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1. Introduction and preliminaries

Sessa [22] initiated the tradition of improving commutativity given by
Jungck [9] in fixed point theory by introducing the notion of weakly com-
muting maps in metric spaces. Jungck [10] soon enlarged this concept to
compatible maps.

Initiated the study of noncompatible maps Pant [17] introduced R- weakly
commuting maps and proved common fixed point theorems, assuming the
continuity of at least one mapping.

Jungck and Rhoades [12] introduced the notion of weakly compatible
maps, which is weaker than compatibility.

Kannan [15] was the first who proved the existence of a fixed point for a
map that can have a discontinuity in a domain, however the maps involved
in every case were continuous at the fixed point.

In the recent years, several authors have obtained coincidence point re-
sults for various classes of mappings on a metric space, utilizing these con-
cepts. For a survey of coincidence point theory, its applications, comparison
of different contractive conditions and related results, we refer to Beg, Abbas
[4], Jungck [11], Pant [17], Rhoades [21] and references contained therein.

Many authors proved common fixed point theorems in metric spaces and
Banach spaces for noncompatible mappings without assuming continuity of
any mapping including Sharma and Deshpande [23] - [25].
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Nonconvex analysis, especially ordered normed spaces, normal cones and
topical functions [2], [6]- [8], [16], [18], [20] have some applications in op-
timization theory. In these cases, an order is introduced by using vector
spaces cones.

Guang and Xian [6] used this approach and they replaced the set of real
numbers by an ordered Banach space and defined cone metric space which
is generalization of metric space. They obtained some fixed point theorems
for mappings satisfying the different contractive conditions. Fxed point
theorems in cone metric spaces have been studied by [1], [3], [5]-[8], [13],
[18], [20] and many others.

In this paper, we prove coincidence point results for six mappings which
satisfy generalized contractive condition. Common fixed point results for
weakly compatible maps which are more general than compatible mappings
are obtained in the settings of cone metric spaces without exploiting the
notion of continuity. Our results generalize, improve and extend the results
of Guang and Xian [6], Jungck [9], Kannan [15], Pant [17] and Abbas and
Jungck [1].

Consistent with Guang and Xian [6] the following definitions and results
will be needed in the sequel.

Let E be a real Banach space. A subset P of E is called a cone if and
only if

(i) P is closed, nonempty and P 6= {0}
(ii) a, b ∈ R, a, b ≥ 0, x, y ∈ P imply ax + by ∈ P
(iii) P ∩ (−P ) = {0}.
Given a cone P ⊂ E, we define a partial ordering ≤ with respect to P

by x ≤ y if and only if x − y ∈ P . A cone P is called normal if there is a
number k > 0 such that for all x, y ∈ E,

(I) 0 ≤ x ≤ y implies ‖x‖ ≤ K‖y‖.

The least positive number satisfying the above inequality is called the normal
constant of P , while x � y stands for y − x ∈ int P (interior of P ).

Definition 1. Let X be a nonempty set. Suppose that the mapping
d : X ×X → E satisfies:

(d1) 0 ≤ d(x, y) for all x, y ∈ X and d(x, y) = 0 if and only if x = y;
(d2) d(x, y) = d(y, x) for all x, y ∈ X;
(d3) d(x, y) ≤ d(x, z) + d(z, y) for all x, y, z ∈ X.

Then d is called a cone metric on X and (X, d) is called a cone metric
space. The concept of a cone metric space is more general than that of a
metric space.

Definition 2. Let (X, d) be a cone metric space. We say that {xn} is:
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(i) a Cauchy sequence if for every c in E with c � 0, there is N such
that for all n, m > N , d(xn, xm) � c;

(ii) a convergent sequence if for every c in E with 0 � c, there is N such
that for all n > N , d(xn, x) � c for some fixed x in X.

A cone metric space X is said to be complete if every Cauchy sequence in
X is convergent in X. It is known that {xn} converges to x ∈ X if and only
if d(xn, x) → 0 as n → ∞. The limit of a convergent sequence is unique
provided P is a normal cone with normal constant K (see Guang and Xian
[6]).

Definition 3. Let A and B be self maps of a nonempty set X. If
w = Ax = Bx for some x in X, then x is called a coincidence point of A
and B and w is called a point of coincidence of A and B.

Definition 4. Let A and B be self maps of a set X. If w = A(x) = B(x)
for some x in X, then x is called a coincidence point of A and B and w is
called a point of coincidence of coincidence of A and B. Self maps A and B
are said to be weakly compatible if they commute at their coincidence point,
that is if Ax = Bx for some x in X then ABx = BAx.

Remark 1. [26] Let E be an ordered Banach space, then c is an interior
point of P if and only if [−c, c] is a neighbourhood of 0.

Corollary 1. [[13](see, e.g., [19] without proof)]
(i) If a ≤ b and b � c, then a � c.
(ii) If a � b and b � c, then a � c.
(iii) If 0 ≤ u � c for each c ∈ int P , then u = 0.

Remark 2. [26] If E is a real Banach space with cone P and if a ≤ λa
where a ∈ P and 0 < λ < 1, then a = 0.

2. Main results

Theorem 1. Let (X, d) be a cone metric space and P a normal cone with
normal constant K. Suppose mappings A,B, S, T, L,Q : X → X satisfy

(1) L(X) v ST (X), Q(X) v AB(X),

d(Lx, Qy) ≤ k max{d(ABx, Lx), d(STy, Qy), d(ABx, STy),(2)
d(STy, Lx), d(ABx, Qy)}

for all x, y ∈ X where k ∈ (0, 1
2) is a constant,

one of L(X), Q(X), AB(X), ST (X) is a complete subspace(3)
of X then
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(i) Q and ST have a coincidence point,
(ii) L and AB have a coincidence point.

Further if

AB = BA, ST = TS, LB = BL, QT = TQ.(4)

the pairs {L,AB} and {Q,ST} are weakly compatible then(5)

(iii) A, B, S, T , L and Q have a unique common fixed point in X.

Proof. Let x0 be an arbitrary point in X. From condition (1) there exists
x1, x2 ∈ X such that Lx0 = STx1 = y0 and Qx1 = ABx2 = y1. Inductively
we can construct sequence {xn} and {yn} in X such that Lx2n = STx2n+1 =
y2n and Qx2n+1 = ABx2n+2 = y2n+1 for n = 0, 1, 2, . . ..

Putting x = x2n and y = x2n+1 in (2), we get

d(Lx2n, Qx2n+1) ≤ k max{d(ABx2n,Lx2n), d(STx2n+1, Qx2n+1),
d(ABx2n, STx2n+1), d(STx2n+1,Lx2n), d(ABx2n, Qx2n+1))},

d(y2n, y2n+1) ≤ k max{d(y2n−1, y2n), d(y2n, y2n+1), d(y2n−1, y2n),
d(y2n, y2n), d(y2n−1, y2n) + d(y2n, y2n+1)}.

Case 1. If

max{d(y2n−1, y2n), d(y2n, y2n+1), d(y2n−1, y2n),
d(y2n, y2n), d(y2n−1, y2n) + d(y2n, y2n+1)} = d(y2n−1, y2n)

then
d(y2n, y2n+1) ≤ kd(y2n−1, y2n).

Case 2. If

max{d(y2n−1, y2n), d(y2n, y2n+1), d(y2n−1, y2n),
d(y2n, y2n), d(y2n−1, y2n) + d(y2n, y2n+1)}
= d(y2n−1, y2n) + d(y2n, y2n+1)

then
d(y2n, y2n+1) ≤ k{d(y2n−1, y2n) + d(y2n, y2n+1)},

therefore

d(y2n, y2n+1) ≤ k1d(y2n−1, y2n), for all n where k1 =
k

1− k
< 1.



Common fixed point results for six . . . 37

Let h = max(k, k1). Then

d(y2n, y2n+1) ≤ hd(y2n−1, y2n)
≤ h2d(y2n−2, y2n−1),

. . .

≤ h2nd(y1, y0).

Thus for n > m

d(y2n, y2m) ≤ d(y2n, y2n−1) + d(y2n−1, y2n−2) + . . . + d(y2m+1, y2m),
≤ (h2n−1 + h2n−2 + . . . + h2m)d(y1, y0),

≤ h2m

1− h
d(y1, y0).

From (I) we have

‖d(y2n, y2m)‖ ≤ h2m

1− h
K‖d(y1, y0)‖,

which implies that d(y2n, y2m) → 0 as n, m → ∞ hence {y2n} is a Cauchy
sequence. Suppose ST (X) is complete. Note that the subsequence {y2n} is
contained in ST (X) and has a limit in ST (X). Call it z. Let u ∈ ST−1z.
Then STu = z. We shall use the fact that the subsequence {y2n+1} also
converges to z. By (2) we have

d(STu,Qu) ≤ d(STu,Lx2n) + d(Lx2n, Qu) = d(STu, y2n) + d(y2n, Qu)
≤ d(STu, y2n) + k max{d(ABx2n, Lx2n), d(STu,Qu), d(ABx2n, STu),

d(STu,Lx2n), d(ABx2n, Qu)}
≤ d(STu, y2n) + k max{d(y2n−1,y2n), d(STu,Qu), d(y2n−1, STu),

d(STu, y2n), d(y2n−1,y2n) + d(y2n, STu) + d(STu,Qu)}.

Thus

d(STu,Qu) ≤ k{d(y2n−1,y2n) + d(y2n, STu) + d(STu,Qu)}.

Therefore

d(STu,Qu) ≤ 1 + k

1− k
d(STu, y2n) +

k

1− k
d(y2n−1, y2n).

Let 0 � c then for infinitely many n, we have

d(STu,Qu) � 1 + k

1− k

c(1− k)
2(1 + k)

+
k

1− k

c(1− k)
2k

.
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Thus d(STu,Qu) � c for each c ∈ intp, using Corollary 1 (iii), it follows
that d(STu,Qu) = 0 or STu = Qu = z. This proves (i).

Since Q(X) ⊆ AB(X), Qu = z implies that z ∈ AB(X). Let v ∈
(AB)−1z then ABv = z. By (2), we have

d(Lv, ABv) = d(Lv, Qx2n+1) + d(Qx2n+1, ABv)
≤ k max{d(Lv, ABv), d(STx2n+1, Qx2n+1), d(ABv, STx2n+1),

d(STx2n+1, Lv), d(ABv, Qx2n+1)}+ d(Qx2n+1, ABv)
≤ k max{d(ABv, Lv), d(y2n, y2n+1), d(ABv, y2n),

d(y2n, y2n+1) + d(y2n+1, ABv) + d(ABv, Lv), d(ABv, y2n+1)}
+ d(y2n+1, ABv),

= k{d(y2n, y2n+1) + d(y2n+1, ABv) + d(ABv, Lv)}+ d(y2n+1, ABv).

Thus

d(Lv, ABv) ≤ k

1− k
d(y2n, y2n+1) +

1 + k

1− k
d(y2n+1, ABv).

Let 0 � c then for infinitely many n, we have

d(Lv, ABv) � k

1− k

c(1− k)
2k

+
1 + k

1− k

c(1− k)
2(1 + k)

.

So d(Lv, ABv) � c for each c ∈ int p, using Corollary 1 (iii), it follows
that d(Lv, ABv) = 0 or ABv = Lv = z that is v is coincidence point of
L and AB. This proves (ii). The remaining two cases pertain essentially
to the pervious cases. Indeed if L(X) or Q(X) is complete then by (1),
z ∈ L(X) ⊆ ST (X) or z ∈ Q(X) ⊆ AB(X). Thus (i) and (ii) are completely
established.

Since the pair (Q,ST ) is weakly compatible, Therefore Q and ST com-
mute at their coincidence point that is Q(ST )u = (ST )Qu or Qz = STz.
Similarly L(ABv) = (AB)Lv or Lz = ABz.

Now we can prove that Qz = z. By (2) we have,

d(z,Qz) = d(Lv, Qz)
≤ k max{d(ABv, Lv), d(STz, Qz), d(ABv, STz),

d(STz, Lv), d(ABv, Qz)}.

Thus d(z, Qz) ≤ kd(z,Qz), thus Qz = z = STz. Now we show that Lz = z.
By (2), we have

d(Lz, z) = d(Lz,Qz),
≤ k max{d(ABz,Lz), d(STz, Qz), d(ABz, STz),

d(STz, Lz), d(ABz,Qz)},
= k max{d(Lz, Lz), 0, d(Lz, z), d(z, Lz), d(Lz, z)},
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Thus d(Lz, z) ≤ kd(Lz, z), which gives Lz = z. So Lz = z = ABz = STz =
z.

Putting x = z, y = Tz in (2) and using (4), we have

d(z, Tz) = d(Lz, T (Qz)) = d(Lz,Q(Tz))
≤ k max{d(ABz,Lz), d(ST (Tz), Q(Tz)), d(ABz, ST (Tz)),

d(ST (Tz), Lz), d(ABz,Q(Tz))},
≤ k max{d(z, z), d(Tz, Tz), d(z, Tz), d(Tz, z), d(z, Tz)},

which gives d(z, Tz) ≤ kd(z, Tz), therefore d(z, Tz) = 0 and thus Tz = z.
Since STz = z therefore Sz = z. Putting x = Bz and y = z in (2) and
using (4), we have

d(L(Bz), Qz) ≤ k max{d(AB(Bz), L(Bz)), d(STz, Qz),
d(AB(Bz), STz), d(STz, L(Bz)), d(AB(Bz), Qz)},

= kd(Bz, z),

which gives Bz = z. Since ABz = z, we have Az = z. thus Az = Bz =
Sz = Tz = Lz = Qz = z that is z is a common fixed point of A, B, S, T ,
L and Q. Now, we show that z is the unique common fixed point of A, B,
S, T , L and Q. For this assume that there exists another fixed point w in
X such that Aw = Bw = Sw = Tw = Lw = w. Now by (2), we have

d(z, w) = d(Lz,Qw)
≤ k max{d(ABz,Lz), d(STw,Qw), d(ABz, STw),

d(STw,Lz), d(ABz,Qw)},

which gives d(z, w) ≤ kd(z, w), therefore z = w. This completes the proof. �

Put L = Q in Theorem 1, we have the following:

Corollary 2. Let (X, d) be a cone metric space and P a normal cone
with normal constant K. Suppose mappings A,B, S, T, L : X → X satisfy

(6) L(X) v ST (X), L(X) v AB(X),

d(Lx, Ly) ≤ k max{d(ABx, Lx), d(STy, Ly), d(ABx, STy),(7)
d(STy, Lx), d(ABx, Ly)}

for all x, y ∈ X where k ∈ (0, 1
2) is a constant,

(8) one of L(X), AB(X), ST (X) is a complete subspace of Xthen
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(i) L and ST have a coincidence point,
(ii) L and AB have a coincidence point.

Further if

(9) AB = BA, ST = TS, LB = BL, LT = TL.

(10) the pairs {L,AB} and {L, ST} are weakly compatible then

(iii) A, B, S, T and L have a unique common fixed point in X.

If we put B = T = IX (the identity map on X) in Theorem 1 then (4) is
satisfied trivially and we have the following:

Corollary 3. Let (X, d) be a cone metric space and P a normal cone
with normal constant K. Suppose mappings A,S, L,Q : X → X satisfy

(11) L(X) v S(X), Q(X) v A(X),

d(Lx, Qy) ≤ k max{d(Ax,Lx), d(Sy,Qy), d(Ax, Sy),(12)
d(Sy, Lx), d(Ax,Qy)}

for all x, y ∈ X where k ∈ (0, 1
2) is a constant,

(13) one of L(X), Q(X), A(X), S(X) is a complete subspace of X then

(i) Q and S have a coincidence point,
(ii) L and A have a coincidence point.

Further if

(14) the pairs {L,A} and {Q,S} are weakly compatible then

(iii) A, S, L and Q have a unique common fixed point in X.

If we put L = Q in Corollary 3, we have the following:

Corollary 4. Let (X, d) be a cone metric space and P a normal cone
with normal constant K. Suppose mappings A, S and Q : X → X satisfy

(15) Q(X) v S(X), Q(X) v A(X),

d(Qx, Qy) ≤ k max{d(Ax,Qx), d(Sy,Qy), d(Ax, Sy),(16)
d(Sy,Qx), d(Ax,Qy)}

for all x, y ∈ X where k ∈ (0, 1
2) is a constant,

(17) one of Q(X), A(X), S(X) is a complete subspace of X then
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(i) Q and S have a coincidence point,
(ii) Q and A have a coincidence point.

Further if

(18) the pairs {Q,A} and {Q,S} are weakly compatible then

(iii) A, S and Q have a unique common fixed point in X.

If we put S = A in Corollary 4 we have the following:

Corollary 5. Let (X, d) be a cone metric space and P a normal cone
with normal constant K. Suppose mappings A,Q : X → X satisfy

(19) Q(X) v A(X),

d(Qx, Qy) ≤ k max{d(Ax,Qx), d(Ay, Qy), d(Ax,Ay),(20)
d(Ay, Qx), d(Ax,Qy)}

for all x, y ∈ X where k ∈ (0, 1
2) is a constant,

(21) one of Q(X), A(X) is a complete subspace of X then

(i) Q and A have a coincidence point.
Further if

(22) the pair {Q,A} is weakly compatible then

(iii) A and Q have a unique common fixed point in X.

Example. Let X = [0,∞), E = X2, P = {(x, y) ∈ E : x, y ≥ 0} < X2,
d : X ×X → E such that d(x, y) = (|x − y|, 2(|x − y|). Define A,S, L,Q :
X → X as follows:

Lx =
{

x
2 , x 6= 0
1, x = 0

Sx =
{

x, x 6= 0
1, x = 0

Qx =
{

x
4 , x 6= 0
1, x = 0

Ax =
{

2x, x 6= 0
1, x = 0

We can see that conditions (11) and (12) of Corollary 3 hold. Q and S
have a coincidence point 0 ∈ X. Also L and A have a coincidence point
0 ∈ X.

In the above example L and A do not commute at the coincidence point
0 and therefore are not weakly compatible. Also Q and S do not commute
at the coincidence point 0 so Q and S are not weakly compatible.

Thus this example demonstrates the crucial role of weak compatibility in
our results.

We can observe that the pairs {L,A} and {Q,S} are not compatible and
all the four mappings involved in this example are discontinuous.
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