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ABSTRACT. In this paper, we introduce some new sequence
spaces combining with lacunary sequence, o—convergence, a se-
quence of p-functions and a sequence of modulus functions. We
establish some inclusion relations between these spaces under
some conditions. Also we studied connections between lacunary
(A, ¢, o) —statistically convergence with these spaces.
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1. Introduction

Let w be the set of all sequences of real or complex numbers and I, ¢
and c¢g be, respectively, the Banach spaces of bounded, convergent and null
sequences x = (z) with the usual norm ||z|| = sup |zg]|.

k

A sequence = € Iy is said to be almost convergent if all of its Banach
limits coincide. Let ¢ denote the space of all almost convergent sequences.
Lorentz [1] has shown that

¢ = {x € loo : lim tyy, () exists uniformly in n}
m

where
Tp+ Tp+l + .00+ Tntm

m+1

tinn () =

The space [¢] of strongly almost convergent sequences was introduced by
Maddox [2] as follows:

[¢] = {a; € loo : limty,p |z — le|]) = 0, uniformly in n, for some l} :

Let o be one-to-one mapping of the set of positive integers into itself such
that o%(n) = o(c*1(n)), k = 1,2,3,...and ¢°(n) := n. A continuous linear
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functional ® on [ is said to be an invariant mean or a c—mean if and only
if

(1) ®(z) > 0 when the sequence x = (x,,) has z,, > 0 for all n

(2) ®(e) =1 where e = (1,1,...) and

(3) @(z5(n)) = @(z) for all z € l.

For a certain kinds of mapping ¢ every invariant mean ® extends the
limit functional on space ¢, in the sense that ®(x) = limx for all z € c.
Consequently, ¢ C V,, where V is the set of bounded sequences all of whose
o—means are equal.

It can be shown [3] that

Vo = {m €l : lilgntkm(:n) = L uniformly in m , for some L = o — limx}

where
T + T (m) + ...+ l’gk(m)

E+1

tem(z) =

We say that a bounded sequence x = (xy) is c—convergent if and only if
x € V, such that o¥(m) # m for all m >0, k > 1.

[V;] denotes the set of all strongly o-convergent sequences which has been
defined by Mursaleen [5], as

1 m
v, = oo : lim—
Vo] {fé g{lmz

Tk (n) — l‘ = 0 uniformly in n} .

Taking o(n) = n + 1, we obtain [V,] = [¢] so that strong o-convergence
generalizes the concept of strong almost convergence.

By a lacunary 6 = (k,); r = 0,1,2,... where kg = 0, we shall mean
an increasing sequence of non-negative integers with k. — k._1 — oo as
r — oo. The intervals determined by 6 will be denoted by I, = (k,_1, k;|
and h, = k, — k,—1. The ratio kfil will be denoted by ¢,. In [4], the space
of lacunary strongly convergent sequences Ny was defined as follows:

N9:{$:($i)t limh;lz\xi—ﬂ:0f0rsomes}.

i€l

A modulus function f is a function acting from [0, co) to [0, c0) such that
i) f(z) =0 if and only if z = 0,

i) f(x+y) < flz) + f(y) for all 7,y > 0,

iii) f increasing,

iv) f is right continuous at zero.

(
(
(
(
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Since |f(x) — f(y)| < f (|z — y|), it follows from condition (iv) that f is
continuous on [0,00). Furthermore, we have f(nz) < nf(z) for all n € N,
from condition (ii) and so

F(@) = fna) < nf(h).

n

Hence, for all n € N
1 T
- < f(5).
() < 15
A modulus may be bounded or unbounded. For example, f(z) = P, for
0 < p <1 is unbounded, but f(x) = {7 is bounded. Ruckle [6] used the
idea of a modulus function f to construct a class of FK spaces

L(f) = {90 = (zx) : Y _f(|l=l) < OO} :
k

=1

The space L(f) is closely related to the space [; which is a L(f) space
with f(x) =z for all real z > 0.

Furthermore, modulus function has been discussed in [7], [8], [9], [10],
[11],[12], [15] and many others.

By a ¢-function we understand a continuous non-decreasing function ¢(v)
defined for v > 0 and such that ¢(0) = 0, p(v) > 0 for v > 0 and p(v) — c©
as v — 00.

In [12], [13], [14] and [16] some sequence spaces were studied using ¢-function.

Let ¢ = (¢r) and ¥ = (¢) be sequences of p-functions.

A sequence of p-functions ¢ is called non weaker than a sequence of
p-function ¢ and we write ¢ < ¢ (or ¥ < @i for all k) if there are con-
stants ¢, b,m,l > 0 such that ciy (lv) < bpy (nv) (for all, large or small v,
respectively).

Two sequences of p-functions ¢ and v are called equivalent and we write
@ ~ 1 (or Yy < ¢y for all k) if there are positive constants by, by, ¢, ki,
ko, 1 such that bipy (k1v) < ey (lv) < bopy (kov) (for all, large or small v,
respectively).

A sequence of p-functions ¢ is said to satisfy the Ag-condition (for all,
large or small v, respectively) if for some constant [ > 1 there is satisfied
the inequality g (2v) < lpg (v) for all k. For a p-function satisfying the
Ao-condition, there is L > 0 such that

(1) i (cv) < Loy (v)

for v large enough.
Indeed, for every ¢ > 0 there is an integer s such that ¢ < 2% and

(2) o (cv) < @p (2°0) < Py (v)
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for v large enough.

Let A = (anx) be an infinite matrix such that;

a) A is non-negative, i.e. an, >0 for n,k=1,2,... ,

b) for an arbitrary positive integer n (or k) there exists a positive integer
k, (or m,) such that ank, # 0 (or an.x # 0), respectively,

c) there exists liinank =0fork=1,2,...,

o0
d) sup,, > ank < 00,
k=1

e) sup,, ayr — 0 as k — oo.

In the present paper, we introduce and study some properties of the
following sequence space that is defined by using the sequence of ¢ -functions
and the sequence of modulus functions.

2. Main results

Let 6 = (k,) be a lacunary sequence, ¢ = (¢x) and f = (f,,) be a sequence
of p-functions and a sequence of modulus functions, respectively. Moreover,
let a matrix A = (a,) be given as above. Then we define,

Vo(( Pk ) s fn):{ = (zy) Ew:

hm— S fa (Zank% (

ne[r

Tk m)D) = 0, uniformly in m} .

Throughout this paper, the sequence of modulus functions f = (fy)
satisfy the condition limJr sup fn(v) = 0.
v—0 n

If z € VP (A, o, 0), fr) then the sequence z is said to be lacunary strong
(A, ¢k, 0)- convergent to zero with respect to a sequence of modulus f.
If we take 6 = (2") then we have

VO (A ¢k, 0), fn)_{ cw:

hm k;fn (Zanlﬁ@k ( Tk )D> = 0, uniformly in m} .

When @i (z) = z for all x and k, we obtain

%0((AJU)7fn): {wa:

hm— S <Zank =

nEIr

D) = 0, uniformly in m} .
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If fo(x) =z for all x and n, we write

‘/90 (Aa(pk70) = {.%'Gwi

hmh— Z (Z%k@k ( Tk )D> = 0, uniformly in m} .

When A = I, we get the following sequence space,

Vi (L, ¢k, 0), fn)Z{fL’Gw:

hm— Z fn ©n (‘ffo—n m)D) =0, uniformly in m}

T TLEIT

If we take A = I, pr(z) = x for all x and k, then we have

VO((I,0), fn) = {x Ew: hm— Z fn ‘xan(m }) = 0, uniformly in m} .

TLGIT-

If we take A = I, pi(z) = x for all x and k and f,(x) = f(z) for all x
and n then we have

VP ((I,0),f) = {w cw: hm— Z f (|zon(my|) = 0, uniformly in m} .

TLGIT

If we take A = I, pi(x) = x for all z and k, f,(x) = x for all z and n
then we have

1
0 _ . . _ . .
Vo' (I,0) = {x cw: lim—h E ‘l‘an(m)‘ = 0, uniformly in m} .

T nel,

If we define the matrix A = (ayy) as follows:
1
ane = —forn>k and an, =0 for n <k,
n

then we have the sequence space,

Vi ((Con,0), fn):{wa:

hmen< Zeok(

nEIr

Tk m)D) = 0, uniformly in m} .
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If we take o(m) = m+1, the sequence spaces V;) ((4, ¢k, o ) fn) O((A,

(,Ok,O') 7fn)7 Veo ((A7 U) 7fn)7 VGO (Av 901670)7 ‘/00 (( » Py O ) fn) (( ) ) 7fn)a
V2((I,0), f), VY (I,o)and V) ((C, ¢k, o), fn) reduce to the following spaces

of sequences, respectively.

Vo(( 79016) fn)—{ (l‘k)ew:

hm 7~ Z fn (Zankwk |Zk1m|) ) = 0, uniformly in m} ,

ne[
VO((Apr) fa) = {w cw:

k [e's)
.1 . .
lim 2> fa <§ ko (lmml)) — 0, wniformly in m} ,

n=1 k=1
Ve ((A), fn) = {w cw:

hm T Z In (Zank |Zk+m]) > = 0, uniformly in m} ,

nEIr
‘/bo (A,QOk> = {(E cw:

lleh— Z (Zank()@k ]a;ker\)) = 0, uniformly in m} ,

" nel. \k=1

%0<(Iagok)afn): {wa:

.1 : :
h;n 7 Z fn (@n (|Zn+m|)) = 0, uniformly in m} ,

r ’nEI'r

Vi (), fu) = {wew:

hm— frn (|Zn4m|) = 0, uniformly in m
+

T‘ TLGIT



ON LACUNARY STRONG 0—CONVERGENCE WITH ... 25

1
VO ((I), f) = {x cw: limh— Z f (|zn+m|) = 0, uniformly in m} ,

T nel,

V(1) = {x cw: hm— Z (|Zn4+m|) = 0, uniformly in m}

Vi ((Copr), fn) = {xew:

1 — _ .
hm - Z In (nZgok (|5L‘k+m|)> = 0, uniformly in m} )
k=1

nEIT

We can note that the space [V,] (for [=0) is equivalent to space V° (I, o)
which has been noticed by the referee.

Now we have,

Theorem 1. Let us suppose that ¢ = (py) and p = () be two sequences
of p-functions and ¢ = (i (v)) satisfies the Ag-condition for large v.

(Z)Ifdj < then ‘/90 ((Aa kava) 7fn) C ‘/90 ((Avfl/}ka U) ) fn)

(ii) If two sequences of p-functions (pr (v)) and (Yx (v)) are equivalent
for large v and they satisfy the Aa-condition for large v then V) ((A, ¢k, o), fn) =

‘/00 ((A7 Tzz)k’ U) 3 fn)
Proof. (i) Let z = (zx) € V) (A, ¢k, 0) , fn)-
Then hrn w2 In <§ AnkPk (

nel, k=1
sumption, 1 < ¢, we have

3) Uk (lzxl) < bo (clakl)

for b,c,v9 > 0, all k, and |xg| > vg. Let us denotes z = 2’ + 2", where for all

Tk () D) = 0, uniformly in m. By as-

m, &’ = <:C:7k(m)> and CC/Ok(m) = Tk () for CL'Uk(m)‘ < vp and x;k(m) =0 for

remaining values of k and m. It is easy to see that 2’/ € V) ((4, ¢k, ), fn)-
Furthermore, by the assumptions and the inequality (3) we get
)

nzlrfn (Zanwk ( D) 7; i (bzanwk (
Z fa (bLZanwk ( UM)D)
)

| /\

TLEI’r

AP (

HGIT
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where the constants K and L is connected with properties of f and ¢ func-
tions. We recall that a p—function satisfying the Ags—condition imply (1)
and (2).

Finally we obtain 2/ = (z}) € VJ ((A,v¢x,0), fn) and in consequence

S ‘/90 ((A7Q;Z)k7o-) ’fn)

(“) The 1dent1ty ‘/00 ((Av Pk U) ) fn) = ‘/90 ((A’ 1/%7 U) 7fn) is pI‘OVGd by
using the same argument. |

Theorem 2. Let the sequence ¢ = (pr (v)) of p-functions satisfies the
Ag-condition for all k and for large v then V) ((A, ¢k, ), fn) is linear space.

Proof. Firstly we prove that if z = (z) € V) ((4, ¢k, 0), fn) and « is
an arbitrary number then az € V) ((4, ¢k, 0), fn). Let us remark that for

0<a<1weget
Z fn (Zanksak (‘( ak(m )D) Z fn (Zank(pk ( Tk m)‘)) .
Moreover, if & > 1 then we may find a positive number s such that o < 2°

nel, nEIT
and we obtain

h;ﬁ@yww<<mw
<4 LS, (d > amen (

TLEI’r

K5 (zanm

nel,

)
)

where d and K are constants connected with the properties of ¢ and f func-
tions. We recall that a p—function satisfying the Ags—condition imply (1)
and (2). Hence we obtain ax € V) ((4, ¢k, ), fn)-

Secondly, let z,y € V) (A, ¢k, 0), fn) and a, 8 arbitrary numbers. We
will show that ax + By € V2 ((4, ¢k, ), fn)-

b 2 (S (o )
3 o (o (o

T'LEIT

WA oy

nel

<

B

)

)




ON LACUNARY STRONG 0—CONVERGENCE WITH ... 27

where the constants K; and Ko are defined as above. In consequence,
az + By € Vg (A, ¢x,0) s fa). u

Now, we give the following Proposition that is necessary for proof of the
Theorem 3.

Proposition 1 (15). Let f be a modulus and let 0 < 6 < 1. Then for
each v > & we have f(v) < 2f(1)6 v

Theorem 3. Let ¢ = (1) and f = (fn) be a given sequence of p-functions
and a sequence of modulus functions, respectively, and sup f,(1) < oo. Then
n

Vi (A, or,0) C VY (A pry o) f).
Proof. Let z € V) (4, ¢x,0) and put sup f,(1) = M. For a given ¢ > 0
we choose 0 < § < 1 such that f,(z) < € for every x € [0,0] and for all n.

We can write
Tk m)’)) =51+.5

)

e AP

TLEIT

where

S1=7- LS, (ZankSDk(

r TLEIT

and this sum is taken over

oo
Zanks% (
k=1

xak(m)D <4

and

)

3 g (e o

'YLEIT

and this sum is taken over

oo
ZankSOk (
k=1

By the definition of the modulus f we have

Slghian(é)<hi(hra):e

r ’ILEIT "

xok(m)D >0

and moreover

S, <2M7—Zzank9@k< )D

hr nel, k=1
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by Proposition 1. Finally we have z € V) (A, ¢k, ), fn).
This completes the proof. |

Theorem 4. Let ¢ = (pr) and f = (fn) be a given sequence of p-functions

and a sequence of modulus functions, respectively. If lim inf f”(v) > 0

VO (A 1:0) ) = VI (A, 1 0). T

Proof. If lim mff”( v) > 0 then there exists a number ¢ > 0 such that

v—00 N

fn(v) > cv for v>0and n € N. Let x € V) (A, ¢k, 0), fn). Clearly
3 (S () = o e (S (o)
e ;(;anm(m >D>-

Therefore x € Veo (A, pr, o). We complete the proof using Theorem 3. W

v

Theorem 5. Let 0 = (k) be a lacunary sequence and f = (fn) be a
sequence of modulus functions.
(Z) If liminf g, > 1 then Vo ((Aa (pk,O') 7fn) - ‘/'90 (( y Phks O ) fn)
(i4) If limsup g, < oo then V) ((4, ¢k, 0), fn) C VO ((A, ok, 0), fn).
(i4i) If1 < liminf ¢, < limsupg, < oo then V) ((A, ¢k, ), fn) = VO ((4,
Pk> J) > fn)

Proof. This can be proved by using the same techniques as in [9] and
hence we omit the proof. |

The next result follows from Theorem 4 and Theorem 5.

ffn(v)

Corollary 1. If limin > 0 and 1 < liminf ¢, < limsupg, < oo

v—00 N

then V) (A, o, 0) = VO ((A, ok, 0) , fn)-

3. S§ (A, ¢, 0) -statistical convergence
Let the matrix A = (a,;) be given as previously, § = (k) be a lacunary

sequence, the sequence of ¢-functions ¢ = (¢g) and a positive number € > 0
be given. We write,

Ky (A, ¢x,0) ,€)) = {n €l : ianwk ( w(,k(m)D > 8} :
k=1
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The sequence z is said to be lacunary (A, ¢, 0)- statistically convergent
to a number zero if for every ¢ > 0

lim }jru (K5 (A, o1, 0) .€))) = 0

where 11 (K} (((A4, ¢k, 0),¢€))) denotes the number of elements belonging to
K} (((A, g, 0),€)). We denote by Sy (A, ok, o), the set of sequences z =
(zx) which are lacunary (A, ¢k, o)-statistically convergent to a number zero.
We write

9 (4 pr) = {2 = () 1 (5 (A, ) 20) = 0}

When we take 0 = (27), Sy (A, ¢k, o) reduces to SY (4, ¢r, 7).
If we take A = I and ¢ (x) = « for all k£ and x, then Sg (A, ok, o) reduces

to Sy (o) defined by
Sy (o) = {a: = (z) : li}amhi {k el : ( ﬂzak(m)D > 6}‘ = O}.

Now we have,

Theorem 6. Let 0 = (k) be a lacunary sequence, ¢ = (¢ (v)) and
Y = (Y (v)) are two sequences of p-functions.

(2) If Y < ¢ and @y, satisfies the Ag-condition for large v and for all k
then Sy (A, Yy, o) C Sp (A, px,0).

(ii) If  ~ 1 and pr and Yy, satisfy the Ag-condition for large v and for
all k then S§ (A, g, o) = Sh (A, ¢k, 0).

Proof. (i) Let x € S§ (A, 9, 0). By assumption we have 9y (

b, (c Lok (1m) D and we have for all m,

ianmﬂk ( chk(m)D < bianktpk (c xak(m)‘) < Kiankgpk (
k=1 k=1 k=1

for b,c¢ > 0, where the constant K is connected with properties of ¢ func-
tions. Thus the condition )~ ank¥s (

o0
Zk:ﬂnwk (

e

)

Tk (1) D > ¢ implies the condition

Tk (m) D > ¢ and in consequence we get

Ky (A, ¢r,0) ,¢)) € Ky (A, ¢n,0) ,€))

and

i 1 (56 (4, 91.0) ) < lmn o (G (((4,61,0),2).
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This completes the proof.
(i4) The identity S (A, g, o) = Sy (A, ¢k, o) is proved by using the same
argument. [ |

Theorem 7. Let f = (f,) be given a sequence of modulus functions. If
inf f,(v) > 0, for v >0, then
n

VQO ((A7 Pk U) ) fn) - Sg (A7 Pk> U) :
Proof. If inf f,(v) > 0 then there exists a number a > 0 such that
fa(v) > aforv>0and n € N. Let x € V) ((4, ¢k, 0), fn)-

I PSRN ()
> hlr > fa (iank‘;@k ( x

TLGIT

)

OZ_O ank¢k< xak(m)‘ >
o
> hf nel, Zankgok ( Uk(m)D > €
k=1
and it follows that = € Sy (A, ¢k, o). [ |

Theorem 8. Let f = (f,) be given a sequence of modulus functions. If
supsup fn(v) < oo then
v n

So (A, o1, 0) C Vg (A, 01, 0) 5 ) -
Proof. We suppose T'(v) = supfp(v) and T = supT'(v). Let z €
S (A, @k, 0). Since fn(v) <T for n € N and v > 0, we have

A C)
w2 a(Sma D)
o)

TLG[T

]:Ezolank‘ﬁk ( Z ok (m) D 2e

1 o0

+ 7 Z fn (Zank@k (
nel, k=1

E?:lank%(

b () <2
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< fer {n el : iankcpk < $Uk(m)D > 5} +T(¢e).

Taking the limit as € — 0, it follows that x € V90 (A, o, 0), fn)- |

Corollary 2. Let f = (f,) be a given sequence of modulus functions. If
inff,,(v) > 0(v > 0) and supsup,, f(v) < oo then Sy (A, o, 0) = Vi ((A, ¢k,

), fn)-
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