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A FIXED POINT RESULT FOR ϕ−CONTRACTIONS

ON b-METRIC SPACES WITHOUT

THE BOUNDEDNESS ASSUMPTION∗

Abstract. Starting from a result in [V. Berinde,Generalized con-
tractions in quasimetric spaces, Seminar on Fixed Point Theory
(Preprint), ”Babeş-Bolyai” University of Cluj-Napoca, 3 (1993),
3-9 ], we prove the existence and uniqueness of the fixed points
for ϕ-contractions on b-metric spaces. We also build a theory of
this fixed point result.
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1. Introduction

In [3] two fixed point theorems for ϕ−contractions on b-metric spaces
are proved. Based on a similar result for Banach contractions on b-metric
spaces included in [1], these theorems require the boundedness of the Picard
iteration in order to guarantee the existence and uniqueness of the fixed
point.

The aim of this paper is to improve one of the above mentioned results
from [3], by giving up the boundedness assumption. In this way we obtain
the generalization of a theorem for ϕ−contractions in metric spaces, included
in [5] as Theorem 1.5.1.

We shall also build o theory of the newly obtained theorem, following the
model described in [10].

2. Preliminaries

We begin by recalling that:

Definition 1 ([1]). A mapping d : X × X → R+ is called b-metric if
there exists a real number b ≥ 1 such that:
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ι) d(x, y) = 0 if and only if x = y;

ιι) d(x, y) = d(y, x), for any x, y ∈ X;

ιιι) d(x, z) ≤ b[d(x, y) + d(y, z)], for any x, y, z ∈ X.
A nonempty set X endowed with a b−metric d : X ×X → R+ is called

b-metric space.

For the theory of b-metric spaces see [6], [1], [7].
As known, a mapping ϕ : R+ → R+ is called a comparison function if it

is increasing and ϕn(t) → 0, n → ∞, for any t ∈ R+ (see for example [8]).
In [8] and [5] several results regarding comparison functions can be found.
Among these we recall:

Lemma 1 ([8],[5]). If ϕ : R+ → R+ is a comparison function, then:

1) each iterate ϕk of ϕ, k ≥ 1, is also a comparison function;

2) ϕ is continuous at zero;

3) ϕ(t) < t, for any t > 0.

For practical reasons, in [5] V. Berinde introduced the concept of (c)-com-
parison function:

Definition 2 ([5]). A function ϕ : R+ → R+ is called a (c)-comparison
function if:

ι) ϕ is increasing;

ιι) there exist k0 ∈ N, a ∈ (0, 1) and a convergent series of nonnegative

terms
∞∑

k=1

vk such that

(1) ϕk+1(t) ≤ aϕk(t) + vk,

for k ≥ k0 and any t ∈ R+.

Regarding this concept we also mention the following result, proved in [5].

Lemma 2 ([5]). If ϕ : R+ → R+ is a (c)−comparison function, then the
following hold:

ι) ϕ is a comparison function;

ιι) the series
∞∑

k=0

ϕk(t) converges for any t ∈ R+;

ιιι) the function s : R+ → R+ defined by

(2) s(t) =
∞∑

k=0

ϕk(t), t ∈ R+,

is increasing and continuous at 0.
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In the following we include the statement of a result proved in [5] as
Theorem 1.5.1:

Theorem 1 ([5]). Let (X, d) be a complete metric space and f : X → X
a ϕ-contraction with ϕ a (c)-comparison function. Then:

1) f is a Picard operator, with Ff = {x∗};
2) the rate of convergence of the Picard iteration is given by:

d(xn, x∗) ≤ s(d(xn, xn+1)), n ≥ 0,

where s is defined by (2) in Lemma 2;

The concept of (c)-comparison function was extended to b-comparison
functions in [4], where the framework was that of a b-metric space.

Definition 3 ([4]). Let b ≥ 1 be a real number. A mapping ϕ : R+ → R+

is called a b-comparison function if:

ι) ϕ is monotone increasing;

ιι) there exist k0 ∈ N, a ∈ (0, 1) and a convergent series of nonnegative

terms
∞∑

k=1

vk such that

(3) bk+1ϕk+1(t) ≤ abkϕk(t) + vk,

for k ≥ k0 and any t ∈ R+.

Remark 1. It is easy to notice that, for b = 1, the concept of b-comparison
function reduces to that of (c)-comparison function.

It has been proved that:

Lemma 3 ([2, 3]). If ϕ : R+ → R+ is a b−comparison function, then:

1) the series
∞∑

k=0

bkϕk(t) converges for any t ∈ R+;

2) the function sb : R+ → R+ defined by

(4) sb(t) =
∞∑

k=0

bkϕk(t), t ∈ R+,

is increasing and continuous at 0.

Using Lemma 3 it is easy to prove that:

Lemma 4. Any b-comparison function is a comparison function.
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Proof. In case b = 1, since b-comparison functions coincide with (c)-com-
parison functions, the conclusion follows by Lemma 2.

In the following we suppose b > 1. Since the series
∞∑

k=0

bkϕk(t) converges

for any t > 0, its general term satisfies

(5) bnϕn(t) → 0 as n →∞, t > 0.

Supposing ϕn(t) converged to some l > 0, since b > 1 this would imply that
bnϕn(t) →∞, which contradicts (5).

So clearly ϕn(t) → 0, n → ∞. This together with ι) in the definition of
b-comparison functions guarantees that ϕ is also a comparison function. �

In the recent paper [9] the following generalized Cauchy lemma was
proved:

Lemma 5 ([9]). Let fn, gn : R+ → R+, n ∈ N. We assume that:

ι) fn is increasing, fn(0) = 0 and fn is continuous at 0, for any n ∈ N;

ιι)
∞∑

k=0

fk(t) < ∞, for any t ∈ R+;

ιιι) gn(t) → 0 as n →∞, for any t ∈ R+.

Then:
n∑

k=0

fn−k(gk(t)) → 0 as n →∞, for any t ∈ R+.

Using Lemma 5 it is easy to prove the following result, which is similar
to the one proved in [9] for (c)-comparison functions, there called ”strong
comparison functions”.

Lemma 6. Let ϕ : R+ → R+ be a b-comparison function with constant
b ≥ 1 and an ∈ R+, n ∈ N such that an → 0 as n →∞. Then

n∑
k=0

bn−kϕn−k(ak) → 0 as n →∞.

Proof. We take fn = bnϕn and gn(t) = an, for any t ∈ R+. By Lemmas
4, 1 and 3, it is clear that fn = bnϕn fulfills ι) and ιι) in Lemma 5. The
conclusion follows immediately. �

3. The main result

In [3] the following generalization of a result due to I.A. Bakhtin [1],
originally for Banach contractions, was given:
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Theorem 2 ([3]). Let (X, d) be a complete b-metric space, ϕ : R+ → R+

a comparison function and f : X → X a ϕ-contraction.
Then f has a unique fixed point if and only if there exists x0 ∈ X such

that the Picard iteration {xn}n≥0 defined by

(6) xn = f(xn−1), n ≥ 1,

is bounded.

By considering b-comparison functions instead of comparison functions,
V. Berinde [3] obtained also an estimation of the rate of convergence, as one
can see in the following result:

Theorem 3 ([3]). Let (X, d) be a complete b-metric space, ϕ : R+ → R+

a b-comparison function and f : X → X a ϕ-contraction.
If x0 ∈ X is such that the Picard iteration {xn}n≥0 is bounded and Ff =

{x∗}, then:

(7) d(xn, x∗) ≤ b sb(d(xn, xn+1)), n ≥ 0,

where sb is given by (4) in Lemma 3.

In the following we prove the main result of this paper, which shows that
the boundedness assumption from Theorem 3 is actually not necessary in
order to obtain the existence and uniqueness of the fixed point. The same
estimations are also obtained.

Theorem 4. Let (X, d) be a complete b-metric space with constant b ≥ 1,
ϕ : R+ → R+ a b-comparison function and f : X → X a ϕ-contraction.
Then:

1) f is a Picard operator;

2) the following estimates hold:

(8) d(xn, x∗) ≤ b sb(ϕn(d(x0, x1))), n ≥ 0,

(9) d(xn, x∗) ≤ b sb(d(xn, xn+1)), n ≥ 0,

where sb is given by Lemma 3;

3) for any x ∈ X we have that:

(10) d(x, x∗) ≤ b sb(d(x, f(x))).

Proof.
1) Let x0 ∈ X and xn = f(xn−1), n ≥ 1. For n ≥ 1 we have that:

d(xn, xn+1) = d(f(xn−1), f(xn)) ≤ ϕ(d(xn−1, xn)),
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which by induction yields

(11) d(xn, xn+1) ≤ ϕn(d(x0, x1)).

As d is a b-metric, for n ≥ 0, p ≥ 1 we obtain:

d(xn, xn+p) ≤ b d(xn, xn+1) + b2d(xn+1, xn+2)(12)
+ . . . + bpd(xn+p−1, xn+p).

By (11) it follows that:

d(xn, xn+p) ≤ b ϕn(d(x0, x1)) + b2ϕn+1(d(x0, x1))(13)
+ · · ·+ bpϕn+p−1(d(x0, x1)),

which can also be written as

d(xn, xn+p) ≤
1

bn−1
[bnϕn(d(x0, x1))(14)

+ · · ·+ bn+p−1ϕn+p−1(d(x0, x1))
]
.

Denoting

Sn =
n∑

k=0

bkϕk(d(x0, x1)), n ≥ 1,

(14) becomes:

(15) d(xn, xn+p) ≤
1

bn−1
[Sn+p−1 − Sn−1], n ≥ 1, p ≥ 1.

Supposing d(x0, x1) > 0, by Lemma 3 the series
∞∑

k=0

bkϕk(d(x0, x1)) con-

verges, so there is
S = lim

n→∞
Sn ∈ R+.

Since b ≥ 1, by (15) we obtain that {xn}n≥0 is a Cauchy sequence in the
complete metric space (X, d). So there is x∗ ∈ X such that

x∗ = lim
n→∞

xn.

In the following we prove that x∗ is a fixed point for f . For n ≥ 0 we have:

(16) d(xn+1, f(x∗)) = d(f(xn), f(x∗)) ≤ ϕ(d(xn, x∗)).

But d is continuous, and by Lemmas 4 and 1 ϕ is also continuous at 0.
Letting n →∞ in (16) we obtain that:

d(x∗, f(x∗)) = 0,
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that is, x∗ ∈ Ff . Supposing there would be y∗ ∈ X such that y∗ = f(y∗)
and y∗ 6= x∗, by Lemmas 4 and 1, 3), we have:

d(x∗, y∗) = d(f(x∗), f(y∗)) ≤ ϕ(d(x∗, y∗)) < d(x∗, y∗),

which is a contradiction. So f is a Picard operator.

2) Inequality (13) can also be written as

d(xn, xn+p) ≤ b [ϕ0(ϕn(d(x0, x1))) + bϕ(ϕn(d(x0, x1)))(17)
+ · · ·+ bp−1ϕp−1(ϕn(d(x0, x1)))],

where n ≥ 0, p ≥ 1. Letting p →∞ in (17) we obtain the a priori estimate

d(xn, x∗) ≤ b sb(ϕn(d(x0, x1))), n ≥ 0.

On the other hand, for n ≥ 1, k ≥ 0 we have that:

d(xn+k, xn+k+1) = d(f(xn+k−1), f(xn+k)) ≤ ϕ(d(xn+k−1, xn+k)),

which by induction yields

(18) d(xn+k, xn+k+1) ≤ ϕk(d(xn, xn+1)), n ≥ 1, k ≥ 0.

Using (18) back in (12) we obtain that

d(xn, xn+p) ≤ b [d(xn, xn+1) + bϕ(d(xn, xn+1))(19)
+ · · ·+ bp−1ϕp−1(d(xn, xn+1))

]
, n ≥ 0, p ≥ 1.

Letting p →∞ in (19) we obtain the a posteriori estimate

d(xn, x∗) ≤ b sb(d(xn, xn+1)), n ≥ 0.

3) Let xn := x in (9), for an arbitrary x ∈ X. Then

d(x, x∗) ≤ b sb(d(x, f(x))).

�

Remark 2. All the conclusions in Theorem 1 can be obtained from
Theorem 4 for b = 1.

4. A theory of the main result

Following the direction suggested in [10] of how to establish a so-called
theory of a fixed point theorem and using the terminology therein, we prove
the results below:
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Theorem 5. Let f : X → X be as in Theorem 4. Then f is a good
Picard operator.

Proof. Let x0 ∈ Y . By (11) in the proof of Theorem 4, we know that

d(fn(x0), fn+1(x0)) = d(xn, xn+1) ≤ ϕn(d(x0, x1)), n ≥ 0,

which also holds for the case b = 1. Then by ιιι)b in the definition of a
b-metric we obtain:

∞∑
n=0

d(fn(x0), fn+1(x0)) ≤
∞∑

n=0

bnϕn(d(x0, x1)) = sb(d(x0, x1)).

So, by Lemma 3,
∞∑

n=0
d(fn(x0), fn+1(x0)) < ∞, and consequently f is a good

Picard operator. �

Remark 3. An open problem is to check whether f : X → X as in
Theorem 4 is a special Picard operator or not.

Theorem 6. Let f : X → X be as in Theorem 4. Then the fixed point
problem for f is well posed.

Proof. Let {zn}n∈N ⊂ X be a sequence such that

(20) d(zn, f(zn)) → 0 as n →∞.

Applying (10) for x = zn, n ∈ N, we have:

(21) d(zn, x∗) ≤ b sb(d(zn, f(zn))), n ∈ N.

From Lemma 3 we know that sb is continuous at 0. Then letting n →∞ in
(21), by (20) we obtain that

d(zn, x∗) → 0, n →∞,

so the fixed point problem for f is well posed. �

Theorem 7. Let f : X → X be as in Theorem 4. If ϕ satisfies:

(22) ϕ(a1t1 + a2t2) ≤ a1ϕ(t1) + a2ϕ(t2),

for any a1, a2, t1, t2 ∈ R+, then f has the limit shadowing property.
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Proof. Let {zn}n∈N ⊂ X be a sequence satisfying

(23) d(zn+1, f(zn)) → 0 as n →∞.

For n ≥ 0 we have:

(24) d(zn+1, x
∗) ≤ b d(zn+1, f(zn)) + b d(f(zn), f(x∗)).

As f is a ϕ-contraction, inequality (24) becomes:

(25) d(zn+1, x
∗) ≤ b d(zn+1, f(zn)) + b ϕ(d(zn, x∗)), n ≥ 0.

In the same way we get:

d(zn, x∗) ≤ b d(zn, f(zn−1)) + b ϕ(d(zn−1, x
∗)), n ≥ 1,

which applied back in (25), by (22) yields

d(zn+1, x
∗) ≤ b d(zn+1, f(zn)) + b2ϕ(d(zn, f(zn−1))) + b2ϕ2(d(zn−1, x

∗)).

By induction we obtain:

d(zn+1, x
∗) ≤ b d(zn+1, f(zn)) + b2ϕ(d(zn, f(zn−1)))

+ · · ·+ bn+1ϕn(d(z1, f(z0))) + bn+2ϕn+1(d(z0, x
∗)),

which can also be written as

d(zn+1, x
∗) ≤ b

n∑
k=0

bkϕk(d(zn−k+1, f(zn−k)))(26)

+ bn+2ϕn+1(d(z0, x
∗)),

Now applying Lemma 6 for an = d(zn+1, f(zn)), it follows that

n∑
k=0

bkϕk(d(zn−k+1, f(zn−k))) → 0, n →∞.

If z0 = x∗, obviously bnϕn(d(z0, x
∗)) = 0. If z0 6= x∗, we also have that

bnϕn(d(z0, x
∗)) → 0 as n → ∞, by Lemma 3. Thus letting n → ∞ in (26),

we obtain that

(27) d(zn+1, x
∗) → 0, n →∞.

By Theorem 4 we know that for any x ∈ X the Picard iteration {fn(x)}n≥0

converges to x∗. So, for some fixed x ∈ Y , we may write:

(28) d(zn+1, f
n(x)) ≤ d(zn+1, x

∗) + d(x∗, fn(x)), n ≥ 0.
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Now letting n →∞ in (28), by (27) we obtain that

d(zn+1, f
n(x)) → 0, n →∞,

so f has the limit shadowing property. �

We can also state a result regarding the data dependence of the fixed
point in the case of ϕ-contractions on b-metric spaces with ϕ a b-comparison
function:

Theorem 8. Let f : X → X be as in Theorem 4 and g : X → X such
that:

ι) g has at least one fixed point, say x∗g ∈ Fg;

ιι) there exists η > 0 such that

(29) d(f(x), g(x)) ≤ η, for any x ∈ X.

Then
d(x∗f , x∗g) ≤ b sb(η),

where Ff = {x∗f} and sb is like in Lemma 3.

Proof. Applying (10) from Theorem 4 for x := x∗g, we have:

d(x∗f , x∗g) ≤ b sb(d(x∗g, f(x∗g))) = b sb(d(g(x∗g), f(x∗g))).

From Lemma 3, sb is increasing, so by (ιι) it follows that

d(x∗f , x∗g) ≤ b sb(η).

�

A Nadler type result regarding sequences of operators converging to a
ϕ-contraction defined on a b-metric space, where ϕ is a b-comparison func-
tion, was proved in [4].

Remark 4. A theory of Theorem 1.5.1 from [5] in metric spaces, here
included as Theorem 1, can easily be derived from the above results, for
b = 1.
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