
F A S C I C U L I M A T H E M A T I C I

Nr 43 2010

A. Acosta, W. Aziz, J. Matkowski and N. Merentes

UNIFORMLY CONTINUOUS COMPOSITION

OPERATOR IN THE SPACE OF ϕ–VARIATION

FUNCTIONS IN THE SENSE OF RIESZ

Abstract. Assuming that a Nemytskii operator maps a subset
of the space of bounded variation functions in the sense of Riesz
into another space of the same type, and is uniformly continuous,
we prove that the generator of the operator is an affine function.
Key words: ϕ–variation in the sense of Riesz, uniformly contin-
uous composition operator, Jensen equation.

AMS Mathematics Subject Classification: 26A45, 47H30.

1. Introduction

Let I be an interval of R, (X, | · |) a real normed space, C a closed subset
of X, (Y, | · |) a real Banach space and h : I × C → Y a given function.
Denote by XI the set of all functions f : I → X and by H : XI → Y I

the (Nemytskii or superposition) composition operator generated by the
function h defined by

H(f)(·) = h(·, f(·)).

In this paper, we prove that ifH maps some subsets of the spaceRVϕ(I, C)
of functions of bounded ϕ–variation in the sense of Riesz into spaceRVψ(I, Y ),
and is uniformly continuous, then h, the generator function of the operator
H, is an affine function of the second variable.

This generalizes the results of Chistyakov [3], and Merentes [12], where
it is assumed that H is Lipschizian. The uniformly continuous composition
operators were first considered in [7] for the space of differentiable functions
and absolutely continuous functions, later in [8] for the space of Hölder
function, and in [9] for the space of bounded variation functions.
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2. Auxiliary results

By F we denote the family of all continuous convex functions ϕ : [0,+∞) →
[0,+∞) such that

ϕ(0) = 0, ϕ(t) > 0 for t > 0; lim
t→∞

ϕ(t)
t

= +∞.

Obviously, every ϕ ∈ F is strictly increasing.
In the sequel ϕ ∈ F is fixed.
Let I = [a, b] ⊂ R be an interval. By P(I) we denote the family of all

partitions τ of the interval I; i.e. τ ∈ P(I) if and only if, τ =
(
τi
)m
i=1

for
some m ∈ N, and

a = τ0 < τ1 < · · · < τm = b.

For f ∈ XI and τ ∈ P(I) we put

RVϕ(f, τ) :=
m∑
i=1

ϕ

(
|f(τi)− f(τi−1)|

τi − τi−1

)(
τi − τi−1

)
,

and we define

RVϕ(f) := sup
{
RVϕ(f, τ) : τ ∈ P(I)

}
that is called the Riesz ϕ–variation of f in I.

If RVϕ(f) <∞, we say that f has a bounded Riesz ϕ–variation on I.
The set

RV ∗ϕ (f) :=
{
f ∈ XI : RVϕ(f) < +∞

}
is convex (cf. [2]) if ϕ is convex, but, in general, it is not a linear space. It
is known (cf. [3]) that

RVϕ(I,X) :=
{
f ∈ XI : ∃λ > 0 RVϕ(λf) < +∞

}
is a linear space if and only if ϕ satisfies the ∆2 condition, i.e. there exists
a constant ρ0 ≥ 0 and C > 0 such that ϕ(2ρ) ≤ Cϕ(ρ) for all ρ ≥ ρ0 and
also it is a normed space with the norm

‖f‖ϕ := |f(a)|+ pϕ(f), f ∈ RVϕ(I,X),

where
pϕ(f) := inf

{
ε > 0 : RVϕ

(f
ε

)
≤ 1
}
.

Moreover, if
(
X, | · |

)
is a Banach space, then so is

(
RVϕ(I,X), ‖ · ‖ϕ

)
.
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Remark 1. If f ∈ RVϕ(I,X), then f is continuous in I. It is a conse-
quence of Lemma 2.1 (d) in Chistyakov [3].

We will need the following property of pϕ.

Lemma 1 (cf. Chistyakov, [4], Lemma 3.4). Let ϕ ∈ F and f ∈
RV ∗ϕ (I,X).

If r > 0, then Vϕ(f/r) ≤ 1 if and only if pϕ(f) ≤ r.

3. Main result

For a set C ⊂ X we put

RVϕ(I, C) :=
{
f ∈ RVϕ(I,X) : f(I) ⊂ C

}
.

By A(X,Y ) denote the space of all additive mappings A : X → Y , and
by L(X,Y ) denote the space of all linear mappings from X into Y .

The main result reads as follows.

Theorem 1. Let I = [a, b] and ϕ,ψ ∈ F . Suppose that (X, | · |) is a
linear real normed space, (Y, | · |) is a real Banach space, C ⊂ X is a closed
and convex set, and h : I×C → Y is a function. If the composition operator
H given by

H(f)(t) := h(t, f(t)), t ∈ I, f ∈ XI ,

maps the set RVϕ(I, C) into RVψ(I, Y ) and H is uniformly continuous, then
there are the functions A : I → A(X,Y ) and B ∈ RVψ(I, Y ) such that

h(t, x) = A(t)x+B(t), t ∈ I, x ∈ C.

Moreover, if 0 ∈ C and Int(C) 6= ∅, then A : I → L(X,Y ) and B ∈
RVψ(I, Y ).

Proof. For every x ∈ C, the constant function I 3 t 7→ x belongs to
RVϕ(I, C). Since the Nemytskii operator H maps the space RVϕ(I, C) into
RVψ(I, Y ), it follows that for every x ∈ C the function h(·, x) belongs to
RVψ(I, Y ).

The uniform continuity of H on RVϕ(I, C) implies that

‖H(f1)−H(f2)‖ψ ≤ ω
(
‖f1 − f2‖ϕ

)
for f1, f2 ∈ RVϕ(I, C),

where ω : R+ → R+ is the modulus continuity of H, i.e.

ω(ρ) := sup
{
‖H(f1)−H(f2)‖ψ : ‖f1 − f2‖ϕ ≤ ρ; f1, f2 ∈ RVϕ(I, C)

}
for ρ > 0.
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By the definition of the norm ‖ · ‖ψ, we obtain

pψ
(
H(f1)−H(f2)

)
≤ ‖H(f1)−H(f2)‖ψ for f1, f2 ∈ RVϕ(I, C).

Hence, in view of Lemma 1,

RVψ

(
H(f1)−H(f2)
ω
(
‖f1 − f2‖ϕ

) ) ≤ 1 if ω
(
‖f1 − f2‖ϕ

)
> 0.

Therefore, by the definitions of RVψ(·) and H, for any f1, f2 ∈ RVϕ(I, C)
and α, β ∈ I, α < β, we get

ψ

(
|h(β, f1(β))− h(β, f2(β))− h(α, f1(α)) + h(α, f2(α))|

ω(|f1 − f2|)(β − α)

)
≤ 1
β − α

,

whence, by taking the inverse function ψ−1 from both sides, we obtain

|h(β, f1(β))− h(β, f2(β))− h(α, f1(α)) + h(α, f2(α))|(1)
≤ ω(|f1 − f2|)(β − α)ψ−1(1/(β − α)).

For α, β ∈ [a, b], α < β, define the function ηα,β : R → [0, 1] by

ηα,β(t) :=


0 if t ≤ α
t− α

β − α
if α ≤ t ≤ β

1 if β ≤ t.

Let x1, x2 ∈ C, x1 6= x2. Note that the functions f1, f2 : I → X given by

(2) fj(t) :=
1
2
[
ηα,β(t)(x1 − x2) + xj + x2

]
, t ∈ I, j = 1, 2,

belong to RVϕ(I, C),

f1(β) = x1, f2(β) =
x1 + x2

2
, f1(α) =

x1 + x2

2
, f2(α) = x2,

and, since

f1(t)− f2(t) =
x1 − x2

2
, t ∈ I,

we have
‖f1 − f2‖ϕ =

|x1 − x2|
2

.

Substituting the functions f1, f2 in (1), we obtain∣∣∣∣h(β, x1)− h

(
β,
x1 + x2

2

)
− h

(
α,
x1 + x2

2

)
+ h(α, x2)

∣∣∣∣(3)

≤ ω

(
|x1 − x2|

2

)
(β − α)ψ−1(1/(β − α)).
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Since for any x ∈ C the constant function t 7→ x (t ∈ I) belongs to
RVϕ(I, C) and H maps RVϕ(I, C) into RVψ(I, Y ), the function h(·, x), be-
longs to RVψ(I, Y ) for any x ∈ C. Since ψ ∈ F , we have

lim
ρ→∞

ρ

ψ(ρ)
= lim

r→0
rψ−1

(1
r

)
= 0.

Hence
lim

β−α→0
(β − α)ψ−1(1/(β − α)) = 0.

Now take t ∈ I and α ≤ t ≤ β, α < β, α, β ∈ I. Letting β − α tend to
zero in (3), and making use of the continuity of the function h(·, x) for any
x ∈ C (cf. Remark 1 ), we get

h

(
t,
x1 + x2

2

)
=
h(t, x1) + h(t, x2)

2
,

for all t ∈ I and x1, x2 ∈ C.
Thus, for each t ∈ I the function h(t, ·) satisfies the Jensen functional

equation in C. Hence, by the standard argument (cf. Kuczma [5]), we
conclude that there exist an additive function A(t) : X −→ Y and B(t) ∈ Y
such that

h(t, x) = A(t)x+B(t), t ∈ I, x ∈ C

which finishes the proof of the first part of our result.
Since 0 ∈ C, the constant zero function belongs to RVϕ(I, C). Set-

ting this function in the just proved formula and taking into account that
H maps RVϕ(I, C) into RVψ(I, Y ), we infer that H(0) = h(·, 0) = B be-
longs to RVψ(I, Y ). The uniform continuity of operator H : RVϕ(I, C) −→
RVψ(I, C) implies the continuity of the additive function A(t) for t ∈ I.
Consequently, A(t) ∈ L(X,Y ) for each t ∈ I. This completes of proof. �

Remark 2. In the proof of the theorem we apply the uniform continuity
of the operator H only on the set Z ⊂ RVϕ(I, C) such that f ∈ Z if there
are α, β ∈ I, α < β such that

f(t) =
1
2
[
ηα,β(t)(x1 − x2) + x+ x2], t ∈ I,

where ηα,β is defined by (2), x1, x2 ∈ C and x = x1 or x = x2.
Thus the assumption of the uniform continuity of H on RVϕ(I, C) in the

theorem can be replaced by a weaker condition of the uniform continuity of
H on Z.
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Caracas-Venezuela

e-mail: nmer@ciens.ucv.ve

Received on 22.09.2009 and, in revised form, on 04.11.2009.


