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Abstract. In this article, the existence of a unique common fixed
point of two families of compatible maps of type (P ) on a com-
plete metric space and a common fixed point theorem for four
mappings on a metric space are proved. These theorems are an
improvement over the theorems generalizes Banach Fixed Point
Theorems [1], Kannan Fixed Point Theorem [12], Edelstein Fixed
Point Theorem [6], Boyd and Wong’s Fixed Point Theorem [2],
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1. Introduction

Studies of common fixed points of commuting maps were initiated by
Jungck [7]. Jungck [8] further made a generalization of commuting maps by
introducing the notion of compatible mappings. In [16], Pathak ct al de-
fined compatible mappings of type (P ). The notion of compatible mappings
developed in many direction such as see [[4], [9], [10], [11], [14] and [15]].
The purpose of this article is to prove Theorem 3.1 [16] for two families of
compatible mappings of type (P ) on a complete metric space and a common
fixed point theorem for four mappings in a metric space.

Definition 1 ([16]). Let S, T : (X, d) → (X, d) be mappings. S and T
are said to be compatible of type (P ) if

lim
n−→∞

d(SSxn, TTxn) = 0
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whenever {xn} is a sequence in X such that Sxn, Txn → z, for some z ∈ X,
as n →∞.

Proposition 1 ([16]). Let S, T : (X, d) → (X, d) be mappings. Let S
and T are compatible of type (P ) and let Sxn, Txn → z as n →∞ for some
z ∈ X. Then we have the following:

(a) lim
n→∞

TTxn = Sz if S is continuous at z,

(b) lim
n→∞

SSxn = Tz if T is continuous at z,

(c) STz = TSz and Sz = Tz if S and T are continuous at z.

Proposition 2 ([16]). Let S, T : (X, d) → (X, d) be mappings. If S
and T are compatible of type (P ) and Sz = Tz for some z ∈ X, then
SSz = STz = TTz.

Lemma 1 ([17]). For any t > 0, γ(t) < t, iff lim
n→∞

γn(t) = 0 where γn

denotes the n-times composition of γ.

In this article a common fixed point theorem for a family of compatible
maps of type (P ) in a compatible metric space is given. Finally, the existence
of a common fixed point for four mappings in a metric space is proved.

2. Main results

In this section we shall prove a common fixed point theorem for any even
number of compatible maps of type (P ) in a complete metric space.

Let % be the family of all mappings φ : (R+)5 → R+, where R+ = [0,+∞)
and each φ satisfies the following conditions:

(a) φ is upper semicontinuous on R+

(b) φ is non-decreasing in each coordinate variable, and
(c) for each t > 0,

φ(t, t, 0, αt, 0) ≤ βt and φ(t, t, 0, 0, αt) ≤ βt where β = 1 for α = 2 and β < 1
for α < 2.

γ(t) = φ(t, t, a1t, a2t, a3t) < t

where γ : R+ → R+ is a mapping and a1 + a2 + a3 = 4.
Now we prove our main result.

Theorem 1. Let P1, P2, · · · , P2n, A and B are self maps on a complete
metric space (X, d), satisfying conditions:

(I) A(X) ⊆ P1P3 · · ·P2n−1(X), B(X) ⊆ P2P4 · · ·P2n(X);
(II)

P2(P4 · · ·P2n) = (P4 · · ·P2n)P2,
P2P4(P6 · · ·P2n) = (P6 · · ·P2n)P2P4,

...
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P2 · · ·P2n−2(P2n) = (P2n)P2 · · ·P2n−2,
A(P4 · · ·P2n) = (P4 · · ·P2n)A,
A(P6 · · ·P2n) = (P6 · · ·P2n)A,

...
AP2n = P2nA,

P1(P3 · · ·P2n−1) = (P3 · · ·P2n−1)P1,
P1P3(P5 · · ·P2n−1) = (P5 · · ·P2n−1)P1P3,

...
P1 · · ·P2n−3(P2n−1) = (P2n−1)P1 · · ·P2n−3,

B(P3 · · ·P2n−1) = (P3 · · ·P2n−1)B,
B(P5 · · ·P2n−1) = (P5 · · ·P2n−1)B,

...
BP2n−1 = P2n−1B;

(III) One of
∏n

i=1 P2i−1 = P2 · · ·P2n, A, B and
∏n

i=1 P2i = P1 · · ·P2n−1

is continuous;
(IV ) The pair (A,P2 · · ·P2n) and the pair (B,P1 · · ·P2n−1) are compatible

of type (P );
(V ) There exists φ ∈ % such that

d(Au, Bv) ≤ φ(d(Au, P2P4 · · ·P2nu), d(Bv, P1P3 · · ·P2n−1v),
d(Au, P1P3 · · ·P2n−1v),
d(Bv, P2P4 · · ·P2nu), d(P2P4 · · ·P2nu, P1P3 · · ·P2n−1v))

for all u, v ∈ X. Then P1, P2, · · · , P2n, A and B have a unique common
fixed point in X.

Proof. Let x0 ∈ X. From condition (I) there exists x1, x2 ∈ X such that
Ax0 = P1P3 · · ·P2n−1x1 = y0 and Bx1 = P2P4 · · ·P2nx2 = y1. Inductively
we can construct sequence {xn} and {yn} in X

Ax2k = P1P3 · · ·P2n−1x2k+1 = y2k

and
Bx2k+1 = P2P4 · · ·P2nx2k+2 = y2k+1,

for k ∈ N. By a similar proof of Lemma 3.2 and Lemma 3.3 [16], is proved
that {yn} is a Cauchy sequence in X. Since X is complete, there exists some
z ∈ X such that yn → z. Also, for its subsequences we have:

Bx2k+1 → z and P1P3 · · ·P2n−1x2k+1 → z,

Ax2k → z and P2P4 · · ·P2nx2k → z.
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Now, suppose that P2P4 · · ·P2n is continuous.
Denote P ′

1 = P2P4 · · ·P2n and P ′
2 = P1P3 · · ·P2n−1. Since (A,P ′

1) is com-
patible of type (P ), by Proposition 1,

AAx2k → P ′
1z and P ′

1Ax2k → P ′
1z.

a) Putting u = P2P4 · · ·P2nx2k = P ′
1x2k, v = x2k+1, and P ′

2 = P1P3 · · ·
P2n−1 in condition (V ), we have:

d(AAx2k, Bx2k+1) ≤ φ(d(AAx2k, P
′
1Ax2k),

d(Bx2k+1, P
′
2x2k+1),

d(AAx2k, P
′
2x2k+1),

d(Bx2k+1, P
′
1Ax2k),

d( P ′
1Ax2k, P

′
2x2k+1)).

Letting k →∞, we get:

d(P ′
1z, z) ≤ φ(0, 0, d(P ′

1z, z), d(z, P ′
1z), d( P ′

1z, z))
< γ(d(P ′

1z, z))
< d(P ′

1z, z)

which is a contradiction. Thus P ′
1z = z, i.e., P2P4 · · ·P2nz = z.

b) Putting u = z, v = x2k+1, P ′
1 = P2P4 · · ·P2n and P ′

2 = P1P3 · · ·
P2n−1 in condition (V ), we have:

d(Az,Bx2k+1) ≤ φ(d(Az, P ′
1z),

d(Bx2k+1, P
′
2x2k+1),

d(Az, P ′
2x2k+1),

d(Bx2k+1, P
′
1z),

d( P ′
1z, P ′

2x2k+1)).

Letting k →∞, we get:

d(Az, z) ≤ φ(d(Az, z), 0, d(Az, z), 0, 0)
< γ(d(Az, z))
< d(Az, z).

Hence d(Az, z) = 0. Therefore, Az = P2P4 · · ·P2nz = z.



Common fixed point theorems for . . . 57

c) Putting u = P4 · · ·P2nz, v = x2k+1, P ′
1 = P2P4 · · ·P2n and P ′

2 =
P1P3 · · ·P2n−1 in condition (V ), and using the condition P2(P4 · · ·P2n) =
(P4 · · ·P2n)P2 and A(P4 · · ·P2n) = (P4 · · ·P2n)A in condition (II), we get:

d(AP4 · · ·P2nz,Bx2k+1) ≤ φ(d(AP4 · · ·P2nz, P ′
1P4 · · ·P2nz),

d(Bx2k+1, P
′
2x2k+1),

d(AP4 · · ·P2nz, P ′
2x2k+1),

d(Bx2k+1, P
′
1P4 · · ·P2nz),

d( P ′
1P4 · · ·P2nz, P ′

2x2k+1)).

Letting k →∞, we get:

d(P4 · · ·P2nz, z) ≤ φ(d(P4 · · ·P2nz, z), 0, d(P4 · · ·P2nz, z), 0, 0),
< γ(d(P4 · · ·P2nz, z))
< d(P4 · · ·P2nz, z).

Hence it follows that P4 · · ·P2nz = z. Then P2(P4 · · ·P2nz) = P2z and so
P2z = P2P4 · · ·P2nz = z.

Continuing this procedure, we obtain

Az = P2z = P4z = · · · = P2nz = z.

d) As A(X) ⊆ P1P3 · · ·P2n−1(X), there exists v ∈ X such that z =
Az = P1P3 · · ·P2n−1v. Putting u = x2k, P

′
1 = P2P4 · · ·P2n and P ′

2 =
P1P3 · · ·P2n−1 in condition (V ), we have:

d(Ax2k, Bv) ≤ φ(d(Ax2k, P
′
1x2k),

d(Bv, P ′
2v),

d(Ax2k, P
′
2v),

d(Bv, P ′
1x2k),

d( P ′
1x2k, P

′
2v)).

Letting k →∞, we get:

d(z,Bv) ≤ φ(0, d(Bv, z), 0, d(Bv, z), 0)
< γ(d(Bv, z))
< d(Bv, z).

Therefore Q1v = z. Hence, P1P3 · · ·P2n−1v = Bv = z. As (B,P1 · · ·P2n−1)
is compatible mappings type of type (P ) and P1P3 · · ·P2n−1v = Bv, by
Proposition 2 d(B P ′

2v, P ′
2P

′
2v)) = 0. Hence Bz = BP ′

2v = P ′
2P

′
2v =

P ′
2z. Thus P1P3 · · ·P2n−1z = Bz.
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e) Putting u = x2k, v = z, P ′
1 = P2P4 · · ·P2n and P ′

2 = P1P3 · · ·P2n−1

in condition (V ), we have:

d(z,Bz) = d(Az,Bz) ≤ φ(d(Az, P ′
1z),

d(Bz, P ′
2z),

d(Az, P ′
2z),

d(Bz, P ′
1z),

d(P ′
1z, P ′

2z)).

Letting k →∞, we get:

d(z,Bz) ≤ φ(0, d(Bz, z), 0, d(Bz, z), 0)
< γ(d(Bz, z)) < d(Bz, z).

Therefore Bz = z. Hence, P1P3 · · ·P2n−1z = Bz = z.
f) Putting u = x2k, v = P3 · · ·P2n−1z, P ′

1 = P2P4 · · ·P2n and P ′
2 =

P1P3 · · ·P2n−1 in condition (V ), we have:

d(Ax2k, BP3 · · ·P2n−1z) ≤ φ(d(Ax2k, P
′
1x2k),

d(BP3 · · ·P2n−1z, P ′
2P3 · · ·P2n−1z),

d(Ax2k, P
′
2P3 · · ·P2n−1z),

d(BP3 · · ·P2n−1z, P ′
1x2k),

d( P ′
1x2k, P

′
2P3 · · ·P2n−1z)).

Letting k →∞, we get:

d(z, P3 · · ·P2n−1z) ≤ φ(0, 0, d(z, P3 · · ·P2n−1z), d(P3 · · ·P2n−1z, z),
d(z, P3 · · ·P2n−1z))

< γ(d(z, P3 · · ·P2n−1z))
< d(z, P3 · · ·P2n−1z).

Therefore P3 · · ·P2n−1z = z. Hence, P1z = z. Continuing this procedure,
we have:

Bz = P1z = P3z = · · · = P2n−1z.

Thus we proved

Az = Bz = P1z = P2z = · · · = P2n−1z = P2nz = z.

�

Proof of uniqueness. Let z′ be another common fixed point of men-
tioned maps, then Az′ = Bz′ = P1z

′ = P2z
′ = · · · = P2nz′ = z′. Putting
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u = z, v = z′, P ′
1 = P2P4 · · ·P2n and P ′

2 = P1P3 · · ·P2n−1 in condition (V ),
we have:

d(Az,Bz′) ≤ φ(d(Az, P2P4 · · ·P2nz), d(Bz′, P1P3 · · ·P2n−1z
′),

d(Az, P1P3 · · ·P2n−1z
′),

d(Bz′, P2P4 · · ·P2nz), d(P2P4 · · ·P2nz, P1P3 · · ·P2n−1z
′)).

It means that
d(z, z′) ≤ γ(d(z, z′)).

Thus z = z′ and this shows that z is a unique common fixed point of the
maps.

Similarly, we can also complete the proof when A, B and P1 · · ·P2n−1 is
continuous. This complete the proof. �

Remark 1. Theorem 1 is generalization of Theorem 3.1 [16].

Now we shall prove a common fixed point theorem for four mappings in
metric space. Let R+ be the set non-negative real numbers and Ψ be the
family of mappings ϕ : (R+)5 → R+ such that

(i) ϕ is non-decreasing,
(ii) ϕ is upper-semi-continuous in each coordinate variable
(iii) γ(t) = ϕ(t, t, a1t, a2t, t) < t, where γ : R+ → R+ is a mapping with

γ(0) = 0 and a1 + a2 = 2.

The following theorem is an improvement over the theorems generalizes
Banach Fixed Point Theorems [1], Kannan Fixed Point Theorem [12], Edel-
stein Fixed Point Theorem [6], Boyd and Wong’s Fixed Point Theorem [2],
Ćirić’s Fixed Point Theorems [3], Das and Naik’s Fixed Point Theorems [5]
for at least a pair of maps of the Jungck Fixed Point Theorem Type [7] in
which the least possibility is that at least one self mapping is continuous on
the point of convergence. We have oppose to assume any mapping is con-
tinuous. Also we have relaxed the completeness of the metric space (X, d).
Many corollaries are also given of this theorem. Here any kind of weakly
commuting means we can choose the pair from Murthy [13].

Theorem 2. Let (X, d) be a metric space and let A, B, S and T be
mappings of X into itself such that:

(I) A(X)
⋃

B(X) ⊂ S(X)
⋂

T (X),
(II) The pairs (A,S) and (B, T ) are any kind of weakly commuting maps,
(III) [1 + αd(Sx, Ty)].d(Ax,By)

≤ α max{d(Sx, Ax)d(Ty, By), d(Sx, By)d(Ty, Ax)}
+ ϕ(d(Sx, Ty), d(Sx, Ax)d(Ty, By), d(Sx, By)d(Ty, Ax))
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for every x, y ∈ X, where α ≥ 0 and ϕ ∈ Ψ. If S(X)
⋂

T (X) be a closed
subspace of X, then

(i) (A,S) and (B, T ) are coinciding at a common point,
(ii) A,B, S and T have a unique common fixed point in X.

Proof. Since A(X)
⋃

B(X) ⊂ S(X)
⋂

T (X), we can choose A(X) ⊂
T (X), for any arbitrary point x0 ∈ X, we can choose a point x1 ∈ X such
that y0 = Ax0 = Tx1. Since B(X) ⊂ S(X), for the point x1, we can choose
a point x2 ∈ X, such that y1 = Bx1 = Sx2 and so on. Inductively, we can
define a sequence {xn} in X such that

y2n = Tx2n+1 = Ax2n, y2n+1 = Sx2n+2 = Bx2n+1,(1)
for n = 0, 1, 2, . . .

We shall prove that {yn} be a Cauchy sequence. Putting x = x2n and
y = x2n+1 in (III), we have

[1 + αd(Sx2n+1, Tx2n+1)]d(Ax2n, Bx2n+1)
≤ α max{d(Sx2n, Ax2n)d(Tx2n+1, Bx2n+1),

d(Sx2n, Bx2n+1)d(Tx2n+1, Ax2n)}
+ ϕ(d(Sx2n, Tx2n+1), d(Sx2n, Ax2n)d(Tx2n+1, Bx2n+1),

d(Sx2n, Bx2n+1)d(Tx2n+1, Ax2n)),

i.e;

[1 + αd(y2n−1, y2n)]d(y2n, y2n+1)
≤ α max{d(y2n−1, y2n)d(y2n, y2n), d(y2n−1, y2n+1)d(y2n, y2n)}
+ ϕ(d(y2n−1, y2n), d(y2n−1, y2n)d(y2n, y2n+1),

d(y2n−1, y2n+1)d(y2n, y2n)),

i.e;

d(y2n, y2n+1) + αd(y2n−1, y2n)d(y2n, y2n+1)
≤ αd(y2n−1, y2n)d(y2n, y2n+1)
+ϕ(d(y2n−1, y2n), d(y2n−1, y2n)d(y2n, y2n+1), d(y2n−1, y2n+1)d(y2n, y2n)).

So

d(y2n, y2n+1) ≤ ϕ(d(y2n−1, y2n), d(y2n−1, y2n)d(y2n, y2n+1),
d(y2n−1, y2n) + d(y2n, y2n+1).d(y2n, y2n)).

If d(y2n, y2n+1) > d(y2n−1, y2n) for some n, then d(y2n, y2n+1) ≤ γ(d(y2n, y2n+1))
< d(y2n, y2n+1), which is a contradiction. Thus we have

d(y2n, y2n+1) ≤ γ(d(y2n−1, y2n)).
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Similarly,
d(y2n+1, y2n+2) ≤ γ(d(y2n, y2n+1)).

Proceeding in this way, we have

d(yn, yn+1) ≤ γ(d(yn−1, yn)) ≤ γ2(d(yn−2, yn−1)) ≤ ... ≤ γn(d(y0, y1))

by Lemma 1, lim
n→∞

γn(d(y0, y1)) = 0 and in turn it implies that lim
n→∞

d(yn, yn+1)

= 0. Then, by a similar proof of Theorem 4.1 [13], is proved that {yn} is a
Cauchy sequence in X. Since A(X) ⊂ T (X) and B(X) ⊂ S(X), then there
exists u, v in X such that Su = w and Tv = w, respectively. By (III)

[1 + αd(Su, Tx2n+1)]d(Au, Bx2n+1)
≤ α max{d(Su, Au)d(Tx2n+1, Bx2n+1), d(Su, Bx2n+1)d(Tx2n+1, Au)}

+ ϕ(d(Su, Tx2n+1), d(Su, Au)d(Tx2n+1, Bx2n+1),
d(Su, Bx2n+1)d(Tx2n+1, Au)).

Letting n →∞, we have

d(Au,w) ≤ ϕ(0, d(Au, w), 0, 0, d(Au,w))
< d(Au,w),

which means that Su = Au = w. Similarly, we can show that Tv = Bv = w.
Now we shall assume that (A,S) be a weak compatible pair of type (A),

so ASu = SSu implies that Aw = Sw. Similarly, Tw = Bw by assuming
(B, T ) as a weak compatible pair of type (A). Now we shall prove that w
is a common fixed point of A and S. let if possible Aw 6= w, then by (III),
we have

[1 + αd(Sw, Tx2n+1)]d(Aw,Bx2n+1)
≤ α max{d(Sw,Aw)d(Tx2n+1, Bx2n+1), d(Sw,Bx2n+1)d(Tx2n+1, Aw)}

+ ϕ(d(Sw, Tx2n+1), d(Sw,Aw)d(Tx2n+1, Bx2n+1),
d(Sw,Bx2n+1)d(Tx2n+1, Aw)).

Taking n →∞, we have

[1 + αd(Sw,w)]d(Aw,w)
≤ α max{0, d(Sw,w)d(w,Aw)}

+ ϕ(d(Sw,w), d(Sw,Aw), d(w,w), d(Sw,w), d(w,Aw)).

So

d(Aw,w) ≤ ϕ(d(Aw,w), 0, 0, d(Aw,w), d(w,Aw))
< d(Aw,w).
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implies Aw = w = Sw. i.e. w is a common fixed point A and S. Similarly,
we can show that w is a common fixed point of B and T . By uniqueness of
w. w is common fixed point of A,B, S and T . This completes the proof of
the Theorem. �

As an immediate consequence of the Theorem 2. with A = B, we have
the following:

Corollary 1. Let A, S and T be mappings from a metric space (X, d)
into itself satisfying:

(I) A(X) ⊂ S(X)
⋂

T (X),

(II) [1 + αd(Sx, Ty)]d(Ax,Ay)
≤ α max{d(Sx, Ax)d(Ty, Ay), d(Sx, Ay).d(Ty, Ax)},

+ ϕ(d(Sx, Ty), d(Sx, Ax), d(Ty, Ay), d(Sx, Ay), d(Ty, Ax)).

for every x, y ∈ X, where ϕ ∈ Ψ and α ≥ 0. If S(X)
⋂

T (X) be a closed
subspace of X, then (i) A, S and A, T have a coincidence point. Indeed, if
A is one-to-one, then (ii) A, S and T have a coincidence point If A, S and
A, T are weakly compatible maps of type (A), then (iii) A, S and T have a
unique common fixed point in X.

Proof. Omitted as it follows in the lines of Theorem 2. �

Corollary 2. Let A, B, S and T be mappings from a metric space (X, d)
into itself satisfying::

(I) A(X)
⋃

B(X) ⊂ S(X)
⋂

T (X),

(II) [1 + αd(Sx, Ty)]d(Ax,By)
≤ α max{d(Sx, Ax)d(Ty, By), d(Sx, By)d(Ty, Ax)},

+ β max{d(Sx, Ty), d(Sx, Ax), d(Ty, By), d(Sx, By), d(Ty, Ax)}
for every x, y ∈ X, where α ≥ 0 and β ∈ (0, 1). If S(X)

⋂
T (X) be a closed

subspace of X, then (i) A, S, B and T have a coincidence point. If A, S
and B, T are weakly compatible maps of type (A), then (ii) A, B, S and T
have a unique common fixed point in X.

Proof. Define ϕ : (R+)5 → R+ by ϕ(t1, t2, t3, t4, t5) = β max(t1, t2, t3,
t4, t5), then proof follows. �

Corollary 3. Let A, B, S and T be mappings from a metric space (X, d)
into itself satisfying:

(I) A(X)
⋃

B(X) ⊂ S(X)
⋂

T (X),

(II) [1 + αd(Sx, Ty)]d(Ax,By)
≤ α max{d(Sx, Ax)d(Ty, By), d(Sx, By).d(Ty, Ax)},
+ β max{d(Sx, Ty), d(Sx, Ax), d(Ty, By), 1

2 [d(Sx, By)+d(Ty, Ax)]}
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for every x, y ∈ X, where α ≥ 0 and β ∈ (0, 1). If S(X)
⋂

T (X) be a closed
subspace of X, then (i) A, S, B and T have a coincidence point. If A, S
and B, T are weakly compatible maps of type (A), then (ii) A, B, S and T
have a unique common fixed point in X.

Proof. Define ϕ : (R+)5 → R+ by ϕ(t1, t2, t3, t4, t5) = β max(t1, t2, t3,
1
2 [t4 + t5]), then proof follows. �

Corollary 4. Let A, B, S and T be mappings from a metric space (X, d)
into itself satisfying:

(I) A(X)
⋃

B(X) ⊂ S(X)
⋂

T (X),

(II) [1 + αd(Sx, Ty)]d(Ax,By)
≤ α max{d(Sx, Ax)d(Ty, By), d(Sx, By)d(Ty, Ax)},

+ β1[d(Sx, Ty)] + β2[d(Sx, Ax) + d(Ty, By)]
+ β3[d(Sx, By) + d(Ty, Ax)]

for every x, y ∈ X, where α ≥ 0 and β1, β2, β3 ≥ 0 and β1 + 2β2 + 2β3 < 1.
If S(X)

⋂
T (X) be a closed subspace of X, then (i) A, S, B and T have

a coincidence point. If A, S and B, T are weakly compatible maps of type
(A), then (ii) A, B, S and T have a unique common fixed point in X.

Proof. Define ϕ : (R+)5 → R+ by ϕ(t1, t2, t3, t4, t5) = β1t1 + β2(t2 +
t3) + β3(t4 + t5), then proof follows. �

Corollary 5. Let A, B, S and T be mappings from a metric space (X, d)
into itself satisfying:

(I) A(X)
⋃

B(X) ⊂ S(X)
⋂

T (X),

(II) [1 + αd(Sx, Ty)]d(Ax,By)
≤ α max{d(Sx, Ax)d(Ty, By), d(Sx, By)d(Ty, Ax)},
+ f(max{d(Sx, Ty), d(Sx, Ax), d(Ty, By), d(Sx, By), d(Ty, Ax)})

for every x, y ∈ X, where α ≥ 0 and f : R+ → R+ is a function satisfying
(i) f is non-decreasing; (ii) f is upper semi-continuous, and (iii) f(t) < t
for each t > 0. If S(X)

⋂
T (X) be a closed subspace of X, then (i) A, S,

B and T have a coincidence point. If A, S and B, T are weakly compatible
maps of type (A), then (ii) A, B, S and T have a unique common fixed
point in X.

Proof. Define ϕ : (R+)5 → R+ by ϕ(t1, t2, t3, t4, t5) = f max(t1, t2, t3,
1
2 [t4 + t5]), then proof follows. �

If we put α = 0, then we have the following corollary:

Corollary 6. Let A, S and T be mappings from a metric space (X, d)
into itself satisfying:
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(I) A(X) ⊂ S(X)
⋂

T (X),

(II) d(Ax,Ay) ≤ α max{d(Sx, Ax)d(Ty, Ay), d(Sx, Ay)d(Ty, Ax)},
+ ϕ(d(Sx, Ty), d(Sx, Ax), d(Ty, Ay),

d(Sx, Ay), d(Ty, Ax))

for every x, y ∈ X, where ϕ ∈ Ψ. If S(X)
⋂

T (X) be a closed subspace of X,
then (i) A, S and A, T have a coincidence point. Indeed, if A is one-to-one,
then (ii) A, S and T have a coincidence point If A, S and A, T are weakly
compatible maps of type (A), then (iii) A, S and T have a unique common
fixed point in X.

Corollary 7. Let A, B, S and T be mappings from a metric space (X, d)
into itself satisfying:

(I) A(X)
⋃

B(X) ⊂ S(X)
⋂

T (X),

(II) d(Ax,By) ≤ α max{d(Sx, Ax)d(Ty, By), d(Sx, By)d(Ty, Ax)},
+ β(max{d(Sx, Ty), d(Sx, Ax),

d(Ty, By), d(Sx, By), d(Ty, Ax)})
for every x, y ∈ X, where β ∈ (0, 1). If S(X)

⋂
T (X) be a closed subspace

of X, then (i) A, S, B and T have a coincidence point. If A, S and B,
T are weakly compatible maps of type (A), then (ii) A, B, S and T have a
unique common fixed point in X.

Corollary 8. Let A, B, S and T be mappings from a metric space (X, d)
into itself satisfying:

(I) A(X)
⋃

B(X) ⊂ S(X)
⋂

T (X),

(II) d(Ax,By) ≤ α max{d(Sx, Ax)d(Ty, By), d(Sx, By)d(Ty, Ax)},
+ β(max{d(Sx, Ty), d(Sx, Ax), d(Ty, By),

1
2 [d(Sx, By) + d(Ty, Ax)]})

for every x, y ∈ X, where β ∈ (0, 1). If S(X)
⋂

T (X) be a closed subspace
of X, then (i) A, S, B and T have a coincidence point. If A, S and B,
T are weakly compatible maps of type (A), then (ii) A, B, S and T have a
unique common fixed point in X.

Corollary 9. Let A, B, S and T be mappings from a metric space (X, d)
into itself satisfying:

(I) A(X)
⋃

B(X) ⊂ S(X)
⋂

T (X),

(II) d(Ax,By) ≤ α max{d(Sx, Ax)d(Ty, By), d(Sx, By)d(Ty, Ax)},
+ β1[d(Sx, Ty)] + β2[d(Sx, Ax) + d(Ty, By)]
+ β3[d(Sx, By) + d(Ty, Ax)]

for every x, y ∈ X, where α ≥ 0 and β1, β2, β3 ≥ 0 and β1 + 2β2 + 2β3 < 1.
If S(X)

⋂
T (X) be a closed subspace of X, then (i) A, S, B and T have
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a coincidence point. If A, S and B, T are weakly compatible maps of type
(A), then (ii) A, B, S and T have a unique common fixed point in X.

Corollary 10. Let A, B, S and T be mappings from a metric space
(X, d) into itself satisfying:

(I) A(X)
⋃

B(X) ⊂ S(X)
⋂

T (X),

(II) d(Ax,By) ≤ α max{(Sx, Ax)d(Ty, By), d(Sx, By)d(Ty, Ax)},
+ f(max{d(Sx, Ty), d(Sx, Ax), d(Ty, By),

d(Sx, By), d(Ty, Ax)})
for every x, y ∈ X, where α ≥ 0 and f : R+ → R+ is a function satisfying
(i) f is non-decreasing; (ii) f is upper semi-continuous, and (iii) f(t) < t
for each t > 0. If S(X)

⋂
T (X) be a closed subspace of X, then (i) A, S,

B and T have a coincidence point. If A, S and B, T are weakly compatible
maps of type (A), then (ii) A, B, S and T have a unique common fixed
point in X.

Example 1. Let X = [0, 1) and d be the Euclidean metric on X. Define
A, B, S and T as follows:

A(x) =

{
0 if x ∈ [0, 1

2),
x if x ∈ [12 , 1),

and

B(x) =

{
0 if x ∈ [0, 1

2),
x if x ∈ [12 , 1),

S(x) = T (x) = x

Hence A(X)
⋃

B(X) ⊂ S(X)
⋂

T (X). Also, (A,S) and (B, T ) are the
weakly compatible of type (A). It is easy to see that all conditions of The-
orem 2 hold and there exists a x = 0 such that Ax = Bx = Sx = Tx = x.

Example 2. Let X = R and d be the Euclidean metric on X. Define
A, B, S and T as follows:

A(x) =

{
0 if x ≤ 0,

x if x > 0,

and

B(x) =

{
0 if x ≤ 0,

x if x > 0,

S(x) = T (x) = x
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for all x in X and let γ : R+ → R+ be given by

γ(t) < t

and let ϕ : R+ → R+ be given by ϕ(t1, t2, t3, t4, t5) = β max{ti} for some
0 < β < 1, i = 1, 2, 3, 4, 5. Hence A(X)

⋃
B(X) ⊂ S(X)

⋂
T (X). Also,

(A,S) and (B, T ) are the weakly compatible of type (A). It is easy to see
that all conditions of Corollary 3 hold and for x = 0 we have Ax = Bx =
Sx = Tx = x.
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