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ON THE FAST GROWTH OF ANALYTIC FUNCTIONS

BY MEANS OF LAGRANGE POLYNOMIAL

APPROXIMATION AND INTERPOLATION IN CN ∗

Abstract. The present paper is concerned with the fast growth
of analytic functions in the sets of the form {zεCN : φK(z) <
R} (where φK(z) is the Siciak extremal function of a compact
set K) by means of the Lagrange polynomial approximation and
interpolation on K having rapidly increasing maximum modulus.
To study the precise rates of growth of such functions the concept
of index has been used.
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1. Introduction

Let K be a compact set in CN and let ‖‖ denote the supremum norm
on K. For nεN denote by Pn the space of all polynomials from CN to C,
of degree at most n. Throughout the paper we assume that the set K is
L−regular, i.e., the Siciak extremal function of K[20], [21],

φK(z) = sup
{
|p(z)|1/n : pεPn, ‖p‖ ≤ 1, n ≥ 1

}
, zεCN ,

is continuous in CN .
Let f be a function defined and bounded on K and let tn denotes the nth

Chebyshev polynomial of the best approximation to f on K. It is known that
[20], [21] if K is L−regular and lim supn→∞ ‖f−tn‖1/n = 1

R with 1 < R < ∞,
then there exists a function g analytic in KR =

{
zεCN : φK(z) < R

}
such

that g|K = f .
Reddy [14], [15] connected classical order and type with polynomial ap-

proximation error of the (entire) function which is an extension of a con-
tinuous function defined on [−1, 1]. Contemporarly, Rice [16], Massa [11],
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Rizvi and Juneja [18], Nautiyal and Rizvi [12], Rizvi [17], Kapoor and Nau-
tiyal [6] and Winiarski [23] studied these results for different approximation
errors of a continuous function on the arbitrary domains, Shah [19], Kapoor
and Nautiyal [7] and Nautiyal, Rizvi and Kapoor [13] have studied in this
direction for continuous functions on the domain [−1, 1].

They studied the results for (α, β)−orders. Later on, Kasana and Kumar
[8], [9] extended these results to the (p, q)−scale introduced by Juneja et.al
[2], [3]. Jurgen Muller [5] studied accelerated polynomial approximation
problem of finite order entire functions by growth reduction. All these results
have been studied for R = ∞ and N = 1 i.e., in single complex variables.
Kumar [10] and Winiarski [24] obtained various results regarding the entire
function of given growth. It has been noticed that the case R < +∞ in
several complex variables has not been studied so extensively. The aim of
this paper is to study the case R < +∞ in CN . Our results apply satisfacto-
rily for functions of fast growth or simply speaking if maximum modulus is
increasing so rapidly that the order of function is infinite. It is significant to
mention here that our results generalize various results contained in Juneja
and Kapoor[4].

For R > 1 let D(R) = DK(R) denote the set of all functions analytic in
KR and not continuable to any KR′ with R′ > R. Given a function gεD(R),
we put

M(r, g) = sup {|g(z)| : φK(z) = r} , r < R.

For a function gεD(R), set

(1) ρR(q) = lim sup
r→R

log[q] M(r, g)
− log(1− r/R)

where log[0] M(r, g) = M(r, g) and log[q] M(r, g) = log(log[q−1] M(r, g)),
q = 1, 2, · · · . To avoid the trivial cases we shall assume throughout that
M(r, g) →∞ as r → R.

Definition 1. A function gεD(R) is said to have the index−q if ρR(q) <
∞ and ρR(q − 1) = ∞, q = 1, 2, · · · . If q is the index of g(z), then ρR(q) is
called the q−order of g.

Definition 2. A function gεD(R) having q−order ρR(q), ρR (q > 0,
q = 2, 3, · · · ), is said to have q−type σR(q) if

(2) σR(q) = lim sup
r→R

log[q−1] M(r, g)
(1− r/R)−ρR(q)

.

(For the definition of index-q etc. see[4]).
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Remark 1. Definition 1 is the generalization of the Beuermann definition
of the order of an analytic function in the unit disc [1] (compare [22]).

2. Auxilliary results

Let K be a fixed compact, L−regular set in CN and let (pn)nεN be a
sequence of polynomials such that

(i) pnεPn, nεN

(ii)
∞∑

n=0
pnεD(R) with 1 < R < +∞,

(iii) for every positive r < R the set {‖pn‖rn : nεN} is bounded.

Set

M∗(r = max {‖pn‖rn : nεN} , 1 < r < R,

ρ∗R(q) = lim sup
r→R

log[q] M∗(r)
− log(1− r/R)

;

if ρR(q) = ρR

(
q,

∞∑
n=0

pn

)
is positive, we put

σ∗R(q) = lim sup
r→R

log[q−1] M∗(r)
(1− r/R)−ρR(q)

.

Now we shall prove some auxiliary results which will be used in the sequel.

Lemma 1. Under the assumptions of section 2
(i) ρR(q) ≤ ρ∗R(q),

(ii) if ρR(q)ε(0,+∞), then σR(q) ≤ σ∗R(q),

where ρR(q) and σR(q) are the q−order and q−type of the function
∞∑

n=0
pn

respectively.

Proof. We have

M(r) ≤
∞∑

n=0

sup{|pn(z)|} : zεKr.

Using the property of [20] we get

|pn(z)| ≤ ‖pn‖rn, zεKr, nεN.

M(r) ≤
∞∑

n=0

‖pn‖rn.
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Let us write r = rδR1−δ(r/R)1−δ in above, we obtain

qM(r) ≤
∞∑

n=0

M∗(rδR1−δ)(r/R)(1−δ)n

or

M(r) ≤ M∗(rδR1−δ)
1− (r/R)1−δ

.

For every δ < 1, we get

(3) log+ log+ M(r) ≤ log+

[
log+ M∗(rδR1−δ) + log

1
1− (r/R)1−δ

]
,

where log+ x = max(log x, 0), 0 ≤ x ≤ ∞. Here we shall assume that
M∗(rδR1−δ) → +∞ as r → R because if the function r → M∗(rδR1−δ) is
bounded, then ρR(q) = ρ∗R(q) = 0. Then for r sufficiently close to R, (3)
gives after a simple calculation

log[q] M(r)
− log(1− r/R)

≤ log[q] M∗(rδR1−δ)
− log(1− r/R)

(1 + 0(1))

and
log[q−1] M(r)

(1− r/R)−ρR(q)
≤ log[q−1] M∗(rδR1−δ)

(1− r/R)−ρR(q)
(1 + 0(1)).

Proceeding to the upper limits in above inequalities the proof of (i) and
(ii) completed. �

Remark 2. If the set K is balanced and (pn)nεN is a sequence of homo-
geneous polynomials, then using the Cauchy inequalities M∗(r) ≤ M(r), it
gives ρ∗R(q) ≤ ρR(q) and σ∗R(q) ≤ σR(q) provided 0 < ρR(q) < +∞.

Lemma 2. Let (pn)nεN be a sequence of polynomials such that pnεPn for
nεN . If

∑∞
n=0 pnεD(R) and if there exist positive constants β, n0 and α > 1

such that

‖pn‖ ≤ R−n exp

[
βn

(log[q−2] n)1/α

]
, n ≥ n0,

then
(i) ρR(q) ≤ α−A(q),
(ii) if ρR(q) = α−A(q), then σR(q) ≤ βρR(q)+A(q)/BR(q),

where

A(q) =
{

1 if q = 2
0 otherwise

(4)

BR(q) =

{
(ρR(q)+1)ρR(q)+1

(ρR(q))ρR(q) if q = 2

1 otherwise
.
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Proof. We have

(5) ‖pn‖rn ≤ (r/R)n exp

 βn(
log[q−2] n

)1/α

 , n ≥ n0, r < R.

First we consider the case for q = 2,

‖pn‖rn ≤ (r/R)n exp
{

βn(1−1/α)
}

.

Let A∗ = (r/R)x exp
{
βx(1−1/α)

}
, 0 < x < +∞. The suprimum of A∗ is

attained at x = βα(α−1)α

αα
1

(log R/r)α and we obtain

‖pn‖rn ≤ sup
{

(r/R)x exp
{

βx(1−1/α)
}

(6)

= exp
[
βα(α− 1)α−1

αα
(log R/r)1−α

]
, n ≥ n0, r < R.

It can be seen that for every r < R there exists a positive integer ν(r)
such that

M∗(r) = ‖pν(r)‖rν(r)

and
M∗(r) > ‖pn‖rn, n > ν(r).

If ν(r) is bounded for r < R then M∗(r) also is bounded, hence ρ∗R(q) = 0
and consequently ρR(q) = 0. So we may take ν(r) ≥ n0 for r sufficiently
close to R. Putting n = ν(r) in (6) we get

M∗(r) ≤ exp
[
βα(α− 1)α−1

αα
(log R/r)1−α

]
, r0 < r < R,

or

log+ log+ M∗(r)
− log(1− r/R)

≤
log
[

βα(α−1)α−1

αα

]
− log(1− r/R)

+ (α− 1)
log log R/r

log(1− r/R)

and

log+ M∗(r)
(1− r/R)−ρR(2)

≤ βρR(2̇)+1 (ρR(2))ρ2(2)

(ρR(2) + 1)ρR(2)+1

(log R/r)−ρR(2)

(1− r/R)−ρR(2)

provided ρR(2) = α−1. Proceeding to limits as r → R and using the Lemma
1 we obtain the inequalities (i) and (ii) for q = 2.
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Now for q = 3, 4, · · · . The suprimum of right hand side of (5) is attained
at

n = x = exp[q−2]

βα
(
1− x

log[q−2] x
Qq

i=3 log[q−i] x

)α

(log R/r)α

 ,

and we get

log+ M∗(r) ≤ exp[q−2]

[
βα

(log R/r)α

(
1− n

log[q−2] n
∏q

i=3 log[q−i] n

)α]
log(R/r)

×

 1
1− n

log[q−2] n
Qq

i=3 log[q−i] n

− 1


or

log[q] M∗(r) ≤ log βα

(
1− n

log[q−2] n
∏q

i=3 log[q−i] n

)α

+ log(log R/r)−α + 0(1)

or
log[q] M∗(r)

− log(1− r/R)
≤ α log log(R/r)
− log(1− r/R)

+ 0(1).

Proceeding to limits as r → R and using the Lemma 1, we get

ρR(q) ≤ α.

Similarly, we can obtain easily from above inequality that

σR(q) ≤ βρR(q)α.

Hence the proof is completed. �

Let K be a compact, L−regular set in CN . Given a function f defined
and bounded on K we put for nεN [19]

E(1)
n = E(1)

n (f,K) = ‖f − tn‖,
E(2)

n = E(2)
n (f,K) = ‖f − ln‖,

E
(3)
n+1 = E

(3)
n+1(f,K) = ‖ln+1 − ln‖,

where tn denotes the nth chebysev polynomial of the best approximation to
f on K and ln denotes the nth Lagrange interpolation polynomial for f with
nodes at extremal points of K.

We have the following inequalities [23, Lemma 3.3]

(7) E(1)
n ≤ E(2)

n ≤ (n∗ + 2)E(1)
n ,
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(8) E(3)
n ≤ 2(n∗ + 2)E(1)

n−1, n ≥ 1,

where n∗ =
(

n + N
n

)
.

Theorem A [20]. The function f is the restriction to K of a function
from D(R) if and only if

lim sup
n→∞

(
E(s)

n

)1/n
=

1
R

, s = 1, 2 or 3.

Lemma 3. Let K be a compact, L−regular, balanced set in CN . Then
for every gεD(R)

(9) E(1)
n (g|K ,K) ≤ M(r, g)

rn(r − 1)
, 1 < r < R, n ∈ N.

Proof. The proof of this lemma follows immediately from a result of
Siciak [20, p. 344, inequality (7)] and from the Cauchy inequality. �

3. Main results

Theorem 1. f is the restriction to K of a function gεD(R) having the
index−q and q−order ρR(q)(0 < ρR(q) < ∞) if and only if

(10) ρR(q) + A(q) = lim sup
n→∞

log[q−1] n

log n− log+ log+
(
E

(s)
n Rn

) = γs(q),

q = 2, 3, · · · , s = 1, 2, 3.

Proof. By inequalities (7) and (8), γ3(q) ≤ γ2(q) = γ1(q), so it is
sufficient to show that γ1(q) ≤ ρR(q) + A(q) ≤ γ3(q).

1. γ1(q) ≤ ρR(q) + A(q). From (1) and Lemma 3 for µ(q) > ρR(q) there
exists rµ(q) > 1 such that

log+
(
E(1)

n Rn
)
≤ exp[q−2](1− r/R)−µ(q)(11)

+ log(R/rµ)n + log
1

rµ − 1
, rµ(q) < r < R, n ∈ N.

Substituting

(12) r = R

[
1−

(
log[q−2] µ(q)

n

) 1
µ(q)+A(q)

]
,
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we get for q = 2.

log+
(
E(1)

n Rn
)
≤
(

n

µ(2)

) µ(2)
µ(2)+1

− n log

[
1−

(
µ(2)
n

) 1
µ(2)+1

]
− log(rµ(2) − 1), n ≥ n(µ(2)).

For every ε > 0 and sufficiently large n

− log

[
1−

(
µ(2)
n

) 1
µ(2)+1

]
≤ (1 + ε)

(
µ(2)
n

) 1
µ(2)+1

− log(rµ(2) − 1) ≤ ε(µ(2))
1

µ(2)+1 n
µ(2)

µ(2)+1 .

Hence

log+ log+
(
E

(1)
n Rn

)
log n

≤
log
[
µ(2)−

µ(2)
µ(2)+1 + (1 + 2ε)µ(2)

1
µ(2)+1

]
log n

+
µ(2)

µ(2) + 1
.

Proceeding the limit as n →∞ we get

γ1(2)− 1
γ1(2)

≤ µ(2)
µ(2) + 1

.

Since ρR(2) < µ(2) is arbitrary, it gives

γ1(2)− 1
γ1(2)

≤ ρR(2)
ρR(2) + 1

.

or
γ1(2) ≤ ρR(2) + 1.

For q = 3, 4, · · · , (11) and (12) together give for n ≥ n(µ(q))

log+(E(1)
n Rn) < exp[q−2]

(
log[q−2]

(
n

µ(q)

))
[1 + 0(1)].

After a simple calculation, we get

µ(q) ≥ lim sup
n→∞

log[q−1] n

log n− log+ log+(E(1)
n Rn)

= γ1(q).

By the arbitrariness of µ(q) > ρR(q), we obtain γ1(q) ≤ ρR(q).

2. ρR(q)+A(q) ≤ γ3(q). We shall prove this inequality by contradiction.
Suppose that ρR(q) + A(q) > γ3(q) then there exists ρR(q) + A(q) > α(q)
such that α(q) > γ3(q), so

log[q−1] n

log n− log+ log+(E(3)
n Rn)

≤ α(q)
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for sufficiently large n. Thus

(13) log+(E(3)
n Rn) ≤ n

(log[q−2] n)1/α(q)
.

Using Lemma 2 for polynomials pn = ln − ln−1, n ≥ 1, p0 = l0, we get

ρR(q) + A(q) ≤ α(q).

Since α(q) > γ3(q) is arbitrary it follows that ρR(q) + A(q) ≤ γ3(q). Hence
we get a contradiction. Hence the proof of the theorem is completed. �

Remark 3. For q = 2 and N = 1 the above Theorem 1 gives a theorem
of Juneja and Kapoor ([4], Thm. 4.5.5, pp. 238) as a particular case. It has
been noticed that if any two functions fεD(R) have the same q−order then
the above theorem does not give a precise information about their compar-
ative rates of growth. For this purpose we have the following theorem.

Theorem 2. If a function gεD(R) has a positive finite q−order ρR(q)
and a finite q−type σR(q), then

λs(q) = lim sup
n→∞

(log[q−2] n)

(
log+(E(s)

n Rn)
n

)ρR(q)+A(q)

= σR(q)βR(q).

Proof. By inequalities (7) and (8), λ3(q) ≤ λ2(q) = λ1(q), so it suffices to
show that λ1(q) ≤ BR(q)σR(q) ≤ λ3(q) for q = 2 and λ1(q) ≤ σR(q) ≤ λ3(q)
for q = 3, 4, · · · .

By Definition 2, for every w(q) > σR(q) there exists rw(q) > 1 such that

M(r) ≤ exp[q−1]
[
w(q)(1− r/R)−ρR(q)

]
, rε(rw(q), R).

Using Lemma 3, we get

(14) E(1)
n Rn ≤

(
R

r

)n

exp[q−1]
[
w(q)(1− r/R)−ρR(q)

] 1
rw(q) − 1

, n ∈ N.

For q = 2, let r be given by

r = R

[
1−

(
ρR(2)w(2)

n

)1/ρR(2)+1
]

then (14) gives for n > n(w(2)) that

log+(E(1)
n Rn) ≤ w(2)(w(2)ρR(2))−

ρR(2)

ρR(2)+1 n
ρR(2)

ρR(2)+1

− n log

[
1−

(
w(2)ρR(2)

n

) 1
ρR(2)+1

]
+ log

1
rw(2)−1

.
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For every ε > 0 and sufficiently large value of n, we get

log+(E(1)
n Rn) ≤ w(2)(w(2)ρR(2))−

ρR(2)

ρR(2)+1 n
ρR(2)

ρR(2)+1

+ n(1 + ε)
(

w(2)ρR(2)
n

) 1
ρR(2)+1

+ ε(w(2)ρR(2))
1

ρR(2)+1 n
ρR(2)

ρR(2)+1 .

Proceeding n →∞, ε → 0 and w(2) → σR(2) we get

lim sup
n→∞

(n)

(
log+(E(1)

n Rn)
n

)ρR(2)+1

≤ (1 + ρR(2))1+ρR(2)

(ρR(2))ρR(2)
σR(2)

or
λ1(2) ≤ BR(2)σR(2).

For q = 3, 4, · · · . Choosing r such that

r = R

1−

(
w(q)

log[q−2](n/ρR(q))

)1/ρR(q)
 .

Substituting r in (14), we obtain

log+(E(1)
n Rn) ≤ −n log

1−

(
w(q)

log[q−2](n/ρR(q))

)1/ρR(q)


+
n

ρR(2)
+ log

1
rw(q) − 1

≤ n(1 + ε)

(
w(q)

log[q−2](n/ρR(q))

)ρR(q)

+
n

ρR(q)
+ ε(w(q)ρR(q))

1
ρR(q) n.

or

log[q−2] n(1+0(1))

(
log+(E(1)

n Rn)
n

)ρR(q)

≤ w(q)(1 + 0(1)).

Proceeding to limits as n →∞, ε → 0 and w(q) → σR(q) we get

λ1(q) ≤ σR(q).

Now we have to prove that BR(q)σR(q) ≤ λ3(q) for q = 2 and σR(q) ≤
λ3(q) for q = 3, 4, · · · .
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Suppose that λ3(q) < BR(q)σR(q) for q = 2. Then there exists TR(2) <
σR(2) such that λ3(2) < BR(2)TR(2), so

n

(
log+(E(3)

n Rn)
n

)ρR(2)+1

≤ BR(2)TR(2), for sufficiently large n.

Thus

E(3)
n ≤ R−n exp

{
(BR(2)TR(2))1/ρR(2)+1.n

ρR(2)

ρR(2)+1

}
.

By Lemma 2, σR(2) ≤ BR(2)TR(2) which is a contradiction. Hence

BR(2)σR(2) ≤ λ3(2).

For q = 3, 4, · · · , suppose that λ3(q) < σR(q). Then there exists TR(q) <
σR(q) such that λ3(q) < TR(q), so

(log[q−2] n)

(
log+(E(3)

n Rn)
n

)ρR(q)

≤ TR(q)

provided n is sufficiently large. Thus

E(3)
n ≤ R−n exp

{
n

(
TR(q)

log[q−2] n

)1/ρR(q)
}

.

Therefore by Lemma 2, TR(q) ≥ σR(q) and we et a contradiction, because
TR(q) has been chosen less than σR(q). Hence σR(q) ≤ λ3(q).

Hence the proof is completed. �

Remark 4. For q = 2 and N = 1 the Theorem 2 gives a Theorem 4.5.6.
of Juneja and Kapoor ([4], pp. 238) as a particular case.

4. Convergence of sequence of errors

Now we shall show how the speed of convergence to 0 of the sequence
(E(s)

n (f,K))nεN estimates the set on which the function f can be extended
analytically and determines the growth of this extension.

Theorem 3. Given a function f , defined and bounded on K, set

α∗(q) = lim sup
n→∞

log[q−1] n

log n− log+ log+(E(1)
n Rn)

.

If α∗(q)ε(0,∞), then the function f̃ = l0 +
∑∞

n=1(ln − ln−1) belongs to
D(R), f̃ |K = f and f̃ has the q−order ρR(q) = α∗(q)−A(q).
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Proof. For every µ∗(q)ε(α∗(q),∞)

log[q−1] n

log n− log+ log+(E(1)
n Rn)

≤ µ∗(q)

provided n is sufficiently large. Hence

(15) E(1)
n Rn ≤ exp

{
n

(log[q−2] n)1/µ∗(q)

}
or

lim sup
n→∞

(E(1)
n Rn)1/n ≤ 1.

Since α∗(q) > 0, the sequence (E(1)
n Rn)nεN is unbounded, which gives

that
lim sup

n→∞
(E(1)

n Rn)1/n ≥ 1.

Thus
lim sup

n→∞
(E(1)

n )1/n =
1
R

.

Hence in view of Theorem A, f̃ εD(R). Moreover inequalities (15), (7)
and (8) give

‖ln − ln−1‖ ≤ R−n exp

{
2n

(log[q−2] n)
1

µ∗(q)

}
.

Thus by Lemma 2 and Theorem 1 we get ρR(q) = α∗(q)−A(q). �

Theorem 4. Let f be a function defined and bounded on K. If for some
positive and finite q−order ρR(q)

β(q) = lim sup
n→∞

(log[q−2] n)
1

ρR(q)+A(q)

(
log( E

(1)
n Rn)
n

)

is finite, then the function f̃ = l0 +
∑∞

n=1(ln− ln−1) belongs to D(R), f̃ |K =
f, ρR(q) is the q−order of f̃ and

σR(q) =
(β(q))ρR(q)+A(q)

BR(q)

is the q−type of f̃ .
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Proof. Following on the lines of Theorem 2 one may easily prove that
f̃ εDR. In order to estimate the growth of f̃ take any ι̂(q) > β(q). Then

(log[q−2] n)
1

ρR(q)+A(q)

(
log+(E(1)

n Rn)
n

)
≤ ι̂(q), n > n(ι̂(q))

or

E(1)
n ≤ R−n exp

{
ι̂(q)n

(log[q−2] n)
1

ρR(q)+A(q)

}
.

Using Inequalities (7) and (8) we get

‖ln − ln−1‖ ≤ R−n exp

{
2ι̂(q)n

(log[q−2] n)
1

ρR(q)+A(q)

}

for n sufficiently large. Hence by Lemma 2, ρ̃R(q) the q−order of f̃ , satisfies
ρ̃R(q) ≤ ρR(q). Suppose that ρ̃R(q) < ρR(q). Then, in view of Theorem 1
for every ρ∗R(q)ε(ρ̃R(q), ρR(q))

ρ∗R(q) + A(q) ≥ log[q−1] n

log n− log+ log+(E(1)
n Rn)

, n > n′(ρ∗R(q)).

Thus

lim sup
n→∞

(log[q−2] n)
1

ρ∗
R

(q)+A(q)

(
log+(E(1)

n Rn)
n

)
≤ 1.

or

lim sup
n→∞

(log[q−2] n)
1

ρ∗
R

(q)+A(q)

(
log+(E(1)

n Rn)
n

)

= lim sup
n→∞

(log[q−2] n)
1

ρ∗
R

(q)+A(q)

(
log+(E(1)

n Rn)
n

)

× n(log[q−2] n)−
1

ρR(q)+A(q)
(log[q−2] n)

1
ρ∗
R

(q)+A(q)

n
= ∞.

Which is a contradiction, whence ρ̃R(q) = ρR(q). Moreover, by Lemma 2
and Theorem 2

σR(q) =
(β(q))ρR(q)+A(q)

BR(q)
.

Hence the proof is completed. �

Remark 5. In view of inequalities (7) and (8), one may replace E
(1)
n by

E
(2)
n or E

(3)
n in Theorems 3 and 4.
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