NAGARAJAN SUBRAMANIAN AND AYHAN ESI

THE NÖRLUND SPACE OF DOUBLE ENTIRE SEQUENCES

ABSTRACT. Let Γ^2 denote the spaces of all double entire sequences. Let Λ^2 denote the spaces of all double analytic sequences. This paper is devoted to a study of the general properties of Nörlund double entire sequence space η (Γ^2), Γ^2 and also study some of the properties of η (Γ^2) and η (Λ^2).

KEY WORDS: entire sequence, analytic sequence, double sequence, Nörlund space.

AMS Mathematics Subject Classification: 40A05, 40C05, 40D05.

1. Introduction

Let (x_{mn}) be a double sequence of real or complex numbers. Then the series $\sum_{m,n=1}^{\infty} x_{mn}$ is called a double series. The double series $\sum_{m,n=1}^{\infty} x_{mn}$ is said to be convergent if and only if the double sequence (S_{mn}) is convergent, where

$$S_{mn} = \sum_{i,j=1}^{m,n} x_{ij} \quad (m,n=1,2,3,...) \quad (\text{see}[1]).$$

We denote w^2 as the class of all complex double sequences (x_{mn}) . A sequence $x = (x_{mn})$ is said to be double analytic if

$$\sup_{mn} |x_{mn}|^{1/m+n} < \infty.$$

The vector space of all prime sense double analytic sequences are usually denoted by Λ^2 . A sequence $x = (x_{mn})$ is called double entire sequence if

$$|x_{mn}|^{1/m+n} \to 0$$
 as $m, n \to \infty$.

The vector space of all prime sense double entire sequences are usually denoted by Γ^2 . The space Λ^2 as well as Γ^2 is a metric space with the metric

(1)
$$d(x,y) = \sup_{mn} \left\{ |x_{mn} - y_{mn}|^{1/m+n} : m, n = 1, 2, 3, ... \right\},$$

for all $x = \{x_{mn}\}$ and $y = \{y_{mn}\}$ in Γ^2 .

Let $(P_{m,n})_{m,n=0}^{\infty}$ be a sequence of non-negative real numbers with $p_{00} > 0$. Consider the transformation

$$y_{mn} = \frac{1}{\sum_{i=0}^{m} \sum_{j=0}^{n} p_{ij}} \sum_{i=0}^{m} \sum_{j=0}^{n} p_{ij} x_{m-i,n-j}$$

for $m, n = 0, 1, 2, \cdots$. The set of all (x_{mn}) for which $(y_{mn}) \in \Gamma^2$ is called the Nörlund space of double entire sequence. The Nörlund space of double entire sequence is denoted by $\eta(\Gamma^2)$. Similarly the set of all (x_{mn}) for which $(y_{mn}) \in \Lambda^2$ is called the Nörlund space of double analytic sequence is denoted by $\eta(\Lambda^2)$. We write $P_{mn} = p_{00} + \cdots + p_{mn}$, for $m, n = 0, 1, 2, \cdots$.

All absolutely convex absorbent closed subset of locally convex Topological Vector Space X is called barrel. X is called barreled space if each barrel is a neighbourhood of zero.

A locally convex Topological Vector Space X is said to be semi reflexive if each bounded closed set in X is $\sigma(X, X')$ –compact.

Consider a double sequence $x = (x_{ij})$. The $(m, n)^{th}$ section $x^{[m,n]}$ of the sequence is defined by $x^{[m,n]} = \sum_{i,j=0}^{m,n} x_{ij} \delta_{ij}$ for all $m, n \in \mathbb{N}$, where

$$\delta_{mn} = \begin{pmatrix} 0, & 0, & \dots 0, & 0, & \dots \\ 0, & 0, & \dots 0, & 0, & \dots \\ \cdot & & & & \\ \cdot & & & & \\ 0, & 0, & \dots 1, & 0, & \dots \\ 0, & 0, & \dots 0, & 0, & \dots \end{pmatrix}$$

with 1 in the $(m, n)^{th}$ position and zero other wise. An FK-space(or a metric space) X is said to have AK property if (δ_{mn}) is a Schauder basis for X. Or equivalently $x^{[m,n]} \to x$. We need the following inequality in the sequel of the paper:

Lemma 1. For $a, b \ge 0$ and 0 , we have

$$(a+b)^p \le a^p + b^p.$$

2. Preliminaries

Let us define the following sets of double sequences:

$$\mathcal{M}_{u}(t) := \left\{ (x_{mn}) \in w^{2} : \sup_{m,n \in N} |x_{mn}|^{t_{mn}} < \infty \right\},$$

$$\mathcal{C}_{p}(t) := \left\{ (x_{mn}) \in w^{2} : p - \lim_{m,n \to \infty} |x_{mn} - l|^{t_{mn}} = 1 \text{ for some } l \in \mathbb{C} \right\},\$$
$$\mathcal{C}_{0p}(t) := \left\{ (x_{mn}) \in w^{2} : p - \lim_{m,n \to \infty} |x_{mn}|^{t_{mn}} = 1 \right\},\$$
$$\mathcal{L}_{u}(t) := \left\{ (x_{mn}) \in w^{2} : \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} |x_{mn}|^{t_{mn}} < \infty \right\},\$$
$$\mathcal{C}_{bp}(t) := \mathcal{C}_{p}(t) \bigcap \mathcal{M}_{u}(t) \text{ and } \mathcal{C}_{0bp}(t) = \mathcal{C}_{0p}(t) \bigcap \mathcal{M}_{u}(t);$$

where $t = (t_{mn})$ is the sequence of strictly positive reals t_{mn} for all $m, n \in \mathbb{N}$ and $p - \lim_{m,n\to\infty}$ denotes the limit in the Pringsheim's sense. In the case $t_{mn} = 1$ for all $m, n \in \mathbb{N}$; $\mathcal{M}_{u}(t)$, $\mathcal{C}_{p}(t)$, $\mathcal{C}_{0p}(t)$, $\mathcal{L}_{u}(t)$, $\mathcal{C}_{bp}(t)$ and $\mathcal{C}_{0bp}(t)$ reduce to the sets $\mathcal{M}_u, \mathcal{C}_p, \mathcal{C}_{0p}, \mathcal{L}_u, \mathcal{C}_{bp}$ and \mathcal{C}_{0bp} , respectively. Now, we may summarize the knowledge given in some document related to the double sequence spaces. Göhan and Colak [10, 11] have proved that $\mathcal{M}_{u}(t)$ and $\mathcal{C}_{p}(t), \mathcal{C}_{bp}(t)$ are complete paranormed spaces of double sequences and gave the $\alpha -$, $\beta -$, $\gamma -$ duals of the spaces $\mathcal{M}_{u}(t)$ and $\mathcal{C}_{bp}(t)$. Quite recently, in her PhD thesis, Zelter [12] has essentially studied both the theory of topological double sequence spaces and the theory of summability of double sequences. Mursaleen and Edely [13] have recently introduced the statistical convergence and Cauchy for double sequences and given the relation between statistical convergent and strongly Cesàro summable double sequences. Nextly, Mursaleen [14] and Mursaleen and Edely [15] have defined the almost strong regularity of matrices for double sequences and applied these matrices to establish a core theorem and introduced the M-core for double sequences and determined those four dimensional matrices transforming every bounded double sequences $x = (x_{ik})$ into one whose core is a subset of the M-core of x. More recently, Altay and Basar [16] have defined the spaces \mathcal{BS} , $\mathcal{BS}(t)$, \mathcal{CS}_p , \mathcal{CS}_{bp} , \mathcal{CS}_r and \mathcal{BV} of double sequences consisting of all double series whose sequence of partial sums are in the spaces \mathcal{M}_u , $\mathcal{M}_{u}(t), \mathcal{C}_{p}, \mathcal{C}_{bp}, \mathcal{C}_{r}$ and \mathcal{L}_{u} , respectively, and also examined some properties of those sequence spaces and determined the α - duals of the spaces $\mathcal{BS}, \mathcal{BV}$, \mathcal{CS}_{bp} and the $\beta(\vartheta)$ – duals of the spaces \mathcal{CS}_{bp} and \mathcal{CS}_r of double series. Quite recently Basar and Sever [17] have introduced the Banach space \mathcal{L}_q of double sequences corresponding to the well-known space ℓ_q of single sequences and examined some properties of the space \mathcal{L}_q . Quite recently Subramanian and Misra [18,19] have studied the space $\chi^2_M(p,q,u)$ of double sequences and gave some inclusion relations and also studied characterization and general properties of gai sequences via double Orlicz space of χ^2_M of χ^2 establishing some inclusion relations.

Some initial works on double sequence spaces is found in Bromwich[3]. Later on it was investigated by Hardy[5], Moricz[6], Moricz and Rhoades[7],

Basarir and Solankan[2], Tripathy[8], Colak and Turkmenoglu[4], Turkmenoglu[9], and many others.

3. Main results

Proposition 1. $\eta(\Gamma^2) = \Gamma^2$.

Proof. Let $x = (x_{mn}) \in \eta(\Gamma^2)$. Then $y \in \Gamma^2$ so that for every $\epsilon > 0$, we have a positive integer n_0 such that

$$\left|\frac{p_{00}x_{mn} + \dots + p_{mn}x_{00}}{P_{mn}}\right| < \epsilon^{m+n} \text{ for all } m, n \ge n_0$$

Take $p_{00} = 1$; $p_{11} = \cdots = p_{mn} = 0$. We then have $|x_{mn}| < \epsilon^{m+n}, \forall m, n \ge n_0$. Therefore $x = (x_{mn}) \in \Gamma^2$. Hence

(2)
$$\eta\left(\Gamma^2\right) \subset \Gamma^2$$

On the other hand, let $x = (x_{mn}) \in \Gamma^2$. But for any given $\epsilon > 0$, there exists a positive integer n_0 such that $|x_{mn}| < \epsilon^{m+n}$, $\forall m, n \ge n_0$ We have

$$|y_{mn}||! \leq \left| \frac{p_{00}x_{mn} + \dots + p_{mn}x_{00}}{P_{mn}} \right|$$

$$\leq \frac{1}{P_{mn}} \left[p_{00} \left| x_{mn} \right| + \dots + p_{mn} \left| x_{00} \right| \right]$$

$$\leq \frac{1}{P_{mn}} \left[p_{00}\epsilon^{m+n} + \dots + p_{mn}\epsilon^{0+0} \right]$$

$$\leq \frac{\epsilon^{m+n}}{P_{mn}} \left[p_{00} + \dots + p_{mn} \right]$$

$$\leq \frac{\epsilon^{m+n}}{P_{mn}} P_{mn} = \epsilon^{m+n} \forall m, n \geq n_0.$$

Therefore $(y_{mn}) \in \Gamma^2$. Consequently $x \in \eta(\Gamma^2)$. Hence

(3)
$$\Gamma^2 \subset \eta \left(\Gamma^2 \right)$$

From (2) and (3) we obtain $\eta(\Gamma^2) = \Gamma^2$. This completes the proof.

Proposition 2. $\eta(\Lambda^2) = \Lambda^2$.

Proof. Let $(x_{mn}) \in \Lambda^2$. Then there exists a positive constant T such that

$$\begin{aligned} |x_{mn}| &\leq T^{m+n} \text{ for } m, n = 0, 1, 2, \cdots \\ |y_{mn}| &\leq \frac{p_{00}T^{m+n} + \dots + p_{mn}T^{0+0}}{P_{mn}} \\ &\leq \frac{T^{m+n}}{P_{mn}} \left[p_{00} + \dots + \frac{p_{mn}}{T^{m+n}} \right] \\ &\leq \frac{T^{m+n}}{P_{mn}} \left[p_{00} + \dots + p_{mn} \right] \\ &\leq \frac{T^{m+n}}{P_{mn}} P_{mn} = T^{m+n}, \text{ for } m, n = 0, 1, 2, \cdots . \end{aligned}$$

Hence $(y_{mn}) \in \Lambda^2$. But then $x = (x_{mn}) \in \eta(\Gamma^2)$. Consequently

(4)
$$\Lambda^2 \subset \eta \left(\Lambda^2 \right)$$

On the other hand let $(x_{mn}) \in \eta(\Lambda^2)$. Then $(y_{mn}) \in \Lambda^2$. Hence there exists a positive constant T such that $|y_{mn}| < T^{m+n}$ for $m, n = 0, 1, 2, \cdots$. This in turn implies that

$$\left|\frac{p_{00}x_{mn} + \dots + P_{mn}x_{00}}{P_{mn}}\right| < T^{m+n}$$

Hence

$$\frac{1}{P_{mn}}\left(|p_{00}x_{mn} + \dots + p_{mn}x_{00}|\right) < T^{m+n}$$

and thus

$$|p_{00}x_{mn} + \dots + p_{mn}x_{00}| < P_{mn}T^{m+n}$$

Take $p_{00} = 1$; $p_{11} = \cdots = p_{mn} = 0$. Then it follows that $P_{mn} = 1$ and so $|x_{mn}| < T^{m+n}$ for all m, n. Consequently $x = (x_{mn}) \in \Lambda^2$. Hence

(5)
$$\eta\left(\Lambda^2\right) \subset \Lambda^2$$

From (4) and (5) we get $\eta(\Lambda^2) = \Lambda^2$. This completes the proof.

Proposition 3. Γ^2 is not a barreled space.

Proof. Let

$$A = \left\{ x \in \Gamma^2 : |x_{mn}|^{\frac{1}{m+n}} \le \frac{1}{m+n}, \forall m, n \right\}$$

Then A is an absolutely convex, closed absorbent in Γ^2 . But A is not a neighbour hood of zero. Hence Γ^2 is not barreled.

Proposition 4. Γ^2 is not semi reflexive.

Proof. Let $\{\delta^{(mn)}\} \in U$ be the unit closed ball in Γ^2 . Clearly no subsequence of $\{\delta^{(mn)}\}$ can converge weakly to any $y \in \Gamma^2$. Hence Γ^2 is not semi reflexive.

References

- [1] APOSTOL T., Mathematical Analysis, Addison-wesley, London, (1978).
- [2] ALTAY B., BASAR F., Some new spaces of double sequences, J. Math. Anal. Appl., 309(1)(2005), 70-90.
- [3] BASAR F., SEVER Y., The space \mathcal{L}_p of double sequences, Math. J. Okayama Univ., 51(2009), 149-157.
- [4] BASARIR M., SOLANCAN O., On some double sequence spaces, J. Indian Acad. Math., 21(2)(1999), 193-200.
- [5] BROMWICH, An Introduction to the Theory of Infinite Series, Macmillan and Co.Ltd., New York, (1965).
- [6] COLAK R., TURKMENOGLU A., The double sequence spaces $\ell_{\infty}^2(p), c_0^2(p)$ and $c^2(p)$, (to appear).
- [7] GÖKHAN A., COLAK R., The double sequence spaces $c_2^P(p)$ and $c_2^{PB}(p)$, Appl. Math. Comput., 157(2)(2004), 491-501.
- [8] GÖKHAN A., COLAK R., Double sequence spaces ℓ₂[∞], Appl. Math. Comput., 160(1)(2005), 147-153.
- [9] HARDY G.H., On the convergence of certain multiple series, Proc. Camb. Phil. Soc., 19(1917), 86-95.
- [10] MORICZ F., Extention of the spaces c and c_0 from single to double sequences, Acta. Math. Hungerica, 57(1-2)(1991), 129-136.
- [11] MORICZ F., RHOADES B.E., Almost convergence of double sequences and strong regularity of summability matrices, *Math. Proc. Camb. Phil. Soc.*, 104(1988), 283-294.
- [12] MURSALEEN M., Almost strongly regular matrices and a core theorem for double sequences, J. Math. Anal. Appl., 293(2)(2004), 523-531.
- [13] MURSALEEN M., EDELY O.H.H., Almost convergence and a core theorem for double sequences, J. Math. Anal. Appl., 293(2)(2004), 532-540.
- [14] MURSALEEN M., EDELY O.H.H., Statistical convergence of double sequences, J. Math. Anal. Appl., 288(1)(2003), 223-231.
- [15] SUBRAMANIAN N., MISRA U.K., Characterization of gai sequences via double Orlicz space, Southeast Asian Bulletin of Mathematics, (revised).
- [16] SUBRAMANIAN N., MISRA U.K., Tensorial transformations of double gai sequence spaces, International Journal of Computational and Mathematical Sciences, 3(4)(2009), 186-188.
- [17] SUBRAMANIAN N., MISRA U.K., The generalized double of gai sequence spaces, *Fasc. Math.*, 43(2010), 153-171.
- [18] SUBRAMANIAN N., MISRA U.K., The semi normed space defined by a double gai sequence of modulus function, *Fasc. Math.*, 45(2010).

- [19] SUBRAMANIAN N., NALLASWAMY R., SAIVARAJU N., Characterization of entire sequences via double Orlicz space, *Internaional Journal Mathematics* and Mathematical Sciences, Vol. 2007, Article ID 59681, (2007), 10 pages.
- [20] SUBRAMANIAN N., TRIPATHY B.C., MURUGESAN C., The Cesáro of double entire sequences, *International Mathematical Forum*, 4(2)(2009), 49-59.
- [21] SUBRAMANIAN N., TRIPATHY B.C., MURUGESAN C., The double sequence space of Γ^2 , *Fasc. Math.*, 40(2008), 91-103.
- [22] TRIPATHY B.C., On statistically convergent double sequences, Tamkang J. Math., 34(3)(2003), 231-237.
- [23] TURKMENOGLU A., Matrix transformation between some classes of double sequences, Jour. Inst. of math. and Comp. Sci. (Math. Seri.), 12(1)(1999), 23-31.
- [24] ZELTSER M., Investigation of Double Sequence Spaces by Soft and Hard Analitical Methods, Dissertationes Mathematicae Universitatis Tartuensis 25, *Tartu University Press, Univ. of Tartu, Faculty of Mathematics and Computer Science,* Tartu 2001.

NAGARAJAN SUBRAMANIAN DEPARTMENT OF MATHEMATICS SASTRA UNIVERSITY TANJORE-613 402, INDIA *e-mail:* nsmaths@yahoo.com

Ayhan Esi Department of Mathematics Science and Art Faculty Adiyaman University Adiyaman 02040, Turkey *e-mail:* aesi23@hotmail.com

Received on 12.01.2009 and, in revised form, on 08.08.2009.