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1. Introduction

The theory of partial differential equations is an important source to
give rise to integral equations (see [1, 3-8, 13-16]). For instance, the partial
differential equation of the form

(1) utt (x, t)− auxxt (x, t) = F (x, t, u (x, t)) , x ∈ [0, L] , t ∈ [0, T ] ,

with the initial conditions

(2) u (x, 0) = φ (x) , ut (x, 0) = ψ (x) , x ∈ [0, L] ,

and boundary conditions

(3) u (0, t) = u (L, T ) = 0, t ∈ [0, T ] ,

can be reduced to an integral equation of the form

(4) u (x, t) = f (x, t) +

t∫
0

s∫
0

L∫
0

G (x, y, s− τ)F (y, τ, u (y, τ)) dydτds,

if appropriate conditions are satisfied by the functions involved in (1)-(3),
where G(x, y, t) is the Green’s function for the heat equation wt (x, t) =
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awxx (x, t), with zero Dirichlet boundary data, a is a positive constant and
L > 0, T > 0 are finite but can be arbitrarly large constants. For more
details, see [1,13]. Indeed, in the study of certain basic results, the equation
(4) can be dealt with in a more satisfactory manner than dealing directly
with the equations (1)-(3).

In this paper we consider the more general integral equation of the form

(5) u (x, t) = f (x, t) +

t∫
0

s∫
0

L∫
0

K (x, t, s, y, τ, u (y, τ)) dydτds,

where f , K are given functions and u is the unknown function to be found.
Let J = [0, L] , I = [0, T ], R+ = [0,∞), D = J × I; J , I, R+ are the given
subsets of R, the set of real numbers and denote by C(A,B) the class of con-
tinuous functions from the set A to the set B. We assume that f ∈ C (D,R),
K ∈ C (D × I ×D ×R,R). The main objective of the present paper is to
study the existence, uniqueness and other properties of solutions of equa-
tion (5) under various assumptions on the functions involved in equation
(5). The Banach fixed point theorem and a new integral inequality with
explicit estimate to be established here are used to obtain the results.

2. Existence and uniqueness

Let S be a space of those functions φ ∈ C (D,R) which fulfill the condition

(6) |φ (x, t)| = O (exp (µ (x+ t))) , (x, t) ∈ D,

where µ > 0 is a constant. In the space S, we define the norm (See [2])

(7) |φ|S = sup
(x,t)∈D

[ |φ (x, t)| exp (−µ (x+ t))] .

It is easily seen that S with norm defined in (7) is a Banach space. We note
that the condition (6) implies that there exists a constant M ≥ 0 such that
|φ (x, t)| ≤M exp (µ (x+ t)) , (x, t) ∈ D. Using this fact in (7) we observe
that

(8) |φ|S ≤M.

We assume that the kernel of problem (4) satisfies (6)-(7).
Now we are in a position to formulate the main result in this section.

Theorem 1. Suppose that

(i) the function K in equation (5) satisfies the condition

(9) |K (x, t, s, y, τ, u)−K (x, t, s, y, τ, v)| ≤ h (x, t, s, y, τ) |u− v| ,
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where h ∈ C (D × I ×D,R+),

(ii) for µ as in (6),
(a1) there exists a nonnegative constant α < 1 such that

(10)

t∫
0

s∫
0

L∫
0

h (x, t, s, y, τ) exp (µ (y + τ)) dydτds ≤ α exp (µ (x+ t)) ,

(a2) there exists a nonnegative constant β such that

(11) |f (x, t)|+
t∫

0

s∫
0

L∫
0

|K (x, t, s, y, τ, 0)|dydτds ≤ β exp (µ (x+ t)) ,

where f , K are as defined in equation (5). Then the equation (5) has a
unique solution u(x, t) in S on D.

Proof. Let u ∈ S and define the operator F by

(12) (Fu) (x, t) = f (x, t) +

t∫
0

s∫
0

L∫
0

K (x, t, s, y, τ, u (y, τ))dydτds.

Now we shall show that Fu maps S into itself. Evidently Fu is continuous
on D and Fu ∈ R. We verify that (6) is fulfilled. From (12) and using the
hypotheses, we have

|(Fu) (x, t)| ≤ |f (x, t)|+
t∫

0

s∫
0

L∫
0

|K (x, t, s, y, τ, u (y, τ))(13)

−K (x, t, s, y, τ, 0)| dydτds+

t∫
0

s∫
0

L∫
0

|K (x, t, s, y, τ, 0)|dydτds

≤ β exp (µ (x+ t)) +

t∫
0

s∫
0

L∫
0

h (x, t, s, y, τ) |u (y, τ)|dydτds

≤ β exp (µ (x+ t)) + |u|S

t∫
0

s∫
0

L∫
0

h (x, t, s, y, τ) exp (µ (y + τ))dydτds

≤ β exp (µ (x+ t)) + |u|S α exp (µ (x+ t))
≤ [β +Mα] exp (µ (x+ t)) .

From (13), it follows that Fu ∈ S. This proves that F maps S into itself.
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Next we verify that the operator F is a contraction map. Let u, v ∈ S.
From (12) and using the hypotheses, we have

|(Fu) (x, t)− (Fv) (x, t)|

≤
t∫

0

s∫
0

L∫
0

|K (x, t, s, y, τ, u (y, τ))−K (x, t, s, y, τ, v (y, τ))| dydτds

≤
t∫

0

s∫
0

L∫
0

h (x, t, s, y, τ) |u (y, τ)− v (y, τ)| dydτds

≤ |u− v|S

t∫
0

s∫
0

L∫
0

h (x, t, s, y, τ) exp (µ (y + τ)) dydτds

≤ |u− v|S α exp (µ (x+ t)) .

Consequently, we have

|Fu− Fv|S ≤ α |u− v|S .

Since α < 1, it follows from Banach fixed point theorem (see [3, p. 37]) that
F has a unique fixed point in S. The fixed point of F is however a solution
of equation (5) in S. The proof is complete. �

Remark 1. We note that the norm defined by (7) is a variant of Bielecki’s
norm [2], first used in 1956 for the study of ordinary differential equations.
For the study of handling directly with the equations of the forms (1)-(3)
by using different techniques, see [1, 4-8, 13-16].

3. Properties of solutions

First we establish the following new integral inequality which is useful to
study various properties of solutions of equation (5). For detailed account
on such inequalities, see [9-11].

Lemma 1. Let u, p, q, g ∈ C (D,R+). If

(14) u (x, t) ≤ p (x, t) + q (x, t)

t∫
0

s∫
0

L∫
0

g (y, τ)u (y, τ) dydτds,
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for (x, t) ∈ D, then

u (x, t) ≤ p (x, t) + q (x, t)

 t∫
0

s∫
0

L∫
0

g (y, τ) p (y, τ) dydτds

(15)

× exp

 t∫
0

s∫
0

L∫
0

g (y, τ) q (y, τ) dydτds

 ,

for (x, t) ∈ D.

Proof. Introducing the notation

(16) e (τ) =

L∫
0

g (y, τ)u (y, τ) dy,

in (14), we get

(17) u (x, t) ≤ p (x, t) + q (x, t)

t∫
0

s∫
0

e (τ) dτds,

for (x, t) ∈ D. Define

(18) z (t) =

t∫
0

s∫
0

e (τ) dτds,

for t ∈ I, then, it is easy to see that z(0) = 0, z′(0) = 0 and

(19) u (x, t) ≤ p (x, t) + q (x, t) z (t) .

From (18), (16), (19), we observe that

z′′ (t) = e (t) =

L∫
0

g (y, t)u (y, t) dy(20)

≤
L∫

0

g (y, t) [p (y, t) + q (y, t) z (t)] dy

=

L∫
0

g (y, t) p (y, t) dy + z (t)

L∫
0

g (y, t) q (y, t) dy.
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From (20) and the fact that z(t) is nondecreasing for t ∈ I, it is easy to see
that

z (t) ≤
t∫

0

s∫
0

L∫
0

g (y, τ) p (y, τ) dydτds(21)

+

t∫
0

z (s)


s∫

0

L∫
0

g (y, τ) q (y, τ) dydτ

 ds.

Clearly, the first integral on the right hand side in (21) is nonnegative and
nondecreasing in t ∈ I. Now a suitable application of the inequality in
Theorem 1.3.1 given in [9] to (21) yields

z (t) ≤

 t∫
0

s∫
0

L∫
0

g (y, τ) p (y, τ) dydτds

(22)

× exp

 t∫
0

s∫
0

L∫
0

g (y, τ) q (y, τ) dydτds

 ,

for t ∈ I. Using (22) in (19), we get the required inequality in (15). �

The following theorem is true concerning the uniqueness of solution of
equation (5) on D.

Theorem 2. Suppose that the function K in equation (5) satisfies the
condition

(23) |K (x, t, s, y, τ, u)−K (x, t, s, y, τ, v)| ≤ q (x, t) g (y, τ) |u− v| ,

where q, g ∈ C (D,R+). Then the equation (5) has at most one solution
on D.

Proof. Let u(x, t) and v(x, t) be two solutions of equation (5) on D.
Using these facts and hypotheses, we have

|u (x, t)− v (x, t)|(24)

≤
t∫

0

s∫
0

L∫
0

|K (x, t, s, y, τ, u (y, τ))−K (x, t, s, y, τ, v (y, τ))|dydτds

≤ q (x, t)

t∫
0

s∫
0

L∫
0

g (y, τ) |u (y, τ)− v (y, τ)|dydτds.
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Now a suitable application of Lemma 1 (when p(x, t) = 0) to (24) yields
|u (x, t)− v (x, t)| ≤ 0, which implies u (x, t) = v (x, t). Thus there is at
most one solution to equation (5) on D. �

The next theorem deals with the estimate on the solution of equation (5).

Theorem 3. Suppose that the function K in equation (5) satisfies the
condition

(25) |K (x, t, s, y, τ, u)| ≤ q (x, t) g (y, τ) |u| ,

where q, g ∈ C (D,R+). If u(x, t) is any solution of equation (5) on D, then

|u (x, t)| ≤ |f (x, t)|+ q (x, t)

 t∫
0

s∫
0

L∫
0

g (y, τ) |f (y, τ)| dydτds

(26)

× exp

 t∫
0

s∫
0

L∫
0

g (y, τ) q (y, τ) dydτds

 ,

for (x, t) ∈ D.

Proof. Using the fact that u(x, t) is a solution of equation (5) and
hypotheses, we have

|u (x, t)| ≤ |f (x, t)|+
t∫

0

s∫
0

L∫
0

|K (x, t, s, y, τ, u (y, τ))| dydτds(27)

≤ |f (x, t)|+ q (x, t)

t∫
0

s∫
0

L∫
0

g (y, τ) |u (y, τ)| dydτds.

Now an application of Lemma 1 to (27) yields (26). �

The following theorem deals with a slight variant of Theorem 3, assuming
that the function K in equation (5) satisfies the Lipschitz type condition.

Theorem 4. Suppose that the function K in equation (5) satisfies the
condition (23). If u(x, t) is any solution of equation (5) on D, then

|u (x, t)− f (x, t)| ≤ Q (x, t) + q (x, t)

 t∫
0

s∫
0

L∫
0

g (y, τ)Q (y, τ) dydτds

(28)

× exp

 t∫
0

s∫
0

L∫
0

g (y, τ) q (y, τ) dydτds

 ,



122 Babuaro G. Pachpatte

for (x, t) ∈ D, where

(29) Q (x, t) =

t∫
0

s∫
0

L∫
0

|K (x, t, s, y, τ, f (y, τ))| dydτds,

for (x, t) ∈ D.

Proof. From the fact that u(x, t) is a solution of equation (5) and the
condition (23), we have

|u (x, t)− f (x, t)| ≤
t∫

0

s∫
0

L∫
0

|K (x, t, s, y, τ, u (y, τ))(30)

− K (x, t, s, y, τ, f (y, τ))| dydτds

+

t∫
0

s∫
0

L∫
0

|K (x, t, s, y, τ, f (y, τ))| dydτds

≤ Q (x, t) + q (x, t)

t∫
0

s∫
0

L∫
0

g (y, τ) |u (y, τ)− f (y, τ)| dydτds,

for (x, t) ∈ D. Now an application of Lemma 1 to (30) gives the required
estimate in (28).

We next consider the equation (5) and the following integral equation

(31) w (x, t) = f̄ (x, t) +

t∫
0

s∫
0

L∫
0

K̄ (x, t, s, y, τ, w (y, τ)) dydτds,

where f̄ ∈ C (D,R), K̄ ∈ C (D × I ×D ×R,R). �

The following theorem holds.

Theorem 5. Suppose that the function K in equation (5) satisfies the
condition (23). Then for every given solution w ∈ C (D,R) of equation (31)
and every solution u ∈ C (D,R) of equation (5), we have the estimation

|u (x, t)− w (x, t)| ≤ h (x, t) + q (x, t)

 t∫
0

s∫
0

L∫
0

g (y, τ)h (y, τ) dydτds

(32)

× exp

 t∫
0

s∫
0

L∫
0

g (y, τ) q (y, τ) dydτds

 ,
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for (x, t) ∈ D, in which

h (x, t) =
∣∣f (x, t)− f̄ (x, t)

∣∣+ t∫
0

s∫
0

L∫
0

|K (x, t, s, z, σ, w (z, σ))(33)

− K̄ (x, t, s, z, σ, w (z, σ))
∣∣ dzdσds,

for (x, t) ∈ D.

Proof. Using the facts that u(x, t) and w(x, t) are respectively the solu-
tions of equations (5) and (31) and hypotheses, we have

|u (x, t)− w (x, t)| ≤
∣∣f (x, t)− f̄ (x, t)

∣∣+ t∫
0

s∫
0

L∫
0

|K (x, t, s, y, τ, u (y, τ))(34)

− K̄ (x, t, s, y, τ, w (y, τ))
∣∣ dydτds

≤
∣∣f (x, t)− f̄ (x, t)

∣∣+ t∫
0

s∫
0

L∫
0

|K (x, t, s, y, τ, u (y, τ))

− K (x, t, s, y, τ, w (y, τ))| dydτds

+

t∫
0

s∫
0

L∫
0

∣∣K (x, t, s, y, τ, w (y, τ))− K̄ (x, t, s, y, τ, w (y, τ))
∣∣ dydτds

≤ h (x, t) + q (x, t)

t∫
0

s∫
0

L∫
0

g (y, τ) |u (y, τ)− w (y, τ)| dydτds.

Now an application of Lemma 1 to (34) yields (32). �

Remark 2. We note that, one can use the inequality in Lemma 1 to
establish the results on continuous dependence of solutions of equations of
the form (5) by closely looking at the results given in [12]. The generality
of the equation (5), allow us to include the study of equations (1)-(3). We
hope that our approach and results given here will serve as a model for future
investigations.

4. Discrete analogues

LetN denote the set of natural numbers,Mα,β = {α, α+ 1, ..., α+ n = β}
and Na,b = {a, a+ 1, ..., a+ n = b}; α, a ∈ N0, n ∈ N . Let H = Mα,β ×Na,b

and denote by E(A,B) the class of discrete functions from the set A to
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the set B. We use the usual conventions that empty sums and products
are taken to be 0 and 1 respectively. The sum-difference equation which
constitutes the discrete analogue of equation (5) can be written as

(35) v (x,m) = f (x,m) +
m−1∑
s=0

s−1∑
τ=0

β∑
y=α

k (x,m, s, y, τ, v (y, τ)) ,

for x ∈Mα,β, m ∈ Na,b, where f , k are given functions and v is the unknown
function to be found. We assume that f ∈ E (H,R), k ∈ E (H ×Na,b ×H
×R,R). In this section, we formulate in brief the discrete analogues of
Lemma 1 and Theorems 2 and 3 only. One can formulate results similar to
those in Theorems 1, 4 and 5 for the solutions of equation (35).

Lemma 2. Let v, p, q, g ∈ E (H,R+). If

(36) v (x,m) ≤ p (x,m) + q (x,m)
m−1∑
s=0

s−1∑
τ=0

β∑
y=α

g (y, τ) v (y, τ) ,

for (x,m) ∈ H, then

v (x,m) ≤ p (x,m) + q (x,m)

(
m−1∑
s=0

s−1∑
τ=0

β∑
y=α

g (y, τ) p (y, τ)

)
(37)

×
m−1∏
s=0

[
1 +

s−1∑
τ=0

β∑
y=α

g (y, τ) q (y, τ)

]
,

for (x,m) ∈ H.

Theorem 6. Suppose that the function k in equation (35) satisfies the
condition

(38) |k (x,m, s, y, τ, v)− k (x,m, s, y, τ, w)| ≤ q (x,m) g (y, τ) |v − w| ,

where q, g ∈ E (H,R+). Then the equation (35) has at most one solution
on H.

Theorem 7. Suppose that the function k in equation (35) satisfies the
condition

(39) |k (x,m, s, y, τ, v)| ≤ q (x,m) g (y, τ) |v| ,
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where q, g ∈ E (H,R+). If v(x,m) is any solution of equation (35) on H,
then

|v (x,m)| ≤ |f (x,m)|+ q (x,m)

(
m−1∑
s=0

s−1∑
τ=0

β∑
y=α

g (y, τ) |f (y, τ)|

)
(40)

×
m−1∏
s=0

[
1 +

s−1∑
τ=0

β∑
y=α

g (y, τ) q (y, τ)

]
,

for (x,m) ∈ H.

The proof of Lemma 2 can be completed by following the proof of Lemma 1
given above and closely looking at the similar results given in [10, 11]. The
proofs of Theorems 6 and 7 follows by the similar arguments as in the proofs
of Theorems 2 and 3 given above. We omit the details.
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