$\frac{F A S C I C U L I M A T H E M A T I C I}{Nr 43}$

Mausumi Sen

ON *I*-LIMIT SUPERIOR AND *I*-LIMIT INFERIOR OF SEQUENCES OF FUZZY NUMBERS

ABSTRACT. In this article we introduce the notions of I-limit superior and I-limit inferior for sequences of fuzzy real numbers. We prove fuzzy analogue of some results on I-limit superior and I-limit inferior for real sequences.

KEY WORDS: fuzzy real numbers, *I*-convergence, *I*-limit superior, *I*-limit inferior.

AMS Mathematics Subject Classification: 40A05, 40D25.

1. Introduction

The notion of I-convergence of real valued sequence was studied at the initial stage by Kostyrko, Šalát and Wilczynski [3]. It generalizes and unifies different notions of convergence of sequences. Generalizing the concepts of limit superior and limit inferior for real sequences, Demirci [1] introduced the concepts of I-limit superior and I-limit inferior for sequences of real numbers.

The concepts of fuzzy sets was first introduced by Zadeh [9]. Bounded and convergent sequences of fuzzy numbers are studied by Matloka [4]. Later on sequences of fuzzy numbers have been discussed by Nanda [5], Nuray and Savas [7], Nuray [6], Fang and Huang [2], Tripathy and Nanda [8] and many others.

2. Definitions and background

Throughout N and R denote the sets of natural and real numbers respectively.

If X is a non empty set, then a non-void class $I \subseteq 2^X$ is called an ideal if I is additive (i.e. $A, B \in I \Rightarrow A \cup B \in I$) and hereditary (i.e. $A \in IandB \subseteq A \Rightarrow B \in I$). An ideal $I \subseteq 2^X$ is said to be non-trivial if $I \neq 2^X$. A non-trivial ideal I is said to be admissible if I contains every finite subset of X. A non-trivial ideal I is said to be maximal if there does not exist any non-trivial ideal $J \neq I$ containing I as a subset.

Mausumi Sen

Example. (a) Let $I = I_f$, class of all finite subsets of N. Then I_f is a non-trivial admissible ideal.

(b) Let $A \subset N$. Put $d(A) = \lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} \chi_A(k)$ and $\delta(A) = \lim_{n \to \infty} \frac{1}{S_n} \sum_{k=1}^{n} \frac{\chi_A(k)}{k}$, where $S_n = \sum_{k=1}^{n} \frac{1}{k}$. The class $I_d(I_{\delta})$ of all $A \subset N$ with $d(A) = 0(\delta(A) = 0)$ forms a non-trivial admissible ideal.

(c) The uniform density of a set $A \subset N$ is defined as follows. For integers $t \geq 0$ and $s \geq 1$, let $A(t+1,t+s) = \operatorname{card} \{n \in A : t+1 \leq n \leq t+s\}$. Put $\beta_s = \liminf_{t\to\infty} A(t+1,t+s), \ \beta^s = \limsup_{t\to\infty} A(t+1,t+s)$. If $\lim_{s\to\infty} \frac{\beta_s}{s} = \lim_{s\to\infty} \frac{\beta^s}{s}$ (= u(A), say), then u(A) is called the uniform density of A. The class I_u of all $A \subset N$ with u(A) = 0 forms a non-trivial ideal.

For any ideal there is a filter $\Im(I)$ corresponding to I, given by

$$\Im(I) = \{ K \subseteq N : N \setminus K \in I \}.$$

Let *D* denote the set of all closed bounded intervals $X = [a_1, a_2]$ on the real line *R*. For $X = [a_1, a_2] \in D$ and $Y = [b_1, b_2] \in D$, we define $X \leq Y$ if and only if $a_1 \leq b_1$ and $a_2 \leq b_2$.

$$d(X,Y) = \max(|a_1 - b_1|, |a_2 - b_2|)$$

It is known that (D, d) is a complete metric space and \leq is a partial order on D.

A fuzzy real number X is a fuzzy set on R i.e. a mapping $X : R \to L$ (= [0, 1]) associating each real number t with its grade of membership X(t). Every real number r can be expressed as a fuzzy real number \overline{r} as follows: $\overline{r}(t) = \begin{cases} 1 & \text{if } t = r \\ 0 & otherwise \end{cases}$. A fuzzy real number X is called convex, if $X(t) \ge X(s) \land X(r) = \min(X(s), X(r))$, where s < t < r. If there exists $t_0 \in R$ such that $X(t_0) = 1$, then the fuzzy real number X is called normal. The α - level set of a fuzzy real number X, $0 < \alpha \le 1$ denoted by X^{α} is defined as $X^{\alpha} = \{t \in R : X(t) \ge \alpha\}$. A fuzzy real number X is said to be upper semi-continuous if for each $\epsilon > 0$, $X^{-1}([0, a + \epsilon))$, for all $a \in L$ is open in the usual topology of R. We denote the set of all upper semi-continuous, normal, convex fuzzy numbers by L(R). A fuzzy real number η is said to be non-negative if $\eta(t) = 0$ for all t < 0.

Arithmetic operations \oplus and \ominus on $L(R) \times L(R)$ can be defined as follows:

$$(\eta \oplus \delta)(t) = \sup_{s \in R} \{\eta(s) \land \delta(t-s)\}, \quad t \in R$$
$$(\eta \oplus \delta)(t) = \sup_{s \in R} \{\eta(s) \land \delta(s-t)\}, \quad t \in R.$$

140

Let $\overline{d}: L(R) \times L(R) \to R$ be defined by

$$\overline{d}(X,Y) = \sup_{0 \le \alpha \le 1} d(X^{\alpha},Y^{\alpha}) \text{ for } X,Y \in L(R).$$

Then \overline{d} defines a metric on L(R).

We define $X \leq Y$ if and only if $X^{\alpha} \leq Y^{\alpha}$ for any $\alpha \in L$. The additive identity and multiplicative identity in L(R) are denoted by $\overline{0}$ and $\overline{1}$ respectively.

Definition 1. A sequence $X = (X_n)$ of fuzzy numbers is said to be *I*-convergent if there exists a fuzzy numbers X_0 such that for all $\epsilon > 0$, the set $\{n \in N : \overline{d}(X_n, X_0) \ge \epsilon\} \in I$. We write $I - limitX_n = X_0$. Throughout the paper *I* will be an admissible ideal.

3. *I*-limit superior and *I*-limit inferior of sequences of fuzzy numbers

In this section we introduce the notions of *I*-limit superior and *I*-limit inferior for sequences of fuzzy real numbers.

A subset E of L(R) is said to be bounded above if there exists a fuzzy number μ , called an upper bound of E, such that $X \leq \mu$, for all $X \in E$. μ is called the least upper bound (lub or sup) of E if μ is an upper bound and is the smallest of all upper bounds. A lower bound and the greatest lower bound (glb or inf) are defined similarly. E is said to be bounded if it is bounded above and bounded below.

For a fuzzy real valued sequence $X = (X_n)$ let B_X denotes the set:

$$B_X = \{\mu \in L(R) : \{n \in N : X_n > \mu\} \notin I\}.$$

Similarly,

$$A_X = \{\lambda \in L(R) : \{n \in N : X_n < \lambda\} \notin I\}.$$

Definition 2. For $X = (X_n)$ a fuzzy real valued sequence and I an admissible ideal, the I-limit superior of (X_n) is given by

$$I - \text{limit sup } X = \begin{cases} \sup B_X, & \text{if } B_X \neq \emptyset \\ -\bar{\infty}, & \text{if } B_X = \emptyset \end{cases}$$

Also, the I-limit inferior of X is given by

$$I - \text{limit inf } X = \begin{cases} \inf A_X, & \text{if } A_X \neq \emptyset \\ +\bar{\infty}, & \text{if } A_X = \emptyset \end{cases}$$

Mausumi Sen

Remark 1. For $I = I_d$, from the above definition we get the statistical limit superior and statistical limit inferior. For $I = I_d$, we get the notions of logarithmic limit superior and logarithmic limit inferior. Similarly we can get the other notions of *I*-limit superior and *I*-limit inferior for different ideals.

From definition we can easily prove the following two theorems.

Theorem 1. If $\beta = I - \text{limit sup } X$ is finite, then for every positive fuzzy number η

(1)
$$\{n \in N : X_n > \beta \ominus \eta\} \notin I \text{ and } \{n \in N : X_n > \beta \oplus \eta\} \in I$$

Conversely if (1) holds for every positive fuzzy number η , then $\beta = I - limit \sup X$.

Theorem 2. If $\gamma = I - \text{limit inf } X$ is finite, then for every positive fuzzy number γ

(2)
$$\{n \in N : X_n < \gamma \oplus \eta\} \notin I \text{ and } \{n \in N : X_n < \gamma \ominus \eta\} \in I$$

Conversely if (2) holds for every positive fuzzy number η , then $\gamma = I - \text{limit inf } X$.

Theorem 3. For every fuzzy real valued sequence X,

 $I - \text{limit inf } X \leq I - \text{limit sup } X.$

Proof. First we consider the case in which $I - limit \sup X = -\overline{\infty}$. Then $B_X = \emptyset$. So for every μ in L(R), $\{n \in N : X_n > \mu\} \in I\}$. This implies that $\{n \in N : X_n \leq \mu\} \in \Im(I)\}$. Hence for every in $\lambda \in L(R)$, the set $\{n \in N : X_n \leq \lambda\} \notin I$. So I-limit inf $X = -\overline{\infty}$.

If $I - \limsup X = \overline{\infty}$, then the result follows immediately.

Now we assume that $\beta = I - \lim \sup X$ be finite and $\gamma = I - \lim i t \inf X$. Let $\epsilon > 0$ be real. We show that $\beta \oplus \overline{\epsilon} \in A_X$. Since $\beta = I - \lim i t \sup X$, by Theorem 1, the set $\{n \in N : X_n > \beta \oplus \frac{1}{2}\overline{\epsilon}\} \in I$ which implies that $\{n \in N : X_n \leq \beta \oplus \frac{1}{2}\overline{\epsilon}\} \in \Im(I)$. Since $\{n \in N : X_n \leq \beta \oplus \frac{1}{2}\overline{\epsilon}\} \subseteq \{n \in N :$ $X_n < \beta \oplus \overline{\epsilon}\}$ and $\Im(I)$ is a filter on N, so $\{n \in N : X_n < \beta \oplus \overline{\epsilon}\} \in \Im(I)$. Thus $\{n \in N : X_n < \beta \oplus \overline{\epsilon}\} \notin I$. Hence $\beta \oplus \overline{\epsilon} \in A_X$ and so from definition of *I*-limit inferior $\gamma \leq \beta \oplus \overline{\epsilon}$. Since $\overline{\epsilon}$ is arbitrary, so $\gamma \leq \beta$. From definition and Theorem 3, it can be easily shown that

 $\liminf X \leq I - \liminf X \leq I - \liminf X \leq I - \lim \sup X \leq \lim \sup X.$

Definition 3. A fuzzy real valued sequence $X = (X_n)$ is said to be *I*bounded if there exists a real numbers B > 0 such that $\{n \in N : \overline{d}(X_n, \overline{0}) > B\} \in I$.

Note. Suppose there exists a real number B > 0 such that

(3)
$$\{n \in N : \overline{d}(X_n, \overline{0}) > B\} \in I$$

Then we can easily check that the set $\{n \in N : X_n > \overline{B}\} \in I$ which implies that *I*-limit sup $X \leq \overline{B}$. Also from (3) we have $-\overline{B} \leq I$ -limit inf X. Hence *I*- boundedness of a fuzzy real valued sequence $X = (X_n)$ implies I - limit inf X and I - limit sup X are finite and so properties (1) and (2) of Theorem 1 and Theorem 2 hold.

Theorem 4. The fuzzy real valued I-bounded sequence $X = (X_n)$ is I-convergent if and only if I – limit inf X = I – limit sup X.

Proof. Let $\gamma = I - \text{limit inf } X$ and $\beta = I - \text{limit sup } X$.

Suppose $I - \lim X_n = X_0$. Then given $\epsilon > 0$, the set $\{n \in N : \overline{d}(X_n, X_0) \ge \epsilon\} \in I$. Thus $\{n \in N : X_n > X_0 \oplus \overline{\epsilon}\} \in I$ and so $\beta \le X_0$. Also $\{n \in N : X_n < X_0 \oplus \overline{\epsilon}\} \in I$. Hence $X_0 \le \gamma$. Thus $\beta \le \gamma$. But from Theorem 3, we get $\gamma \le \beta$. Hence $\gamma = \beta$.

Next we assume that $\gamma = \beta$. Let $X_0 = \gamma$. Then properties (1) and (2) of Theorem 1 and Theorem 2 imply that the sets $\{n \in N : X_n > X_0 \oplus \frac{1}{2}\overline{\epsilon}\} \in I$ and $\{n \in N : X_n < X_0 \oplus \frac{1}{2}\overline{\epsilon}\} \in I$. Thus the set $\{n \in N : \overline{d}(X_n, X_0) \ge \epsilon\} \in I$. Hence $I - \lim X_n = X_0$.

Theorem 5. If (X_n) is a fuzzy sequence of real numbers, then $I - \liminf(-X_n) = -(I - \liminf \sup X_n)$, $I - \liminf \sup(-X_n) = -(I - \liminf \inf X_n)$.

Proof. Let $Y_n = -X_n$. Then

$$I - \liminf(-X_n) = I - \liminf Y_n$$

= $\inf\{\lambda \in L(R) : \{n \in N : Y_n < \lambda\} \notin I\}$
= $\inf\{\lambda \in L(R) : \{n \in N : X_n > -\lambda\} \notin I\}$
= $\inf\{-\mu \in L(R) : \{n \in N : X_n > \mu\} \notin I\}$
= $-\sup\{\mu \in L(R) : \{n \in N : X_n > \mu\} \notin I\}$
= $-(I - \liminf \sup(X_n)).$

Similarly, we can show that $I - \lim \sup(-X_n) = -(I - \liminf \inf X_n)$.

Theorem 6. If (X_n) and (Y_n) are I-bounded sequences, then (i) I - limit inf $X_n \oplus I$ - limit inf $Y_n \leq I$ - limit inf $(X_n \oplus Y_n)$ (ii) I - limit inf $(X_n \oplus Y_n) \leq I$ - limit inf $X_n \oplus I$ - limit sup Y_n (*iii*) $I - \text{limit inf } X_n \oplus I - \text{limit sup } Y_n \le I - \text{limit sup}(X_n \oplus Y_n)$

(iv) $I - \lim \sup (X_n \oplus Y_n) \le I - \lim \sup X_n \oplus I - \lim \sup Y_n$.

Remark 2. For (ii) and (iii) I should be a maximal ideal.

Proof. We will prove (i) and (iii). (ii) and (iv) will follow from (iii) and (i) respectively taking the sequences $(-X_n)$ and $(-Y_n)$ in places of (X_n) and (Y_n) and using Theorem 5.

(i) Let $I - \liminf X_n = \alpha$ and $I - \liminf Y_n = \beta$.

Since (X_n) and (Y_n) are *I*- bounded, so α and β are finite. Let $\epsilon > 0$ be real. Then by Theorem 2, $A = \{n \in N : X_n < \alpha \ominus \frac{1}{2}\overline{\epsilon}\} \in I$ and $B = \{n \in N : Y_n < \beta \ominus \frac{1}{2}\overline{\epsilon}\} \in I$. Now for each $n \in A \cap B$, $X_n \oplus Y_n < (\alpha \oplus \beta) \ominus \overline{\epsilon}$. But $A \cap B \in I$.

Hence $(\alpha \oplus \beta) \ominus \overline{\epsilon} \leq I - \text{limit inf}(X_n \oplus Y_n)$. Since $\overline{\epsilon}$ is arbitrary, so $(\alpha \oplus \beta) \leq I - \text{limit inf}(X_n \oplus Y_n)$.

(*iii*) Let $I - \liminf X_n = \alpha$ and $I - \limsup Y_n = \beta$. Then α and β are finite. Let $\epsilon > 0$ be real. Then by Theorem 1 and Theorem 2, $\{n \in N : X_n < \alpha \ominus \frac{1}{2}\overline{\epsilon}\} \in I \Rightarrow \{n \in N : X_n \ge \alpha \ominus \frac{1}{2}\overline{\epsilon}\} \in \Im(I)$. Also $\{n \in N : Y_n > \beta \ominus \frac{1}{2}\overline{\epsilon}\} \notin I \Rightarrow \{n \in N : Y_n > \beta \ominus \frac{1}{2}\overline{\epsilon}\} \in \Im(I)$, as I is maximal. Hence $\{n \in N : X_n \oplus Y_n > (\alpha \oplus \beta) \ominus \overline{\epsilon}\} \notin I$. Hence $(\alpha \oplus \beta) \ominus \overline{\epsilon} \le I - \liminf \sup(X_n \oplus Y_n)$. Since $\overline{\epsilon}$ is arbitrary, so $(\alpha \oplus \beta) \le I - \limsup (X_n \oplus Y_n)$. Hence the theorem.

4. *I*-limit points and *I*-cluster points

Definition 4. A fuzzy real valued number μ is said to be *I*-limit point of the fuzzy real valued sequence $X = (X_n)$ provided that there exists a set $M = \{m_1 < m_2 < \cdots \} \subset N$ such that $M \notin I$ and $\lim_k X_{m_k} = \mu$.

Definition 5. A fuzzy real valued number μ is said to be I-cluster point of the fuzzy real valued sequence $X = (X_n)$ if and only if for each $\epsilon > 0$, the set $\{n \in N : \overline{d}(X_n, \mu) < \epsilon\} \notin I$.

Let Λ_X^I and Γ_X^I denotes the set of all *I*-limit points and *I*-cluster points of X respectively.

From the definition of I - cluster point of fuzzy real valued sequence and from Theorem 1 and Theorem 2 we can interpret that I – limit sup X and I – limit inf X are the greatest and the least I- cluster points of X. The following result follows easily from Theorem 4.

Theorem 7. A necessary and sufficient condition for the I- convergence of a fuzzy real valued sequence is that it is I- bounded and has a unique cluster point.

Theorem 8. If I is an admissible ideal, then for each fuzzy real valued sequence $X = (X_n)$ of elements of L(R), we have $\Lambda^I_X \subset \Gamma^I_X$.

Proof. Let $\mu \in \Lambda_X^I$. Then there exists a set $M = \{m_1 < m_2 < \cdots \} \notin I$ such that $\lim_k X_{m_k} = \mu$.

So given $\epsilon > 0$, there exists $k_0 \in N$ such that $\overline{d}(X_{m_k}, \mu) < \epsilon$ for all $k \ge k_0$. But the set $A = \{k \in N : \overline{d}(X_k, \mu) < \epsilon\} \supset M \setminus \{m_1, m_2, \cdots, m_{k_0}\}$. So $A \notin I$. Hence $\mu \in \Gamma_X^I$.

Theorem 9. The set Γ_X^I is closed in L(R) for each sequence $X = (X_n)$ of elements of L(R).

Proof. Let Y be a limit point of Γ_X^I . Let $\epsilon > 0$. Then every open ball $\overline{B}(Y, \epsilon)$ with centre at Y and radius ϵ must contain a point of Γ_X^I different from Y.

Let $Y_0 \in \Gamma_X^I \cap \overline{B}(Y, \epsilon)$. Choose $\delta > 0$ such that $\overline{B}(Y_0, \delta) \subset \overline{B}(Y, \epsilon)$. Then we have, $\{n \in N : \overline{d}(X_n, Y) < \epsilon\} \supset \{n \in N : \overline{d}(X_n, Y_0) < \delta\} \notin I$. Hence $Y \in \Gamma_X^I$.

Acknowledgement. The author thanks the referee for his valuable comments and suggestions.

References

- DEMIRCI K., I-limit superior and I-limit inferior, Math. Communications, 6(2)(2001), 165-172.
- [2] FANG J.X., HUANG H., On the level convergence of a sequence of fuzzy numbers, *Fuzzy Sets and Systems*, 147(2004), 417-435.
- [3] KOSTYRKO P., ŠALÁT T., WILCZYNSKI W., I-convergence, Real Anal. Exchange, 26(2000-2001), 669-686.
- [4] MATLOKA M., Sequences of fuzzy numbers, BUSEFAL, 28(1986), 28-37.
- [5] NANDA S., On sequences of fuzzy numbers, *Fuzzy Sets and Systems*, 33(1989), 123-126.
- [6] NURAY F., Lacunary statistical convergence of sequences of fuzzy numbers, *Fuzzy Sets and Systems*, 99(1998), 353-356.
- [7] NURAY F., SAVAS E., Statistical convergence of fuzzy numbers, *Math. Slovaca*, 45(3)(1995), 269-273.
- [8] TRIPATHY B.K., NANDA S., Absolute value of fuzzy real numbers and fuzzy sequence spaces, *Jour. Fuzzy Math.*, 8(4)(2001), 883-892.
- [9] ZADEH L.A., Fuzzy sets, Inform and Control, 8(1965), 338-353.

MAUSUMI SEN DEPARTMENT OF MATHEMATICS NATIONAL INSTITUTE OF TECHNOLOGY, SILCHAR P.O. NIT-788 010, ASSAM, INDIA *e-mail:* sen_mausumi@rediffmail.com

Received on 20.11.2008 and, in revised form, on 16.07.2009.