
F A S C I C U L I M A T H E M A T I C I

Nr 43 2010

Mausumi Sen
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Abstract. In this article we introduce the notions of I-limit su-
perior and I-limit inferior for sequences of fuzzy real numbers .
We prove fuzzy analogue of some results on I-limit superior and
I-limit inferior for real sequences.
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1. Introduction

The notion of I-convergence of real valued sequence was studied at the
initial stage by Kostyrko, Šalát and Wilczynski [3]. It generalizes and unifies
different notions of convergence of sequences. Generalizing the concepts of
limit superior and limit inferior for real sequences, Demirci [1] introduced
the concepts of I-limit superior and I-limit inferior for sequences of real
numbers.

The concepts of fuzzy sets was first introduced by Zadeh [9]. Bounded
and convergent sequences of fuzzy numbers are studied by Matloka [4]. Later
on sequences of fuzzy numbers have been discussed by Nanda [5], Nuray and
Savas [7], Nuray [6], Fang and Huang [2], Tripathy and Nanda [8] and many
others.

2. Definitions and background

Throughout N and R denote the sets of natural and real numbers re-
spectively.

If X is a non empty set, then a non-void class I ⊆ 2X is called an
ideal if I is additive (i.e. A,B ∈ I ⇒ A ∪ B ∈ I) and hereditary (i.e.
A ∈ IandB ⊆ A ⇒ B ∈ I). An ideal I ⊆ 2X is said to be non-trivial if
I 6= 2X . A non-trivial ideal I is said to be admissible if I contains every
finite subset of X. A non-trivial ideal I is said to be maximal if there does
not exist any non-trivial ideal J 6= I containing I as a subset.
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Example. (a) Let I = If , class of all finite subsets of N. Then If is a
non-trivial admissible ideal.

(b) Let A ⊂ N . Put d(A) = lim
n→∞

1
n

n∑
k=1

χA(k) and δ(A) = lim
n→∞

1
Sn

n∑
k=1

χA(k)
k ,

where Sn =
∑n

k=1
1
k . The class Id(Iδ) of all A ⊂ N with d(A) = 0(δ(A) = 0)

forms a non-trivial admissible ideal.
(c) The uniform density of a set A ⊂ N is defined as follows. For integers

t ≥ 0 and s ≥ 1, let A(t + 1, t + s) = card {n ∈ A : t + 1 ≤ n ≤ t + s}.
Put βs = lim inft→∞A(t + 1, t + s), βs = lim supt→∞A(t + 1, t + s). If
lims→∞

βs

s = lims→∞
βs

s ( = u(A), say ), then u(A) is called the uniform
density of A. The class Iu of all A ⊂ N with u(A) = 0 forms a non-trivial
ideal.

For any ideal there is a filter =(I) corresponding to I, given by

=(I) = {K ⊆ N : N \K ∈ I}.

Let D denote the set of all closed bounded intervals X = [a1, a2] on the real
line R. For X = [a1, a2] ∈ D and Y = [b1, b2] ∈ D, we define X ≤ Y if and
only if a1 ≤ b1 and a2 ≤ b2.

d(X, Y ) = max(|a1 − b1|, |a2 − b2|)

It is known that (D, d) is a complete metric space and ≤ is a partial order
on D.

A fuzzy real number X is a fuzzy set on R i.e. a mapping X : R → L
(= [0, 1]) associating each real number t with its grade of membership X(t).
Every real number r can be expressed as a fuzzy real number r as follows:

r(t) =
{

1 if t = r
0 otherwise

. A fuzzy real number X is called convex, if X(t) ≥

X(s) ∧ X(r) = min(X(s), X(r)), where s < t < r. If there exists t0 ∈ R
such that X(t0) = 1, then the fuzzy real number X is called normal. The
α- level set of a fuzzy real number X, 0 < α ≤ 1 denoted by Xα is defined
as Xα = {t ∈ R : X(t) ≥ α}. A fuzzy real number X is said to be upper
semi-continuous if for each ε > 0, X−1([0, a + ε)), for all a ∈ L is open in
the usual topology of R. We denote the set of all upper semi-continuous,
normal, convex fuzzy numbers by L(R). A fuzzy real number η is said to be
non-negative if η(t) = 0 for all t < 0.

Arithmetic operations ⊕ and 	 on L(R)×L(R) can be defined as follows:

(η ⊕ δ)(t) = sup
s∈R

{η(s) ∧ δ(t− s)}, t ∈ R

(η 	 δ)(t) = sup
s∈R

{η(s) ∧ δ(s− t)}, t ∈ R.
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Let d̄ : L(R)× L(R) → R be defined by

d̄(X, Y ) = sup
0≤α≤1

d(Xα, Y α) for X, Y ∈ L(R).

Then d̄ defines a metric on L(R).
We define X ≤ Y if and only if Xα ≤ Y α for any α ∈ L. The ad-

ditive identity and multiplicative identity in L(R) are denoted by 0̄ and 1̄
respectively.

Definition 1. A sequence X = (Xn) of fuzzy numbers is said to be I-
convergent if there exists a fuzzy numbers X0 such that for all ε > 0, the set
{n ∈ N : d̄(Xn, X0) ≥ ε} ∈ I. We write I − limitXn = X0. Throughout the
paper I will be an admissible ideal.

3. I-limit superior and I-limit inferior of sequences

of fuzzy numbers

In this section we introduce the notions of I-limit superior and I-limit
inferior for sequences of fuzzy real numbers.

A subset E of L(R) is said to be bounded above if there exists a fuzzy
number µ, called an upper bound of E, such that X ≤ µ, for all X ∈ E.
µ is called the least upper bound (lub or sup) of E if µ is an upper bound
and is the smallest of all upper bounds. A lower bound and the greatest
lower bound (glb or inf) are defined similarly. E is said to be bounded if it
is bounded above and bounded below.

For a fuzzy real valued sequence X = (Xn) let BX denotes the set:

BX = {µ ∈ L(R) : {n ∈ N : Xn > µ} 6∈ I}.

Similarly,
AX = {λ ∈ L(R) : {n ∈ N : Xn < λ} 6∈ I}.

Definition 2. For X = (Xn) a fuzzy real valued sequence and I an
admissible ideal, the I-limit superior of (Xn) is given by

I − limit supX =
{

supBX , if BX 6= ∅
−∞̄, if BX = ∅

Also , the I-limit inferior of X is given by

I − limit inf X =
{

inf AX , if AX 6= ∅
+∞̄, if AX = ∅
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Remark 1. For I = Id, from the above definition we get the statistical
limit superior and statistical limit inferior. For I = Id, we get the notions of
logarithmic limit superior and logarithmic limit inferior. Similarly we can
get the other notions of I-limit superior and I-limit inferior for different
ideals.

From definition we can easily prove the following two theorems.

Theorem 1. If β = I− limit supX is finite, then for every positive fuzzy
number η

(1) {n ∈ N : Xn > β 	 η} 6∈ I and {n ∈ N : Xn > β ⊕ η} ∈ I

Conversely if (1) holds for every positive fuzzy number η, then β = I −
limit supX.

Theorem 2. If γ = I− limit inf X is finite, then for every positive fuzzy
number γ

(2) {n ∈ N : Xn < γ ⊕ η} 6∈ I and {n ∈ N : Xn < γ 	 η} ∈ I

Conversely if (2) holds for every positive fuzzy number η, then γ = I −
limit inf X.

Theorem 3. For every fuzzy real valued sequence X,

I − limit inf X ≤ I − limit supX.

Proof. First we consider the case in which I− limit supX = −∞̄ . Then
BX = ∅ . So for every µ in L(R), {n ∈ N : Xn > µ} ∈ I} . This implies
that {n ∈ N : Xn ≤ µ} ∈ =(I)}. Hence for every in λ ∈ L(R),the set
{n ∈ N : Xn ≤ λ} 6∈ I. So I-limit inf X = −∞̄ .

If I − limit supX = ∞̄, then the result follows immediately.
Now we assume that β = I−limit supX be finite and γ = I−limit inf X.

Let ε > 0 be real. We show that β ⊕ ε̄ ∈ AX . Since β = I − limit supX,
by Theorem 1, the set {n ∈ N : Xn > β ⊕ 1

2 ε̄} ∈ I which implies that
{n ∈ N : Xn ≤ β ⊕ 1

2 ε̄} ∈ =(I). Since {n ∈ N : Xn ≤ β ⊕ 1
2 ε̄} ⊆ {n ∈ N :

Xn < β ⊕ ε̄} and =(I) is a filter on N, so {n ∈ N : Xn < β ⊕ ε̄} ∈ =(I).
Thus {n ∈ N : Xn < β ⊕ ε̄} 6∈ I. Hence β ⊕ ε̄ ∈ AX and so from definition
of I- limit inferior γ ≤ β ⊕ ε̄. Since ε̄ is arbitrary, so γ ≤ β. From definition
and Theorem 3, it can be easily shown that

limit inf X ≤ I − limit inf X ≤ I − limit supX ≤ limit supX.

�
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Definition 3. A fuzzy real valued sequence X = (Xn) is said to be I-
bounded if there exists a real numbers B > 0 such that {n ∈ N : d̄(Xn, 0̄) >
B} ∈ I.

Note. Suppose there exists a real number B > 0 such that

(3) {n ∈ N : d̄(Xn, 0̄) > B} ∈ I

Then we can easily check that the set {n ∈ N : Xn > B̄} ∈ I which
implies that I -limit sup X ≤ B̄. Also from (3) we have −B̄ ≤ I-limit inf
X. Hence I- boundedness of a fuzzy real valued sequence X = (Xn) implies
I − limit inf X and I − limit supX are finite and so properties (1) and (2) of
Theorem 1 and Theorem 2 hold.

Theorem 4. The fuzzy real valued I-bounded sequence X = (Xn) is I-
convergent if and only if I − limit inf X = I − limit supX.

Proof. Let γ = I − limit inf X and β = I − limit supX.
Suppose I − lim Xn = X0. Then given ε > 0, the set {n ∈ N :

d̄(Xn, X0) ≥ ε} ∈ I. Thus {n ∈ N : Xn > X0 ⊕ ε̄} ∈ I and so β ≤ X0.
Also {n ∈ N : Xn < X0 	 ε̄} ∈ I. Hence X0 ≤ γ. Thus β ≤ γ. But from
Theorem 3, we get γ ≤ β. Hence γ = β.

Next we assume that γ = β. Let X0 = γ. Then properties (1) and (2) of
Theorem 1 and Theorem 2 imply that the sets {n ∈ N : Xn > X0⊕ 1

2 ε̄} ∈ I
and {n ∈ N : Xn < X0	 1

2 ε̄} ∈ I. Thus the set {n ∈ N : d̄(Xn, X0) ≥ ε} ∈ I.
Hence I − lim Xn = X0. �

Theorem 5. If (Xn) is a fuzzy sequence of real numbers, then I −
limit inf(−Xn) = −(I−limit supXn), I−limit sup(−Xn) = −(I−limit inf Xn).

Proof. Let Yn = −Xn. Then

I − limit inf(−Xn) = I − limit inf Yn

= inf{λ ∈ L(R) : {n ∈ N : Yn < λ} 6∈ I}
= inf{λ ∈ L(R) : {n ∈ N : Xn > −λ} 6∈ I}
= inf{−µ ∈ L(R) : {n ∈ N : Xn > µ} 6∈ I}
= − sup{µ ∈ L(R) : {n ∈ N : Xn > µ} 6∈ I}
= −(I − limit sup(Xn)).

Similarly, we can show that I − limit sup(−Xn) = −(I − limit inf Xn). �

Theorem 6. If (Xn) and (Yn) are I- bounded sequences, then
(i) I − limit inf Xn ⊕ I − limit inf Yn ≤ I − limit inf(Xn ⊕ Yn)
(ii) I − limit inf(Xn ⊕ Yn) ≤ I − limit inf Xn ⊕ I − limit supYn
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(iii) I − limit inf Xn ⊕ I − limit supYn ≤ I − limit sup(Xn ⊕ Yn)
(iv) I − limit sup(Xn ⊕ Yn) ≤ I − limit supXn ⊕ I − limit supYn .

Remark 2. For (ii) and (iii) I should be a maximal ideal.

Proof. We will prove (i) and (iii). (ii) and (iv) will follow from (iii)
and (i) respectively taking the sequences (−Xn) and (−Yn) in places of (Xn)
and (Yn) and using Theorem 5.

(i) Let I − lim inf Xn = α and I − lim inf Yn = β.
Since (Xn) and (Yn) are I- bounded, so α and β are finite. Let ε > 0 be

real. Then by Theorem 2, A = {n ∈ N : Xn < α 	 1
2 ε̄} ∈ I and B = {n ∈

N : Yn < β	 1
2 ε̄} ∈ I. Now for each n ∈ A∩B, Xn⊕ Yn < (α⊕ β)	 ε̄. But

A ∩B ∈ I.
Hence (α ⊕ β) 	 ε̄ ≤ I − limit inf(Xn ⊕ Yn). Since ε̄ is arbitrary, so

(α⊕ β) ≤ I − limit inf(Xn ⊕ Yn).
(iii) Let I − lim inf Xn = α and I − lim supYn = β. Then α and β are

finite. Let ε > 0 be real. Then by Theorem 1 and Theorem 2, {n ∈ N :
Xn < α 	 1

2 ε̄} ∈ I ⇒ {n ∈ N : Xn ≥ α 	 1
2 ε̄} ∈ =(I). Also {n ∈ N : Yn >

β 	 1
2 ε̄} 6∈ I ⇒ {n ∈ N : Yn > β 	 1

2 ε̄} ∈ =(I), as I is maximal. Hence {n ∈
N : Xn⊕Yn > (α⊕β)	 ε̄} 6∈ I. Hence (α⊕β)	 ε̄ ≤ I− limit sup(Xn⊕Yn).
Since ε̄ is arbitrary, so (α⊕β) ≤ I−limit sup(Xn⊕Yn). Hence the theorem. �

4. I-limit points and I-cluster points

Definition 4. A fuzzy real valued number µ is said to be I-limit point
of the fuzzy real valued sequence X = (Xn) provided that there exists a set
M = {m1 < m2 < · · · · · · } ⊂ N such that M 6∈ I and limk Xmk

= µ.

Definition 5. A fuzzy real valued number µ is said to be I-cluster point
of the fuzzy real valued sequence X = (Xn) if and only if for each ε > 0, the
set {n ∈ N : d̄(Xn, µ) < ε} 6∈ I.

Let ΛI
X and ΓI

X denotes the set of all I-limit points and I-cluster points
of X respectively.

From the definition of I - cluster point of fuzzy real valued sequence and
from Theorem 1 and Theorem 2 we can interpret that I − limit supX and
I − limit inf X are the greatest and the least I- cluster points of X. The
following result follows easily from Theorem 4.

Theorem 7. A necessary and sufficient condition for the I- convergence
of a fuzzy real valued sequence is that it is I- bounded and has a unique
cluster point.

Theorem 8. If I is an admissible ideal, then for each fuzzy real valued
sequence X = (Xn) of elements of L(R), we have ΛI

X ⊂ ΓI
X .
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Proof. Let µ ∈ ΛI
X . Then there exists a set M = {m1 < m2 < · · · · · · } 6∈

I such that limk Xmk
= µ.

So given ε > 0, there exists k0 ∈ N such that d̄(Xmk
, µ) < ε for all k ≥ k0.

But the set A = {k ∈ N : d̄(Xk, µ) < ε} ⊃ M \ {m1,m2, · · · · · · ,mk0}.
So A 6∈ I. Hence µ ∈ ΓI

X . �

Theorem 9. The set ΓI
X is closed in L(R) for each sequence X = (Xn)

of elements of L(R).

Proof. Let Y be a limit point of ΓI
X . Let ε > 0. Then every open ball

B̄(Y, ε) with centre at Y and radius ε must contain a point of ΓI
X different

from Y .
Let Y0 ∈ ΓI

X ∩ B̄(Y, ε). Choose δ > 0 such that B̄(Y0, δ) ⊂ B̄(Y, ε). Then
we have, {n ∈ N : d̄(Xn, Y ) < ε} ⊃ {n ∈ N : d̄(Xn, Y0) < δ} 6∈ I. Hence
Y ∈ ΓI

X . �
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