
[6] Feuer J., On the behavior of solutions of $x_{n+1}=p+\left(x_{n-1} / x_{n}\right)$, Applicable Anal., 83(6)(2004), 599-606.
[7] Gibbons C.H., Kulenović M.R.S., Ladas G., On the recursive sequence $y_{n+1}=\left(\alpha+\beta y_{n-1}\right) /\left(\gamma+y_{n}\right)$, Math. Sci. Res. Hot-Line 4, 2(2000), 1-11.
[8] Hamza A.E., Morsy A., On the recursive sequence $x_{n+1}=\alpha+\left(x_{n-1} / x_{n}^{k}\right)$, Applied Math. Letters, 22(2009), 91-95.
[9] Kelley M.G., Peterson A.C., Difference Equations: An Introduction with Applications, Academic press, 1991.
[10] Kocić V.L., Ladas G., Global Behavior of Nonlinear Difference Equations of Higher Order with Applications, Kluwer Acad. Publ., Dordrecht 1993.
[11] Kosmala W., Kulenović M.R.S., Ladas G., Teixeira C.T., On the recursive sequence $y_{n+1}=\left(p+y_{n-1}\right) /\left(q y_{n}+y_{n-1}\right)$, J. Math. Anal. Appl., 251(2000), 571-586.
[12] Kulenović M.R.S., Ladas G., Dynamics of Second Order Rational Difference Equations, Chapman Hall / C. R. C. Press, (2002).
[13] Kulenović M.R.S., Merino O., Discrete Dynamical Systems and Difference Equations with Mathematica, Chapman Hall / C. R. C. Press, Boca Raton / London (2002).

İbrahim Yalçinkaya
Selcuk University, Education Faculty
Department of Mathematics 42099, Meram Yeni Yol, Konya, TURKIYE e-mail: iyalcinkaya1708@yahoo.com

Received on 14.06.2008 and, in revised form, on 23.07.2008.

