$\frac{F A S C I C U L I M A T H E M A T I C I}{Nr 43}$

Metin Başarır

ON LACUNARY STRONG σ -CONVERGENCE WITH RESPECT TO A SEQUENCE OF φ -FUNCTIONS

ABSTRACT. In this paper, we introduce some new sequence spaces combining with lacunary sequence, σ -convergence, a sequence of φ -functions and a sequence of modulus functions. We establish some inclusion relations between these spaces under some conditions. Also we studied connections between lacunary (A, φ_k, σ) -statistically convergence with these spaces.

KEY WORDS: σ -convergence, modulus function, φ -function, lacunary sequence, statistical convergence.

AMS Mathematics Subject Classification: 46A45, 40F05, 46A80.

1. Introduction

Let w be the set of all sequences of real or complex numbers and l_{∞} , c and c_0 be, respectively, the Banach spaces of bounded, convergent and null sequences $x = (x_k)$ with the usual norm $||x|| = \sup_{x \to \infty} |x_k|$.

A sequence $x \in l_{\infty}$ is said to be almost convergent if all of its Banach limits coincide. Let \hat{c} denote the space of all almost convergent sequences. Lorentz [1] has shown that

$$\hat{c} = \left\{ x \in l_{\infty} : \lim_{m} t_{mn}(x) \text{ exists uniformly in } n \right\}$$

where

$$t_{mn}(x) = \frac{x_n + x_{n+1} + \ldots + x_{n+m}}{m+1}.$$

The space $[\hat{c}]$ of strongly almost convergent sequences was introduced by Maddox [2] as follows:

$$[\hat{c}] = \left\{ x \in l_{\infty} : \lim_{m} t_{mn}(|x - le|) = 0, \text{ uniformly in } n, \text{ for some } l \right\}.$$

Let σ be one-to-one mapping of the set of positive integers into itself such that $\sigma^k(n) = \sigma(\sigma^{k-1}(n)), k = 1, 2, 3, \dots$ and $\sigma^0(n) := n$. A continuous linear

functional Φ on l_{∞} is said to be an invariant mean or a σ -mean if and only if

- (1) $\Phi(x) \ge 0$ when the sequence $x = (x_n)$ has $x_n \ge 0$ for all n
- (2) $\Phi(e) = 1$ where e = (1, 1, ...) and
- (3) $\Phi(x_{\sigma(n)}) = \Phi(x)$ for all $x \in l_{\infty}$.

For a certain kinds of mapping σ every invariant mean Φ extends the limit functional on space c, in the sense that $\Phi(x) = \lim x$ for all $x \in c$. Consequently, $c \subset V_{\sigma}$ where V_{σ} is the set of bounded sequences all of whose σ -means are equal.

It can be shown [3] that

$$V_{\sigma} = \left\{ x \in l_{\infty} : \lim_{k} t_{km}(x) = L \text{ uniformly in } m \text{ , for some } L = \sigma - \lim x \right\}$$

where

$$t_{km}(x) = \frac{x_m + x_{\sigma(m)} + \ldots + x_{\sigma^k(m)}}{k+1}.$$

We say that a bounded sequence $x = (x_k)$ is σ -convergent if and only if $x \in V_{\sigma}$ such that $\sigma^k(m) \neq m$ for all $m \geq 0, k \geq 1$.

 $[V_{\sigma}]$ denotes the set of all strongly σ -convergent sequences which has been defined by Mursaleen [5], as

$$[V_{\sigma}] = \left\{ x \in l_{\infty} : \lim_{m} \frac{1}{m} \sum_{k=1}^{m} \left| x_{\sigma^{k}(n)} - l \right| = 0 \text{ uniformly in } n \right\}.$$

Taking $\sigma(n) = n + 1$, we obtain $[V_{\sigma}] = [\hat{c}]$ so that strong σ -convergence generalizes the concept of strong almost convergence.

By a lacunary $\theta = (k_r)$; r = 0, 1, 2, ... where $k_0 = 0$, we shall mean an increasing sequence of non-negative integers with $k_r - k_{r-1} \to \infty$ as $r \to \infty$. The intervals determined by θ will be denoted by $I_r = (k_{r-1}, k_r]$ and $h_r = k_r - k_{r-1}$. The ratio $\frac{k_r}{k_{r-1}}$ will be denoted by q_r . In [4], the space of lacunary strongly convergent sequences N_{θ} was defined as follows:

$$N_{\theta} = \left\{ x = (x_i) : \lim_{r \to \infty} h_r^{-1} \sum_{i \in I_r} |x_i - s| = 0 \text{ for some } s \right\}.$$

A modulus function f is a function acting from $[0, \infty)$ to $[0, \infty)$ such that (i) f(x) = 0 if and only if x = 0, (ii) $f(x+y) \le f(x) + f(y)$ for all $x, y \ge 0$, (iii) f increasing,

(iv) f is right continuous at zero.

Since $|f(x) - f(y)| \leq f(|x - y|)$, it follows from condition (iv) that f is continuous on $[0, \infty)$. Furthermore, we have $f(nx) \leq nf(x)$ for all $n \in \mathbb{N}$, from condition (*ii*) and so

$$f(x) = f(nx\frac{1}{n}) \le nf(\frac{x}{n}).$$

Hence, for all $n \in \mathbb{N}$

$$\frac{1}{n}f(x) \le f(\frac{x}{n}).$$

A modulus may be bounded or unbounded. For example, $f(x) = x^p$, for $0 is unbounded, but <math>f(x) = \frac{x}{1+x}$ is bounded. Ruckle [6] used the idea of a modulus function f to construct a class of FK spaces

$$L(f) = \left\{ x = (x_k) : \sum_{k=1}^{\infty} f(|x_k|) < \infty \right\}.$$

The space L(f) is closely related to the space l_1 which is a L(f) space with f(x) = x for all real $x \ge 0$.

Furthermore, modulus function has been discussed in [7], [8], [9], [10], [11], [12], [15] and many others.

By a φ -function we understand a continuous non-decreasing function $\varphi(v)$ defined for $v \ge 0$ and such that $\varphi(0) = 0, \varphi(v) > 0$ for v > 0 and $\varphi(v) \to \infty$ as $v \to \infty$.

In [12], [13], [14] and [16] some sequence spaces were studied using φ -function. Let $\varphi = (\varphi_k)$ and $\psi = (\psi_k)$ be sequences of φ -functions.

A sequence of φ -functions φ is called non weaker than a sequence of φ -function ψ and we write $\psi \prec \varphi$ (or $\psi_k \prec \varphi_k$ for all k) if there are constants c, b, n, l > 0 such that $c\psi_k(lv) \prec b\varphi_k(nv)$ (for all, large or small v, respectively).

Two sequences of φ -functions φ and ψ are called equivalent and we write $\varphi \sim \psi$ (or $\psi_k \prec \varphi_k$ for all k) if there are positive constants b_1 , b_2 , c, k_1 , k_2 , l such that $b_1\varphi_k(k_1v) \leq c\psi_k(lv) \leq b_2\varphi_k(k_2v)$ (for all, large or small v, respectively).

A sequence of φ -functions φ is said to satisfy the Δ_2 -condition (for all, large or small v, respectively) if for some constant l > 1 there is satisfied the inequality $\varphi_k(2v) \leq l\varphi_k(v)$ for all k. For a φ -function satisfying the Δ_2 -condition, there is L > 0 such that

(1)
$$\varphi_k\left(cv\right) \le L\varphi_k\left(v\right)$$

for v large enough.

Indeed, for every c > 0 there is an integer s such that $c \leq 2^s$ and

(2)
$$\varphi_k(cv) \le \varphi_k(2^s v) \le l^s \varphi_k(v)$$

for v large enough.

Let $A = (a_{nk})$ be an infinite matrix such that;

a) A is non-negative, i.e. $a_{nk} \ge 0$ for n, k = 1, 2, ...,

b) for an arbitrary positive integer n (or k) there exists a positive integer k_0 (or n_0) such that $a_{nk_0} \neq 0$ (or $a_{n_0k} \neq 0$), respectively,

c) there exists $\lim_{n} a_{nk} = 0$ for k = 1, 2, ...,

- d) $\sup_n \sum_{k=1}^{\infty} a_{nk} < \infty$,
- e) $\sup_n a_{nk} \to 0$ as $k \to \infty$.

In the present paper, we introduce and study some properties of the following sequence space that is defined by using the sequence of φ -functions and the sequence of modulus functions.

2. Main results

Let $\theta = (k_r)$ be a lacunary sequence, $\varphi = (\varphi_k)$ and $f = (f_n)$ be a sequence of φ -functions and a sequence of modulus functions, respectively. Moreover, let a matrix $A = (a_{nk})$ be given as above. Then we define,

$$V_{\theta}^{0}\left(\left(A,\varphi_{k},\sigma\right),f_{n}\right) = \left\{x = \left(x_{k}\right) \in w: \\ \lim_{r} \frac{1}{h_{r}} \sum_{n \in I_{r}} f_{n}\left(\sum_{k=1}^{\infty} a_{nk}\varphi_{k}\left(\left|x_{\sigma^{k}(m)}\right|\right)\right) = 0, \text{ uniformly in } m\right\}.$$

Throughout this paper, the sequence of modulus functions $f = (f_n)$ satisfy the condition $\lim_{v \to 0^+} \sup_n f_n(v) = 0$.

If $x \in V^0_{\theta}((A, \varphi_k, \sigma), f_n)$ then the sequence x is said to be lacunary strong (A, φ_k, σ) - convergent to zero with respect to a sequence of modulus f.

If we take $\theta = (2^r)$ then we have

$$V^{0}\left(\left(A,\varphi_{k},\sigma\right),f_{n}\right) = \left\{x \in w: \\ \lim_{k} \frac{1}{k} \sum_{n=1}^{k} f_{n}\left(\sum_{k=1}^{\infty} a_{nk}\varphi_{k}\left(\left|x_{\sigma^{k}(m)}\right|\right)\right) = 0, \text{ uniformly in } m\right\}.$$

When $\varphi_k(x) = x$ for all x and k, we obtain

$$V_{\theta}^{0}\left(\left(A,\sigma\right),f_{n}\right) = \left\{x \in w: \\ \lim_{r} \frac{1}{h_{r}} \sum_{n \in I_{r}} f_{n}\left(\sum_{k=1}^{\infty} a_{nk}\left(\left|x_{\sigma^{k}(m)}\right|\right)\right) = 0, \text{ uniformly in } m\right\}.$$

If $f_n(x) = x$ for all x and n, we write

$$V^{0}_{\theta}(A,\varphi_{k},\sigma) = \left\{ x \in w : \\ \lim_{r} \frac{1}{h_{r}} \sum_{n \in I_{r}} \left(\sum_{k=1}^{\infty} a_{nk} \varphi_{k} \left(\left| x_{\sigma^{k}(m)} \right| \right) \right) = 0, \text{ uniformly in } m \right\}.$$

When A = I, we get the following sequence space,

$$V_{\theta}^{0}\left(\left(I,\varphi_{k},\sigma\right),f_{n}\right) = \left\{x \in w: \\ \lim_{r} \frac{1}{h_{r}} \sum_{n \in I_{r}} f_{n}\left(\varphi_{n}\left(\left|x_{\sigma^{n}(m)}\right|\right)\right) = 0, \text{ uniformly in } m\right\}.$$

If we take A = I, $\varphi_k(x) = x$ for all x and k, then we have

$$V_{\theta}^{0}\left(\left(I,\sigma\right),f_{n}\right) = \left\{x \in w : \lim_{r} \frac{1}{h_{r}} \sum_{n \in I_{r}} f_{n}\left(\left|x_{\sigma^{n}(m)}\right|\right) = 0, \text{ uniformly in } m\right\}.$$

If we take A = I, $\varphi_k(x) = x$ for all x and k and $f_n(x) = f(x)$ for all x and n then we have

$$V_{\theta}^{0}\left(\left(I,\sigma\right),f\right) = \left\{ x \in w: \lim_{r} \frac{1}{h_{r}} \sum_{n \in I_{r}} f\left(\left|x_{\sigma^{n}(m)}\right|\right) = 0, \text{ uniformly in } m \right\}.$$

If we take A = I, $\varphi_k(x) = x$ for all x and k, $f_n(x) = x$ for all x and n then we have

$$V^0_\theta\left(I,\sigma\right) = \left\{ x \in w: \ \lim_r \frac{1}{h_r} \sum_{n \in I_r} \ \left| x_{\sigma^n(m)} \right| = 0, \text{ uniformly in } m \right\}.$$

If we define the matrix $A = (a_{nk})$ as follows:

$$a_{nk} = \frac{1}{n}$$
 for $n \ge k$ and $a_{nk} = 0$ for $n < k$,

then we have the sequence space,

$$V^{0}_{\theta}\left(\left(C,\varphi_{k},\sigma\right),f_{n}\right) = \left\{x \in w: \\ \lim_{r} \frac{1}{h_{r}} \sum_{n \in I_{r}} f_{n}\left(\frac{1}{n} \sum_{k=1}^{n} \varphi_{k}\left(\left|x_{\sigma^{k}(m)}\right|\right)\right) = 0, \text{ uniformly in } m\right\}.$$

Metin Başarır

If we take $\sigma(m) = m+1$, the sequence spaces $V^0_{\theta}((A, \varphi_k, \sigma), f_n), V^0((A, \varphi_k, \sigma), f_n), V^0_{\theta}((A, \sigma), f_n), V^0_{\theta}((A, \varphi_k, \sigma), V^0_{\theta}((I, \varphi_k, \sigma), f_n), V^0_{\theta}((I, \sigma), f_n), V^0_{\theta}((I, \sigma), f), V^0_{\theta}((I, \sigma), f), V^0_{\theta}((I, \sigma), f_n)$ and $V^0_{\theta}((C, \varphi_k, \sigma), f_n)$ reduce to the following spaces of sequences, respectively.

$$V_{\theta}^{0}\left(\left(A,\varphi_{k}\right),f_{n}\right) = \left\{x = \left(x_{k}\right) \in w: \\ \lim_{r} \frac{1}{h_{r}} \sum_{n \in I_{r}} f_{n}\left(\sum_{k=1}^{\infty} a_{nk}\varphi_{k}\left(|x_{k+m}|\right)\right) = 0, \text{ uniformly in } m\right\},$$

$$V^{0}\left(\left(A,\varphi_{k}\right),f_{n}\right) = \left\{x \in w: \\ \lim_{k} \frac{1}{k} \sum_{n=1}^{k} f_{n}\left(\sum_{k=1}^{\infty} a_{nk}\varphi_{k}\left(|x_{k+m}|\right)\right) = 0, \text{ uniformly in } m\right\},$$

$$V_{\theta}^{0}\left(\left(A\right), f_{n}\right) = \left\{x \in w: \\ \lim_{r} \frac{1}{h_{r}} \sum_{n \in I_{r}} f_{n}\left(\sum_{k=1}^{\infty} a_{nk}\left(|x_{k+m}|\right)\right) = 0, \text{ uniformly in } m\right\},$$

$$V^{0}_{\theta}\left(A,\varphi_{k}\right) = \left\{ x \in w : \\ \lim_{r} \frac{1}{h_{r}} \sum_{n \in I_{r}} \left(\sum_{k=1}^{\infty} a_{nk}\varphi_{k}\left(|x_{k+m}|\right) \right) = 0, \text{ uniformly in } m \right\},$$

$$V_{\theta}^{0}\left(\left(I,\varphi_{k}\right),f_{n}\right) = \left\{x \in w: \\ \lim_{r} \frac{1}{h_{r}} \sum_{n \in I_{r}} f_{n}\left(\varphi_{n}\left(|x_{n+m}|\right)\right) = 0, \text{ uniformly in } m\right\},$$

$$V_{\theta}^{0}\left(\left(I\right), f_{n}\right) = \left\{x \in w: \\ \lim_{r} \frac{1}{h_{r}} \sum_{n \in I_{r}} f_{n}\left(|x_{n+m}|\right) = 0, \text{ uniformly in } m\right\},$$

$$V_{\theta}^{0}\left(\left(I\right),f\right) = \left\{ x \in w: \lim_{r} \frac{1}{h_{r}} \sum_{n \in I_{r}} f\left(|x_{n+m}|\right) = 0, \text{ uniformly in } m \right\},$$
$$V_{\theta}^{0}\left(I\right) = \left\{ x \in w: \lim_{r} \frac{1}{h_{r}} \sum_{n \in I_{r}} \left(|x_{n+m}|\right) = 0, \text{ uniformly in } m \right\},$$
$$V_{\theta}^{0}\left(\left(C,\varphi_{k}\right), f_{n}\right) = \left\{ x \in w: \lim_{r} \frac{1}{h_{r}} \sum_{n \in I_{r}} f_{n}\left(\frac{1}{n} \sum_{k=1}^{n} \varphi_{k}\left(|x_{k+m}|\right)\right) = 0, \text{ uniformly in } m \right\}.$$

We can note that the space $[V_{\sigma}]$ (for l=0) is equivalent to space $V^{0}(I, \sigma)$ which has been noticed by the referee.

Now we have,

Theorem 1. Let us suppose that $\varphi = (\varphi_k)$ and $\psi = (\psi_k)$ be two sequences of φ -functions and $\varphi = (\varphi_k(v))$ satisfies the Δ_2 -condition for large v.

(i) If $\psi \prec \varphi$ then $V^0_{\theta}((A, \varphi_k, \sigma), f_n) \subset V^0_{\theta}((A, \psi_k, \sigma), f_n)$.

(ii) If two sequences of φ -functions $(\varphi_k(v))$ and $(\psi_k(v))$ are equivalent for large v and they satisfy the Δ_2 -condition for large v then $V^0_{\theta}((A, \varphi_k, \sigma), f_n) = V^0_{\theta}((A, \psi_k, \sigma), f_n)$.

Proof. (i) Let
$$x = (x_k) \in V^0_{\theta}((A, \varphi_k, \sigma), f_n)$$
.
Then $\lim_r \frac{1}{h_r} \sum_{n \in I_r} f_n\left(\sum_{k=1}^{\infty} a_{nk}\varphi_k\left(\left|x_{\sigma^k(m)}\right|\right)\right) = 0$, uniformly in m . By assumption, $\psi \prec \varphi$, we have

(3)
$$\psi_k\left(|x_k|\right) \le b\varphi_k\left(c\left|x_k\right|\right)$$

for $b, c, v_{\theta} > 0$, all k, and $|x_k| > v_0$. Let us denotes x = x' + x'', where for all $m, x' = \left(x'_{\sigma^k(m)}\right)$ and $x'_{\sigma^k(m)} = x_{\sigma^k(m)}$ for $\left|x_{\sigma^k(m)}\right| < v_0$ and $x'_{\sigma^k(m)} = 0$ for remaining values of k and m. It is easy to see that $x' \in V^0_{\theta}\left((A, \psi_k, \sigma), f_n\right)$. Furthermore, by the assumptions and the inequality (3) we get

$$\frac{1}{h_r} \sum_{n \in I_r} f_n \left(\sum_{k=1}^{\infty} a_{nk} \psi_k \left(\left| x_{\sigma^k(m)}^{\prime\prime} \right| \right) \right) \le \frac{1}{h_r} \sum_{n \in I_r} f_n \left(b \sum_{k=1}^{\infty} a_{nk} \varphi_k \left(c \left| x_{\sigma^k(m)}^{\prime\prime} \right| \right) \right)$$
$$\le \frac{1}{h_r} \sum_{n \in I_r} f_n \left(b \sum_{k=1}^{\infty} a_{nk} \varphi_k \left(\left| x_{\sigma^k(m)}^{\prime\prime} \right| \right) \right)$$
$$\le \frac{K}{h_r} \sum_{n \in I_r} f_n \left(\sum_{k=1}^{\infty} a_{nk} \varphi_k \left(\left| x_{\sigma^k(m)}^{\prime\prime} \right| \right) \right)$$

where the constants K and L is connected with properties of f and φ functions. We recall that a φ -function satisfying the Δ_2 -condition imply (1) and (2).

Finally we obtain $x'' = (x''_k) \in V^0_{\theta}((A, \psi_k, \sigma), f_n)$ and in consequence $x \in V^0_{\theta}((A, \psi_k, \sigma), f_n)$.

(*ii*) The identity $V^0_{\theta}((A, \varphi_k, \sigma), f_n) = V^0_{\theta}((A, \psi_k, \sigma), f_n)$ is proved by using the same argument.

Theorem 2. Let the sequence $\varphi = (\varphi_k(v))$ of φ -functions satisfies the Δ_2 -condition for all k and for large v then $V^0_{\theta}((A, \varphi_k, \sigma), f_n)$ is linear space.

Proof. Firstly we prove that if $x = (x_k) \in V^0_{\theta}((A, \varphi_k, \sigma), f_n)$ and α is an arbitrary number then $\alpha x \in V^0_{\theta}((A, \varphi_k, \sigma), f_n)$. Let us remark that for $0 < \alpha < 1$ we get

$$\frac{1}{h_r}\sum_{n\in I_r}f_n\left(\sum_{k=1}^{\infty}a_{nk}\varphi_k\left(\left|\left(\alpha x_{\sigma^k(m)}\right)\right|\right)\right) \le \frac{1}{h_r}\sum_{n\in I_r}f_n\left(\sum_{k=1}^{\infty}a_{nk}\varphi_k\left(\left|x_{\sigma^k(m)}\right|\right)\right).$$

Moreover, if $\alpha > 1$ then we may find a positive number s such that $\alpha < 2^s$ and we obtain

$$\frac{1}{h_r} \sum_{n \in I_r} f_n \left(\sum_{k=1}^{\infty} a_{nk} \varphi_k \left(\left| \left(\alpha x_{\sigma^k(m)} \right) \right| \right) \right) \\ \leq \frac{1}{h_r} \sum_{n \in I_r} f_n \left(d^s \sum_{k=1}^{\infty} a_{nk} \varphi_k \left(\left| x_{\sigma^k(m)} \right| \right) \right) \\ \leq \frac{K}{h_r} \sum_{n \in I_r} f_n \left(\sum_{k=1}^{\infty} a_{nk} \varphi_k \left(\left| x_{\sigma^k(m)} \right| \right) \right)$$

where d and K are constants connected with the properties of φ and f functions. We recall that a φ -function satisfying the Δ_2 -condition imply (1) and (2). Hence we obtain $\alpha x \in V^0_{\theta}((A, \varphi_k, \sigma), f_n)$.

Secondly, let $x, y \in V^0_{\theta}((A, \varphi_k, \sigma), f_n)$ and α, β arbitrary numbers. We will show that $\alpha x + \beta y \in V^0_{\theta}((A, \varphi_k, \sigma), f_n)$.

$$\frac{1}{h_r} \sum_{n \in I_r} f_n \left(\sum_{k=1}^{\infty} a_{nk} \varphi_k \left(\left| \left(\alpha x_{\sigma^k(m)} + \beta y_{\sigma^k(m)} \right) \right| \right) \right) \right)$$
$$\leq \frac{K_1}{h_r} \sum_{n \in I_r} f_n \left(\sum_{k=1}^{\infty} a_{nk} \varphi_k \left(\left| x_{\sigma^k(m)} \right| \right) \right)$$
$$+ \frac{K_2}{h_r} \sum_{n \in I_r} f_n \left(\sum_{k=1}^{\infty} a_{nk} \varphi_k \left(\left| y_{\sigma^k(m)} \right| \right) \right)$$

where the constants K_1 and K_2 are defined as above. In consequence, $\alpha x + \beta y \in V^0_{\theta}((A, \varphi_k, \sigma), f_n).$

Now, we give the following Proposition that is necessary for proof of the Theorem 3.

Proposition 1 (15). Let f be a modulus and let $0 < \delta < 1$. Then for each $v \ge \delta$ we have $f(v) \le 2f(1)\delta^{-1}v$.

Theorem 3. Let $\varphi = (\varphi_k)$ and $f = (f_n)$ be a given sequence of φ -functions and a sequence of modulus functions, respectively, and $\sup_n f_n(1) < \infty$. Then $V^0_{\theta}(A, \varphi_k, \sigma) \subset V^0_{\theta}((A, \varphi_k, \sigma), f_n).$

Proof. Let $x \in V^0_{\theta}(A, \varphi_k, \sigma)$ and put $\sup_n f_n(1) = M$. For a given $\varepsilon > 0$ we choose $0 < \delta < 1$ such that $f_n(x) < \varepsilon$ for every $x \in [0, \delta]$ and for all n. We can write

$$\frac{1}{h_r}\sum_{n\in I_r} f_n\left(\sum_{k=1}^{\infty} a_{nk}\varphi_k\left(\left|x_{\sigma^k(m)}\right|\right)\right) = S_1 + S_2$$

where

$$S_1 = \frac{1}{h_r} \sum_{n \in I_r} f_n\left(\sum_{k=1}^{\infty} a_{nk}\varphi_k\left(\left|x_{\sigma^k(m)}\right|\right)\right)$$

and this sum is taken over

$$\sum_{k=1}^{\infty} a_{nk} \varphi_k \left(\left| x_{\sigma^k(m)} \right| \right) \le \delta$$

and

$$S_{2} = \frac{1}{h_{r}} \sum_{n \in I_{r}} f_{n} \left(\sum_{k=1}^{\infty} a_{nk} \varphi_{k} \left(\left| x_{\sigma^{k}(m)} \right| \right) \right)$$

and this sum is taken over

$$\sum_{k=1}^{\infty} a_{nk} \varphi_k \left(\left| x_{\sigma^k(m)} \right| \right) > \delta$$

By the definition of the modulus f we have

$$S_1 \le \frac{1}{h_r} \sum_{n \in I_r} f_n\left(\delta\right) < \frac{1}{h_r} \left(h_r \varepsilon\right) = \varepsilon$$

and moreover

$$S_2 \le 2M \frac{1}{\delta} \frac{1}{h_r} \sum_{n \in I_r} \sum_{k=1}^{\infty} a_{nk} \varphi_k \left(\left| x_{\sigma^k(m)} \right| \right)$$

by Proposition 1. Finally we have $x \in V^0_{\theta}((A, \varphi_k, \sigma), f_n)$. This completes the proof.

Theorem 4. Let $\varphi = (\varphi_k)$ and $f = (f_n)$ be a given sequence of φ -functions and a sequence of modulus functions, respectively. If $\lim_{v \to \infty} \inf_n \frac{f_n(v)}{v} > 0$ $V^0_{\theta}((A, \varphi_k, \sigma), f_n) = V^0_{\theta}(A, \varphi_k, \sigma).$

Proof. If $\lim_{v \to \infty} \inf_{n} \frac{f_n(v)}{v} > 0$ then there exists a number c > 0 such that $f_n(v) > cv$ for v > 0 and $n \in \mathbb{N}$. Let $x \in V^0_{\theta}((A, \varphi_k, \sigma), f_n)$. Clearly

$$\frac{1}{h_r} \sum_{n \in I_r} f_n \left(\sum_{k=1}^{\infty} a_{nk} \varphi_k \left(\left| x_{\sigma^k(m)} \right| \right) \right) \ge \frac{1}{h_r} \sum_{n \in I_r} c \left(\sum_{k=1}^{\infty} a_{nk} \varphi_k \left(\left| x_{\sigma^k(m)} \right| \right) \right)$$
$$= \frac{c}{h_r} \sum_{n \in I_r} \left(\sum_{k=1}^{\infty} a_{nk} \varphi_k \left(\left| x_{\sigma^k(m)} \right| \right) \right).$$

Therefore $x \in V^0_{\theta}(A, \varphi_k, \sigma)$. We complete the proof using Theorem 3.

Theorem 5. Let $\theta = (k_r)$ be a lacunary sequence and $f = (f_n)$ be a sequence of modulus functions.

- (i) If $\liminf q_r > 1$ then $V^0((A, \varphi_k, \sigma), f_n) \subset V^0_\theta((A, \varphi_k, \sigma), f_n)$.
- (ii) If $\limsup q_r < \infty$ then $V^0_{\theta}((A, \varphi_k, \sigma), f_n) \subset V^0((A, \varphi_k, \sigma), f_n)$.
- (*iii*) If $1 < \liminf_{\varphi_k, \sigma} q_r \le \limsup_{\varphi_k, \sigma} q_r < \infty$ then $V^0_{\theta}((A, \varphi_k, \sigma), f_n) = V^0((A, \varphi_k, \sigma), f_n)$.

Proof. This can be proved by using the same techniques as in [9] and hence we omit the proof.

The next result follows from Theorem 4 and Theorem 5.

Corollary 1. If $\liminf_{v\to\infty} \frac{f_n(v)}{v} > 0$ and $1 < \liminf_{v \to \infty} q_r < \infty$ then $V^0_{\theta}(A, \varphi_k, \sigma) = V^0((A, \varphi_k, \sigma), f_n).$

3. $S^{0}_{ heta}\left(A, \varphi_{k}, \sigma\right)$ -statistical convergence

Let the matrix $A = (a_{nk})$ be given as previously, $\theta = (k_r)$ be a lacunary sequence, the sequence of φ -functions $\varphi = (\varphi_k)$ and a positive number $\varepsilon > 0$ be given. We write,

$$K_{\theta}^{r}\left(\left(\left(A,\varphi_{k},\sigma\right),\varepsilon\right)\right) = \left\{n \in I_{r}: \sum_{k=1}^{\infty} a_{nk}\varphi_{k}\left(\left|x_{\sigma^{k}(m)}\right|\right) \geq \varepsilon\right\}.$$

The sequence x is said to be lacunary (A, φ_k, σ) - statistically convergent to a number zero if for every $\varepsilon > 0$

$$\lim_{r} \frac{1}{h_{r}} \mu\left(K_{\theta}^{r}\left(\left(\left(A, \varphi_{k}, \sigma\right), \varepsilon\right)\right)\right) = 0$$

where $\mu(K_{\theta}^{r}(((A, \varphi_{k}, \sigma), \varepsilon)))$ denotes the number of elements belonging to $K_{\theta}^{r}(((A, \varphi_{k}, \sigma), \varepsilon))$. We denote by $S_{\theta}^{0}(A, \varphi_{k}, \sigma)$, the set of sequences $x = (x_{k})$ which are lacunary (A, φ_{k}, σ) -statistically convergent to a number zero. We write

$$S^{0}_{\theta}(A,\varphi_{k},\sigma) = \left\{ x = (x_{k}) : \lim_{r} \frac{1}{h_{r}} \mu\left(K^{r}_{\theta}\left(\left((A,\varphi_{k},\sigma),\varepsilon\right)\right)\right) = 0 \right\}.$$

When we take $\theta = (2^r)$, $S^0_{\theta}(A, \varphi_k, \sigma)$ reduces to $S^0(A, \varphi_k, \sigma)$.

If we take A = I and $\varphi_k(x) = x$ for all k and x, then $S^0_{\theta}(A, \varphi_k, \sigma)$ reduces to $S^0_{\theta}(\sigma)$ defined by

$$S^{0}_{\theta}(\sigma) = \left\{ x = (x_{k}) : \lim_{r} \frac{1}{h_{r}} \left| \left\{ k \in I_{r} : \left(\left| x_{\sigma^{k}(m)} \right| \right) \ge \varepsilon \right\} \right| = 0 \right\}.$$

Now we have,

Theorem 6. Let $\theta = (k_r)$ be a lacunary sequence, $\varphi = (\varphi_k(v))$ and $\psi = (\psi_k(v))$ are two sequences of φ -functions.

(i) If $\psi \prec \varphi$ and φ_k satisfies the Δ_2 -condition for large v and for all k then $S^0_{\theta}(A, \psi_k, \sigma) \subset S^0_{\theta}(A, \varphi_k, \sigma)$.

(ii) If $\varphi \sim \psi$ and φ_k and ψ_k satisfy the Δ_2 -condition for large v and for all k then $S^0_{\theta}(A, \psi_k, \sigma) = S^0_{\theta}(A, \varphi_k, \sigma)$.

Proof. (i) Let $x \in S^0_{\theta}(A, \psi_k, \sigma)$. By assumption we have $\psi_k\left(\left|x_{\sigma^k(m)}\right|\right) \leq b\varphi_k\left(c\left|x_{\sigma^k(m)}\right|\right)$ and we have for all m,

$$\sum_{k=1}^{\infty} a_{nk} \psi_k \left(\left| x_{\sigma^k(m)} \right| \right) \le b \sum_{k=1}^{\infty} a_{nk} \varphi_k \left(c \left| x_{\sigma^k(m)} \right| \right) \le K \sum_{k=1}^{\infty} a_{nk} \varphi_k \left(\left| x_{\sigma^k(m)} \right| \right)$$

for b, c > 0, where the constant K is connected with properties of φ functions. Thus the condition $\sum_{k=1}^{\infty} a_{nk} \psi_k \left(\left| x_{\sigma^k(m)} \right| \right) \ge \varepsilon$ implies the condition $\sum_{k=1}^{\infty} a_{nk} \varphi_k \left(\left| x_{\sigma^k(m)} \right| \right) \ge \varepsilon$ and in consequence we get

$$K^{r}_{\theta}\left(\left(\left(A,\varphi_{k},\sigma\right),\varepsilon\right)\right)\subset K^{r}_{\theta}\left(\left(\left(A,\psi_{k},\sigma\right),\varepsilon\right)\right)$$

and

$$\lim_{r} \frac{1}{h_{r}} \mu\left(K_{\theta}^{r}\left(\left(\left(A, \varphi_{k}, \sigma\right), \varepsilon\right)\right)\right) \leq \lim_{r} \frac{1}{h_{r}} \mu\left(K_{\theta}^{r}\left(\left(\left(A, \psi_{k}, \sigma\right), \varepsilon\right)\right)\right).$$

Metin Başarır

This completes the proof.

(*ii*) The identity $S^0_{\theta}(A, \psi_k, \sigma) = S^0_{\theta}(A, \varphi_k, \sigma)$ is proved by using the same argument.

Theorem 7. Let $f = (f_n)$ be given a sequence of modulus functions. If $\inf_{v} f_n(v) > 0$, for v > 0, then

$$V^{0}_{ heta}\left(\left(A, \varphi_{k}, \sigma\right), f_{n}
ight) \subset S^{0}_{ heta}\left(A, \varphi_{k}, \sigma
ight).$$

Proof. If $\inf_{n} f_{n}(v) > 0$ then there exists a number $\alpha > 0$ such that $f_{n}(v) \geq \alpha$ for v > 0 and $n \in \mathbb{N}$. Let $x \in V^{0}_{\theta}((A, \varphi_{k}, \sigma), f_{n})$.

$$\frac{1}{h_r} \sum_{n \in I_r} f_n \left(\sum_{k=1}^{\infty} a_{nk} \varphi_k \left(\left| x_{\sigma^k(m)} \right| \right) \right)$$

$$\geq \frac{1}{h_r} \sum_{\substack{n \in I_r \\ \sum_{k=1}^{\infty} a_{nk} \varphi_k} \left(\left| x_{\sigma^k(m)} \right| \right) \geq \varepsilon} f_n \left(\sum_{k=1}^{\infty} a_{nk} \varphi_k \left(\left| x_{\sigma^k(m)} \right| \right) \right)$$

$$\geq \frac{\alpha}{h_r} \left| \left\{ n \in I_r : \sum_{k=1}^{\infty} a_{nk} \varphi_k \left(\left| x_{\sigma^k(m)} \right| \right) \geq \varepsilon \right\} \right|$$

and it follows that $x \in S^0_{\theta}(A, \varphi_k, \sigma)$.

Theorem 8. Let $f = (f_n)$ be given a sequence of modulus functions. If $\sup_{v \in n} v = f_n(v) < \infty$ then

$$S^{0}_{\theta}(A,\varphi_{k},\sigma) \subset V^{0}_{\theta}((A,\varphi_{k},\sigma),f_{n}).$$

Proof. We suppose $T(v) = \sup_{n} f_n(v)$ and $T = \sup_{v} T(v)$. Let $x \in S^0_{\theta}(A, \varphi_k, \sigma)$. Since $f_n(v) \leq T$ for $n \in \mathbb{N}$ and v > 0, we have

$$\frac{1}{h_r} \sum_{n \in I_r} f_n \left(\sum_{k=1}^{\infty} a_{nk} \varphi_k \left(\left| x_{\sigma^k(m)} \right| \right) \right)$$

$$= \frac{1}{h_r} \sum_{\substack{n \in I_r \\ \sum_{k=1}^{\infty} a_{nk} \varphi_k \left(\left| x_{\sigma^k(m)} \right| \right) \ge \varepsilon}} f_n \left(\sum_{k=1}^{\infty} a_{nk} \varphi_k \left(\left| x_{\sigma^k(m)} \right| \right) \right)$$

$$+ \frac{1}{h_r} \sum_{\substack{n \in I_r \\ \sum_{k=1}^{\infty} a_{nk} \varphi_k \left(\left| x_{\sigma^k(m)} \right| \right) < \varepsilon}} f_n \left(\sum_{k=1}^{\infty} a_{nk} \varphi_k \left(\left| x_{\sigma^k(m)} \right| \right) \right)$$

$$\leq \frac{1}{h_r}T\left|\left\{n \in I_r : \sum_{k=1}^{\infty} a_{nk}\varphi_k\left(\left|x_{\sigma^k(m)}\right|\right) \geq \varepsilon\right\}\right| + T(\varepsilon).$$

Taking the limit as $\varepsilon \to 0$, it follows that $x \in V^0_{\theta}((A, \varphi_k, \sigma), f_n)$.

Corollary 2. Let $f = (f_n)$ be a given sequence of modulus functions. If $\inf_n f_n(v) > 0 (v > 0)$ and $\sup_v \sup_n f_n(v) < \infty$ then $S^0_{\theta}(A, \varphi_k, \sigma) = V^0_{\theta}((A, \varphi_k, \sigma), f_n)$.

Acknowledgement. I would like to express my gratitude to the reviewer for his/her careful reading and valuable suggestions which is improved the presentation of the paper.

References

- LORENTZ G.G., A contribution to the theory of divergent sequences, Acta Math., 80(1948), 167-190.
- [2] MADDOX I.J., Spaces of strongly summable sequences, Quart. J. Math., 18(1967), 345-355.
- [3] SCHAEFER P., Infinite matrices and invariant means, Proc. Amer. Math. Soc., 36(1972), 104-110.
- [4] FREEDMAN A.R., SEMBER J.J., RAPHAEL M., Some Cesaro-type summability spaces, Proc. London Math. Soc., 37(3)(1978), 508-520.
- [5] MURSALEEN, Matrix transformation between some new sequence spaces, Houston J. Math., 9(1993), 505-509.
- [6] RUCKLE W.H., FK spaces in which the sequence of coordinate vectors is bounded, *Canad. J. Math.*, 25(1973), 973-978.
- [7] MADDOX I.J., Sequence spaces defined by a modulus, Math. Proc. Camb. Phil. Soc., 100(1986), 161-166.
- [8] PEHLIVAN S., FISHER B., Lacunary strong convergence with respect to a sequence of modulus functions, *Comment. Math. Univ. Carolinae*, 36(1)(1995), 71-78.
- [9] BILGIN T., On statistical convergence, An. Univ. Timisoara Ser. Math. Inform., 32(1)(1994), 3-7.
- [10] KARAKAYA V., ŞIMŞEK N., On lacunary invariant sequence spaces defined by a sequence of modulus functions, App. Math. And Comp., 156(2004), 597-603.
- [11] SAVAŞ E., On some generalized sequence spaces defined by a modulus, Indian J. Pure and Appl. Math., 30(5)(1999), 459-464.
- [12] WASZAK A., Some remarks on strong convergence in modular spaces of sequences, *Fasc. Math.*, 35(2005), 151-162.
- [13] WASZAK A., On the strong convergence in some sequence spaces, Fasc. Math., 33(2002), 125-137.
- [14] BAŞARIR M., ALTUNDAĞ S., Some difference sequence spaces defined by a sequence of φ -functions, *Rendiconti del Circolo Matematico di Palermo*, 57(2008), 149-160.

Metin Başarır

- [15] PEHLIVAN S., FISHER B., Some sequence spaces defined by a modulus function, Math. Slovaca, 45(3)(1995), 275–280.
- [16] KOLK E., MÖLDER A., Inclusion theorems for some sets of sequences defined by φ -functions, *Math. Slovaca*, 54(3)(2004), 267-279.

Metin Başarır Department of Mathematics Faculty of Science and Arts Sakarya University, 54187, Sakarya, Turkey *e-mail:* basarir@sakarya.edu.tr

Received on 05.03.2009 and, in revised form, on 27.07.2009.