## F A S C I C U L I M A T H E M A T I C I

Nr 43

Liliana Guran

## EXISTENCE AND DATA DEPENDENCE OF FIXED POINTS FOR MULTIVALUED WEAKLY $\varphi$-CONTRACTIVE OPERATORS


#### Abstract

In this paper we give a data dependence theorem for multivalued weakly $\varphi$-contractive operators. Then, we define the concept of ball with respect to $w$-distance and we present fixed point results for multivalued contractive type operators using this ball. Key words: w-distance, fixed point, multivalued operator. AMS Mathematics Subject Classification: 47H10, 54H25 .


## 1. Introduction

A. Granas and M. Frigon proved in [1] the following principle for multivalued contractions.

Theorem 1. Let $(X, d)$ be a complete metric space, $x_{0} \in X, r>0$ and $T: \widetilde{B}\left(x_{0} ; r\right) \rightarrow P_{c l}(X)$ an a-contraction operator such that $D\left(x_{0}, T\left(x_{0}\right)\right)<$ $(1-a) r$. Then FixT $\neq \emptyset$.

In 1996 the Japanese mathematicians O. Kada, T. Suzuki and W. Takahashi introduced the $w$-distance (see[3]) and discussed some properties of this new distance. Later, T. Suzuki and W. Takahashi starting by the above definition, gave some fixed points result for a new class of operators, the so-called weakly contractive operators (see[6]). An extension of this concept was introduced in [2].

The purpose of this paper is to present a data dependence result for a fixed point theorem, Theorem 4.2 from [2], to define the notion of ball with respect to $w$-distance and, using the contraction principle, to give some fixed point results for multivalued operators.

## 2. Preliminaries

Let $(X, d)$ be a complete metric space. We will use the following notations:
$P(X)$ - the set of all nonempty subsets of metric space $X$;
$\mathcal{P}(X)=P(X) \bigcup\{\emptyset\}$
$P_{c l}(X)$ - the set of all nonempty closed subsets of the metric space $X$;
$P_{b}(X)$ - the set of all nonempty bounded subsets of the metric space $X$;
$\mathbb{N}$ - the set of natural numbers;
$\mathbb{N}^{*}=\mathbb{N} \backslash\{0\}$
For two subsets $A, B \in P_{b}(X)$ we recall the following functionals.
$D: \mathcal{P}(X) \times \mathcal{P}(X) \rightarrow \mathbb{R}_{+}, D(Z, Y)=\inf \{d(x, y): x \in Z, y \in Y\}, Z \subset X$ - the gap functional.
$\delta: \mathcal{P}(X) \times \mathcal{P}(X) \rightarrow \mathbb{R}_{+}, \delta(A, B):=\sup \{d(a, b) \mid x \in A, b \in B\}-$ the diameter functional;
$\rho: \mathcal{P}(X) \times \mathcal{P}(X) \rightarrow \mathbb{R}_{+}, \rho(A, B):=\sup \{D(a, B) \mid a \in A\}-$ the excess functional;

$$
H: \mathcal{P}(X) \times \mathcal{P}(X) \rightarrow \mathbb{R}_{+}, H(A, B):=\max \left\{\sup _{a \in A} \inf _{b \in B} d(a, b), \sup _{b \in B} \inf _{a \in A} d(a, b)\right\}
$$

- the Pompeiu-Hausdorff functional;

FixF $:=\{x \in X \mid x \in F(x)\}$ - the set of the fixed points of $F$;
The concept of $w$-distance was introduced by O. Kada, T. Suzuki and W. Takahashi (see[3]) as follows:

Let $(X, d)$ be a metric space, $w: X \times X \rightarrow[0, \infty)$ is called $w$-distance on X if the following axioms are satisfied :

1. $w(x, z) \leq w(x, y)+w(y, z)$, for any $x, y, z \in X$;
2. for any $x \in X: w(x, \cdot): X \rightarrow[0, \infty)$ is lower semicontinuous;
3. for any $\varepsilon>0$, exists $\delta>0$ such that $w(z, x) \leq \delta$ and $w(z, y) \leq \delta$ implies $d(x, y) \leq \varepsilon$.
Let us give some examples of $w$-distance (see [3])
Example 1. Let $(X, d)$ be a metric space. Then the metric " $d$ " is a $w$-distance on X .

Example 2. Let $X$ be a normed linear space with norm $\|\cdot\|$. Then the function $w: X \times X \rightarrow[0, \infty)$ defined by $w(x, y)=\|x\|+\|y\|$ for every $x, y \in X$ is a $w$-distance.

Example 3. Let $(X, d)$ be a metric space and let $g: X \rightarrow X$ a continuous mapping. Then the function $w: X \times Y \rightarrow[0, \infty)$ defined by:

$$
w(x, y)=\max \{d(g(x), y), d(g(x), g(y))\}
$$

for every $x, y \in X$ is a $w$-distance.
For the proof of the main results we need the following crucial result for $w$-distance (see [6]).

Lemma 1. Let $(X, d)$ be a metric space, and let $w$ be a $w$-distance on $X$. Let $\left(x_{n}\right)$ and $\left(y_{n}\right)$ be two sequences in $X$, let $\left(\alpha_{n}\right),\left(\beta_{n}\right)$ be sequences in $[0,+\infty[$ converging to zero and let $x, y, z \in X$. Then the following hold:
(a) If $w\left(x_{n}, y\right) \leq \alpha_{n}$ and $w\left(x_{n}, z\right) \leq \beta_{n}$ for any $n \in \mathbb{N}$, then $y=z$.
(b) If $w\left(x_{n}, y_{n}\right) \leq \alpha_{n}$ and $w\left(x_{n}, z\right) \leq \beta_{n}$ for any $n \in \mathbb{N}$, then $\left(y_{n}\right)$ converges to $z$ in $(X, d)$.
(c) If $w\left(x_{n}, x_{m}\right) \leq \alpha_{n}$ for any $n, m \in \mathbb{N}$ with $m>n$, then $\left(x_{n}\right)$ is a Cauchy sequence in $(X, d)$.
(d) If $w\left(y, x_{n}\right) \leq \alpha_{n}$ for any $n \in \mathbb{N}$, then $\left(x_{n}\right)$ is a Cauchy sequence.

From [6] we undertake the definition of the weakly contractive multivalued operators as follows.

Definition 1. Let $(X, d)$ be a metric space and $Y \subseteq X$. A multivalued operator $T: Y \rightarrow P(X)$ is called a-weakly contractive if there exists a $w$-distance $w$ on $X$ and $a \in[0,1)$ such that for any $x_{1}, x_{2} \in Y$ and $y_{1} \in T\left(x_{1}\right)$ there is $y_{2} \in T\left(x_{2}\right)$ with $w\left(y_{1}, y_{2}\right) \leq a w\left(x_{1}, x_{2}\right)$.

In [2] we have the definition of weakly $\varphi$-contractive operators as follows.
Definition 2. Let $(X, d)$ be a metric space and $Y \subseteq X$. Then $T: Y \rightarrow$ $P(X)$ is called weakly $\varphi$-contractive if there exists a $w$-distance, $w$, on $X$ and a function $\varphi: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$such that for every $x_{1}, x_{2}$ and $y_{1} \in T\left(x_{1}\right)$ there is $y_{2} \in T\left(x_{2}\right)$ with $w\left(y_{1}, y_{2}\right) \leq \varphi\left(w\left(x_{1}, x_{2}\right)\right)$.

Recall that $\varphi: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$is said to be a comparison function (see [5]) if it is increasing and $\varphi^{k}(t) \rightarrow 0$, as $k \rightarrow \infty$. As a consequence, we also have $\varphi(t)<t$, for each $t>0, \varphi(0)=0$.

Also recall the notion of strict comparison function. A function $\varphi: \mathbb{R}_{+} \rightarrow$ $\mathbb{R}_{+}$is said to be a strict comparison function (see [5]) if it is strictly increasing and $\sum_{n=1}^{\infty} \varphi^{n}(t)<\infty$, for each $t>0$.

## 3. Data dependence for weakly $\varphi$-contractive multivalued operators

In [2] we find the following fixed points result with respect to weakly $\varphi$ contractive operators (Theorem 4.2, [2]).

Theorem 2. Let $(X, d)$ be a complete metric space, $w: X \times X \rightarrow \mathbb{R}_{+} a$ $w$-distance on $X, T: X \rightarrow P_{c l}(X)$ a multivalued operator and $\varphi: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$ a function such that are accomplish the following conditions:
(a) $T$ are weakly $\varphi$-contractive operator;
(b) The function $\varphi$ is a monotone increasing function such that

$$
\sigma(t):=\sum_{n=0}^{\infty} \varphi^{n}(t)<\infty, \text { for every } t \in \mathbb{R}_{+} \backslash\{0\}
$$

Then there exists $x^{*} \in X$ such that $x^{*} \in T\left(x^{*}\right)$ and $w\left(x^{*}, x^{*}\right)=0$.

The main result of this section is the following data dependence theorem with respect to the above theorem.

Theorem 3. Let $(X, d)$ be a complete metric space, $T_{1}, T_{2}: X \rightarrow P_{c l}(X)$ be two weakly $\varphi$-contractive multivalued operators. Then the following are true:
(a) $F i x T_{1} \neq \emptyset \neq F i x T_{2}$;
(b) We suppose that there exists $\eta>0$ such that for every $u \in T_{1}(x)$ there exists $v \in T_{2}(x)$ such that $w(u, v) \leq \eta$, (respectively for every $v \in T_{2}(x)$
there exists $u \in T_{1}(x)$ such that $\left.w(v, u) \leq \eta\right)$.
Then for every $u^{*} \in F i x T_{1}$ there exists $v^{*} \in F i x T_{2}$ such that

$$
w\left(u^{*}, v^{*}\right) \leq \sigma(\eta)
$$

(respectively for every $v^{*} \in F i x T_{2}$ there exists $u^{*} \in F i x T_{1}$ such that

$$
\left.w\left(v^{*}, u^{*}\right) \leq \sigma(\eta)\right)
$$

Proof. Let $u_{0} \in F i x T_{1}$, then $u_{0} \in T_{1}\left(u_{0}\right)$. Using the hypothesis (2) we have that there exists $u_{1} \in T_{2}\left(u_{0}\right)$ such that $w\left(u_{0}, u_{1}\right) \leq \eta$.

Since $T_{1}, T_{2}$ are weakly $\varphi$-contractive, where $\varphi: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$is a strict comparison function we have that for every $u_{0}, u_{1} \in X$ with $u_{1} \in T_{2}\left(u_{0}\right)$ there exists $u_{2} \in T_{2}\left(u_{1}\right)$ such that

$$
w\left(u_{1}, u_{2}\right) \leq \varphi\left(w\left(u_{0}, u_{1}\right)\right)
$$

For $u_{1} \in X$ and $u_{2} \in T_{2}\left(u_{1}\right)$ there exists $u_{3} \in T_{2}\left(u_{2}\right)$ such that

$$
w\left(u_{2}, u_{3}\right) \leq \varphi\left(w\left(u_{1}, u_{2}\right)\right) \leq \varphi^{2}\left(w\left(u_{0}, u_{1}\right)\right)
$$

By induction we obtain a sequence $\left(u_{n}\right)_{n \in \mathbb{N}} \in X$ such that
(a) $u_{n+1} \in T_{2}\left(u_{n}\right)$, for every $n \in \mathbb{N}$;
(b) $w\left(u_{n}, u_{n+1}\right) \leq \varphi^{n}\left(w\left(u_{0}, u_{1}\right)\right)$

For $n, m \in \mathbb{N}$, with $m>n$ we have the inequality

$$
\begin{aligned}
w\left(u_{n}, u_{m}\right) & \leq w\left(u_{n}, u_{n+1}\right)+w\left(u_{n+1}, u_{n+2}\right)+\cdots+w\left(u_{m-1}, u_{m}\right) \\
& \leq<\varphi^{n} w\left(u_{0}, u_{1}\right)+\varphi^{n+1} w\left(u_{0}, u_{1}\right)+\cdots+\varphi^{m-1} w\left(u_{0}, u_{1}\right) \\
& \leq \sum_{k=n}^{\infty} \varphi^{k}\left(w\left(x_{0}, x_{1}\right)\right) \leq \sigma\left(w\left(x_{0}, x_{1}\right)\right)
\end{aligned}
$$

By the Lemma $1(c)$ we have that the sequence $\left(u_{n}\right)_{n \in \mathbb{N}}$ is a Cauchy sequence. Since $(X, d)$ is a complete metric space we have that there exists $v^{*} \in X$ such that $u_{n} \xrightarrow{d} v^{*}$.

By the lower semicontinuity of $w(x, \cdot): X \rightarrow[0, \infty)$ we have

$$
\begin{equation*}
w\left(u_{n}, v^{*}\right) \leq \lim _{m \rightarrow \infty} \inf w\left(u_{n}, u_{m}\right) \leq \sigma\left(\varphi^{n}\left(w\left(x_{0}, x_{1}\right)\right)\right) \tag{1}
\end{equation*}
$$

For $u_{n-1}, v^{*} \in X$ and $u_{n} \in T_{2}\left(u_{n-1}\right)$ there exists $z_{n} \in T_{2}\left(v^{*}\right)$ such that, using relation (1), we have

$$
\begin{equation*}
w\left(u_{n}, z_{n}\right) \leq \varphi\left(w\left(u_{n-1}, v^{*}\right)\right) \leq \ldots \leq \sigma\left(\varphi^{n-1}\left(w\left(x_{0}, x_{1}\right)\right)\right) \tag{2}
\end{equation*}
$$

Applying Lemma 1 (b), from relations (1) and (2) we have that $z_{n} \xrightarrow{d} v^{*}$.
Then, we know that $z_{n} \in T_{2}\left(v^{*}\right)$ and $z_{n} \xrightarrow{d} v^{*}$. In this case, by the closure of $T_{2}$ result that $v^{*} \in T_{2}\left(v^{*}\right)$. Then, by $w\left(u_{n}, v^{*}\right) \leq \sigma\left(\varphi^{n}\left(w\left(x_{0}, x_{1}\right)\right)\right)$, with $n \in \mathbb{N}$, for $n=0$ we obtain

$$
w\left(u_{0}, v^{*}\right) \leq \sigma\left(w\left(x_{0}, x_{1}\right)\right) \leq \sigma(\eta)
$$

which complete the proof.

## 4. Existence of fixed points for non-self multivalued weakly contractive operators

Let $(X, d)$ be a metric space, $w$ be a $w$-distance on $X x_{0} \in X$ and $r>0$. Let us define:
$B_{w}\left(x_{0} ; r\right):=\left\{x \in X \mid w\left(x_{0}, x\right)<r\right\}$ the open ball centered at $x_{0}$ with radius $r$ with respect to $w$;
${\widetilde{B_{w}}}^{d}\left(x_{0} ; r\right)$ - the closure in $(X, d)$ of the set $B_{w}\left(x_{0} ; r\right)$.
Theorem 4. Let $(X, d)$ be a complete metric space, $x_{0} \in X, r>0$ and $T:{\widetilde{B_{w}}}^{d}\left(x_{0} ; r\right) \rightarrow P_{c l}(X, d)$ be a multivalued operator such that:
(i) $T$ is a-weakly contractive;
(ii) $D_{w}\left(x_{0}, T\left(x_{0}\right)\right)<(1-a) r$;

Then $T$ has a fixed point.
Proof. Let $0<s<r$ such that $B_{w}\left(x_{0} ; s\right) \subset B_{w}\left(x_{0} ; r\right)$ and $D_{w}\left(x_{0}, T\left(x_{0}\right)\right)$ $<(1-a) s<(1-a) r$.

Then there exists $x_{1} \in T\left(x_{0}\right)$ such that $w\left(x_{0}, x_{1}\right)<(1-a) s \leq s$. Hence $x_{1} \in B_{w}\left(x_{0} ; s\right)$.

For $x_{1} \in T\left(x_{0}\right)$ there exists $x_{2} \in T\left(x_{1}\right)$ such that

$$
w\left(x_{1}, x_{2}\right) \leq a w\left(x_{0}, x_{1}\right) \leq a(1-a) s
$$

Then $w\left(x_{0}, x_{2}\right) \leq w\left(x_{0}, x_{1}\right)+w\left(x_{1}, x_{2}\right)<(1-a) s+a(1-a) s=\left(1-a^{2}\right) s \leq s$. Hence $x_{2} \in B_{w}\left(x_{0} ; s\right)$.

For $x_{1} \in B_{w}\left(x_{0} ; s\right)$ and $x_{2} \in T\left(x_{1}\right)$ there exists $x_{3} \in T\left(x_{2}\right)$ such that

$$
w\left(x_{2}, x_{3}\right) \leq a w\left(x_{1}, x_{2}\right) \leq a^{2} w\left(x_{0}, x_{1}\right) \leq a^{2}(1-a) s
$$

Then $w\left(x_{0}, x_{3}\right) \leq w\left(x_{0}, x_{2}\right)+w\left(x_{2}, x_{3}\right)<\left(1-a^{2}\right) s+a^{2}(1-a) s=(1-$ $a)\left(1+a+a^{2}\right) s=\left(1-a^{3}\right) s<s$. Hence $x_{3} \in B_{w}\left(x_{0} ; s\right)$.

By induction we obtain in this way a sequence $\left(x_{n}\right)_{n \in \mathbb{N}} \in B_{w}\left(x_{0} ; s\right)$ with the following properties:
(a) $x_{n} \in T\left(x_{n-1}\right)$, for each $n \in \mathbb{N}$;
(b) $w\left(x_{n}, x_{n+1}\right) \leq a^{n}(1-a) s$, for each $n \in \mathbb{N}$.

For $m, n \in \mathbb{N}$ with $m>n$ we have

$$
\begin{aligned}
w\left(x_{n}, x_{m}\right) & \leq w\left(x_{n}, x_{n+1}\right)+w\left(x_{n+1}, x_{n+2}\right)+\ldots+w\left(x_{m-1}, x_{m}\right) \\
& \leq a^{n}(1-a) s+a^{n+1}(1-a) s+\ldots+a^{m-1}(1-a) s \\
& \leq \frac{a^{n}}{1-a}(1-a) s=a^{n} s
\end{aligned}
$$

Using Lemma $1(c)$ we have that $\left(x_{n}\right)_{n \in \mathbb{N}} \in B_{w}\left(x_{0} ; s\right)$ is a Cauchy sequence in $(X, d)$. Since $(X, d)$ is a complete metric space it follows that the sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ has a limit $x^{*} \in{\widetilde{B_{w}}}^{d}\left(x_{0} ; s\right)$.

Fix $n \in \mathbb{N}$. Since $\left(x_{m}\right)_{m \in \mathbb{N}} \in B_{w}\left(x_{0} ; s\right)$ converge to $x^{*}$ and $w\left(x_{n}, \cdot\right)$ is lower semicontinuous we have

$$
w\left(x_{n}, x^{*}\right) \leq \lim _{m \rightarrow \infty} \inf w\left(x_{n}, x_{m}\right) \leq a^{n} s, \text { for every } n \in \mathbb{N}
$$

For $x^{*} \in{\widetilde{B_{w}}}^{d}\left(x_{0} ; s\right)$ and $x_{n} \in T\left(x_{n-1}\right), n \in \mathbb{N}^{*}$, there exists $u_{n} \in T\left(x^{*}\right)$ such that

$$
w\left(x_{n}, u_{n}\right) \leq a w\left(x_{n-1}, x^{*}\right) \leq \ldots \leq a a^{n-1} s=a^{n} s, \text { for every } n \in \mathbb{N}
$$

So, we have the following two relations:

$$
\begin{aligned}
& w\left(x_{n}, x^{*}\right) \leq a^{n} s, \text { for every } n \in \mathbb{N} . \\
& w\left(x_{n}, u_{n}\right) \leq a^{n} s, \text { for every } n \in \mathbb{N} .
\end{aligned}
$$

Then, by Lemma $1(b)$ we obtain that $u_{n} \xrightarrow{d} x^{*}$. As $u_{n} \in T\left(x^{*}\right)$ for each $n \in \mathbb{N}$ and using that $T$ has closed values in $(X, d)$ it follows that $x^{*} \in T\left(x^{*}\right)$ Then $T$ has a fixed point.

Let us present another fixed point result. For a related result, see [4].
Theorem 5. Let $(X, d)$ be a complete metric space, $T: \widetilde{B_{w}}{ }^{d}\left(x_{0} ; r\right) \rightarrow$ $P_{c l}(X, d)$ be a multivalued operator such that:
(i) $T$ is weakly $\varphi$-contractive operator, where $\varphi: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$is a strict comparison function such that the function $\psi(t):=t-\varphi(t)$ is strictly increasing, continuous in $r$ and $\sum_{n=1}^{\infty} \varphi^{n}(\psi(s)) \leq \varphi(s)$, for each $\left.s \in\right] 0, r[$;
(ii) $D_{w}\left(x_{0}, T\left(x_{0}\right)\right)<r-\varphi(r)$;

Then $T$ has a fixed point.
Proof. Let $0<s<r$ such that $B_{w}\left(x_{0} ; s\right) \subset B_{w}\left(x_{0} ; r\right)$ and $D_{w}\left(x_{0}, T\left(x_{0}\right)\right)$ $<s-\varphi(s)<r-\varphi(r)$. For $D_{w}\left(x_{0}, T\left(x_{0}\right)\right)<s-\varphi(s)$ there exists $x_{1} \in T\left(x_{0}\right)$ such that $w\left(x_{0}, x_{1}\right)<s-\varphi(s)=\psi(s)$.

For $x_{1} \in T\left(x_{0}\right)$ there exists $x_{2} \in T\left(x_{1}\right)$ such that

$$
w\left(x_{1}, x_{2}\right) \leq \varphi\left(w\left(x_{0}, x_{1}\right)\right) \leq \varphi(\psi(s))
$$

Then $w\left(x_{0}, x_{2}\right) \leq w\left(x_{0}, x_{1}\right)+w\left(x_{1}, x_{2}\right)<\psi(s)+\varphi(\psi(s))<s$. Hence $x_{2} \in B_{w}\left(x_{0} ; s\right)$.

For $x_{1} \in B_{w}\left(x_{0} ; s\right)$ and $x_{2} \in T\left(x_{1}\right)$ there exists $x_{3} \in T\left(x_{2}\right)$ such that

$$
w\left(x_{2}, x_{3}\right) \leq \varphi\left(w\left(x_{1}, x_{2}\right)\right) \leq \varphi^{2}\left(w\left(x_{0}, x_{1}\right)\right) \leq \varphi^{2}(\psi(s))
$$

Then $w\left(x_{0}, x_{3}\right) \leq w\left(x_{0}, x_{2}\right)+w\left(x_{2}, x_{3}\right)<\psi(s)+\varphi(\psi(s))+\varphi^{2}(\psi(s))<s$. Hence $x_{3} \in B_{w}\left(x_{0} ; s\right)$.

By induction we obtain in this way a sequence $\left(x_{n}\right)_{n \in \mathbb{N}} \in B_{w}\left(x_{0} ; s\right)$ with the following properties:
(1) $x_{n} \in T\left(x_{n-1}\right)$, for each $n \in \mathbb{N}$;
(2) $w\left(x_{n}, x_{n+1}\right) \leq \varphi^{n}\left(w\left(x_{0}, x_{1}\right)\right)<\varphi^{n}(\psi(s))$, for each $n \in \mathbb{N}$.

For $m, n \in \mathbb{N}$ with $m>n$ we have

$$
\begin{aligned}
w\left(x_{n}, x_{m}\right) & \leq w\left(x_{n}, x_{n+1}\right)+w\left(x_{n+1}, x_{n+2}\right)+\ldots+w\left(x_{m-1}, x_{m}\right) \\
& \leq \varphi^{n}\left(w\left(x_{0}, x_{1}\right)\right)+\varphi^{n+1}\left(w\left(x_{0}, x_{1}\right)\right)+\ldots+\varphi^{m-1}\left(w\left(x_{0}, x_{1}\right)\right) \\
& <\varphi^{n}(\psi(s))+\varphi^{n+1}(\psi(s))+\ldots+\varphi^{m-1}(\psi(s)) \\
& \leq \sum_{k=n}^{\infty} \varphi^{k}(\psi(s))
\end{aligned}
$$

Letting $n \rightarrow \infty$ we have

$$
\lim _{n \rightarrow \infty} w\left(x_{n}, x_{m}\right) \leq \sum_{k=1}^{\infty} \varphi^{k}(\psi(s))-\lim _{n \rightarrow \infty} \sum_{k=1}^{n} \varphi^{k}(\psi(s))=0
$$

Using Lemma $1(c)$ we have that $\left(x_{n}\right)_{n \in \mathbb{N}} \in B_{w}\left(x_{0} ; s\right)$ is a Cauchy sequence in $(X, d)$. Since $(X, d)$ is a complete metric space we have that the sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ has a limit $x^{*} \in{\widetilde{B_{w}}}^{d}\left(x_{0} ; s\right)$.

Fix $n \in \mathbb{N}$. Since $\left(x_{m}\right)_{m \in \mathbb{N}} \in B_{w}\left(x_{0} ; s\right)$ converge to $x^{*}$ and $w\left(x_{n}, \cdot\right)$ is lower semicontinuous we have

$$
w\left(x_{n}, x^{*}\right) \leq \lim _{m \rightarrow \infty} \inf w\left(x_{n}, x_{m}\right) \leq \lim _{n \rightarrow \infty}\left(\sum_{k=n}^{\infty} \varphi^{k}(\psi(s))\right)=0
$$

For $x^{*} \in \widetilde{B_{w}}{ }^{d}\left(x_{0} ; s\right)$ and $x_{n} \in T\left(x_{n-1}\right), n \in \mathbb{N}^{*}$ there exists $u_{n} \in T\left(x^{*}\right)$ such that

$$
w\left(x_{n}, u_{n}\right) \leq \varphi\left(w\left(x_{n-1}, x^{*}\right)\right) \leq \ldots \leq \varphi^{n}\left(w\left(x_{0}, x_{1}\right)\right)<\varphi^{n}(\psi(s))
$$

So, we have that:

$$
\begin{aligned}
& w\left(x_{n}, x^{*}\right)<\sum_{k=n}^{\infty} \varphi^{k}(\psi(s)) \\
& w\left(x_{n}, u_{n}\right)<\varphi^{n}(\psi(s))
\end{aligned}
$$

Then, by Lemma $1(b)$ we obtain that $u_{n} \xrightarrow{d} x^{*}$. As $u_{n} \in T\left(x^{*}\right)$ for each $n \in \mathbb{N}$ and using that $T$ has closed values in $(X, d)$ it follows that $x^{*} \in T\left(x^{*}\right)$. Then $T$ has a fixed point.

## References

[1] Granas A., Dugundji J., Fixed Point Theory, Berlin, Springer-Verlag, 2003.
[2] Guran L., Existence and data dependence for multivalued weakly contractive operators, Studia Babeş-Bolyai University Mathematica, 54(3)(2009), 67-76.
[3] Kada O., Suzuki T., Takahashi W., Nonconvex minimization theorems and fixed point theorems in complete metric spaces, Math. Japonica, 44(1996) 381-391.
[4] Lazăr T, Petruģel A., Shahzad N., Fixed points for non-self operators and domanin invariance theorems, Nonlinear Analysis: Theory, Methods and Applications, 70(2009), 117-125.
[5] Rus I.A., Generalized Contractions and Applications, Presa Clujeană Universitară, Cluj-Napoca, 2001.
[6] Suzuki T., Takahashi W., Fixed points theorems and characterizations of metric completeness Topological Methods in Nonlinear Analysis, Journal of Juliusz Schauder Center, 8(1996), 371-382.

Liliana Guran<br>Department of Applied Mathematics<br>Babeş-Bolyai University<br>Kogălniceanu 1, 400084, Cluj-Napoca, România<br>e-mail: gliliana.math@gmail.com

Received on 28.02.2009 and, in revised form, on 25.05.2009.

