F A S C I C U L I M A T H E M A T I C I

Nr 43

Nagarajan Subramanian and Umakanta Misra

THE GENERALIZED DOUBLE DIFFERENCE OF GAI SEQUENCE SPACES

Abstract

In this paper, we define some new sequence spaces and give some topological properties of the sequence spaces $\chi^{2}\left(\Delta_{v}^{m}, s, p\right)$ and $\Lambda^{2}\left(\Delta_{v}^{m}, s, p\right)$ and investigate some inclusion relations.

KEY words: double difference sequence spaces, gai sequence, analytic sequence, paranorm.
AMS Mathematics Subject Classification: 40A05, 40C05, 40D05.

1. Introduction

Throughout w, χ and Λ denote the classes of all, gai and analytic scalar valued single sequences respectively.
We write w^{2} for the set of all complex sequences $\left(x_{m n}\right)$, where $m, n \in \aleph$ the set of positive integers. Then w^{2} is a linear space under the coordinate wise addition and scalar multiplication.

Some initial works on double sequence spaces is found in Bromwich [3]. Later on it was investigated by Hardy [5], Moricz [9], Moricz and Rhoades [10], Basarir and Solankan [2], Tripathy [11], Colak and Turkmenoglu [4], Turkmenoglu [12], and many others.

We need the following inequality in the sequel of the paper. For $a, b \geq 0$ and $0<p<1$, we have

$$
\begin{equation*}
(a+b)^{p} \leq a^{p}+b^{p} \tag{1}
\end{equation*}
$$

The double series $\sum_{m, n=1}^{\infty} x_{m n}$ is called convergent if and only if the double sequence. $\left(s_{m n}\right)$ is called convergent, where $s_{m n}=\sum_{i, j=1}^{m, n} x_{i j}(m, n=$ $1,2,3, \ldots$) (see[9]). A sequence $x=\left(x_{m n}\right)$ is said to be double analytic if $\sup _{m n}\left|x_{m n}\right|^{1 / m+n}<\infty$. The vector space of all double analytic sequences will be denoted by Λ^{2}. A sequence $x=\left(x_{m n}\right)$ is called double gai sequence if $\left((m+n)!\left|x_{m n}\right|\right)^{1 / m+n} \rightarrow 0$ as $m, n \rightarrow \infty$. The double gai sequences will be denoted by χ^{2}. Let $\phi=\{$ allfinitesequences $\}$. Consider a double
sequence $x=\left(x_{i j}\right)$. The $(m, n)^{t h}$ section $x^{[m, n]}$ of the sequence is defined by $x^{[m, n]}=\sum_{i, j=0}^{m, n} x_{i j} \Im_{i j}$ for all $m, n \in N$,

$$
\Im_{m n}=\left(\begin{array}{ccccc}
0, & 0, & \ldots 0, & 0, & \ldots \\
0, & 0, & \ldots 0, & 0, & \ldots \\
\cdot & & & & \\
\cdot & & & & \\
\cdot & & & & \\
0, & 0, & \ldots 1, & -1, & \ldots \\
0, & 0, & \ldots 0, & 0, & \ldots
\end{array}\right)
$$

with 1 in the $(m, n)^{t h}$ position, -1 in the $(m+1, n+1)^{t h}$ and zero other wise. An FK-space(or a metric space) X is said to have AK property if $\left(\delta_{m n}\right)$ is a Schauder basis for X. Or equivalently $x^{[m, n]} \rightarrow x$. An FDK-space is a double sequence space endowed with a complete metrizable; locally convex topology under which the coordinate mappings $x=\left(x_{k}\right) \rightarrow\left(x_{m n}\right)(m, n \in \aleph)$ are also continuous. If X is a sequence space, we give the following definitions:
(i) $X^{\prime}=$ the continuous dual of X;
(ii) $X^{\alpha}=\left\{a=\left(a_{m n}\right): \sum_{m, n=1}^{\infty}\left|a_{m n} x_{m n}\right|<\infty\right.$, for each $\left.x \in X\right\}$
(iii) $X^{\beta}=\left\{a=\left(a_{m n}\right): \sum_{m, n=1}^{\infty} a_{m n} x_{m n}\right.$ is convegent,for each $\left.x \in X\right\}$
(iv) $X^{\gamma}=\left\{a=\left(a_{m n}\right): \sup _{m, n \geq 1}\left|\sum_{m, n=1}^{M, N} a_{m n} x_{m n}\right|<\infty\right.$, for each $\left.x \in X\right\}$;
(v) let X be an FK-space $\supset \phi$; then $X^{f}=\left\{f\left(\delta_{m n}\right): f \in X^{\prime}\right\}$;
(vi) $X^{\Lambda}=\left\{a=\left(a_{m n}\right): \sup _{m n}\left|a_{m n} x_{m n}\right|^{1 / m+n}<\infty\right.$, for each $\left.x \in X\right\}$;
$X^{\alpha}, X^{\beta}, X^{\gamma}$ are called $\alpha-($ or Köthe-Toeplitz) dual of $X, \beta-($ or generalized-Köthe-Toeplitz) dual of X, γ - dual of X, Λ-dual of X respectively.

The notion of difference sequence spaces (for single sequences) was introduced by Kizmaz [7] as follows

$$
Z(\Delta)=\left\{x=\left(x_{k}\right) \in w:\left(\Delta x_{k}\right) \in Z\right\}
$$

for $Z=c, c_{0}$ and ℓ_{∞}, where $\Delta x_{k}=x_{k}-x_{k+1}$ for all $k \in \aleph$. Here w, c, c_{0} and ℓ_{∞} denote the classes of all, convergent, null and bounded sclar valued single sequences respectively. The above spaces are Banach spaces normed by

$$
\|x\|=\left|x_{1}\right|+\sup _{k \geq 1}\left|\Delta x_{k}\right|
$$

Later on the notion was further investigated by many others. We now introduce the following difference double sequence spaces defined by

$$
Z(\Delta)=\left\{x=\left(x_{m n}\right) \in w^{2}:\left(\Delta x_{m n}\right) \in Z\right\}
$$

where $Z=\Lambda^{2}, \chi^{2}$ and $\Delta x_{m n}=\left(x_{m n}-x_{m n+1}\right)-\left(x_{m+1 n}-x_{m+1 n+1}\right)=$ $x_{m n}-x_{m n+1}-x_{m+1 n}+x_{m+1 n+1}$ for all $m, n \in \aleph$.

Let $p=\left(p_{m n}\right)$ be a sequence of real numbers such that $p_{m n}>0$ for all m, n and $\sup _{m n} p_{m n}=H<\infty, v=\left(v_{m n}\right)$ be any fixed sequence of non-zero complex numbers and $m \in \aleph$ be fixed. This assumption is made through out the rest of this paper.

2. Lemma

As in single sequences (see [11, Theorem 7.2.7])
(i) $X^{\gamma} \subset X^{f}$;
(ii) If X has $\mathrm{AD}, X^{\beta}=X^{f}$;
(iii) If X has $\mathrm{AD}, X^{\beta}=X^{f}$.

3. Definitions and preliminaries

Let w^{2} denote the set of all complex double sequences. A sequence $x=\left(x_{m n}\right)$ is said to be double analytic if $\sup _{m n}\left|x_{m n}\right|^{1 / m+n}<\infty$. The vector space of all prime sense double analytic sequences will be denoted by Λ^{2}. A sequence $x=\left(x_{m n}\right)$ is called prime sense double gai sequence if $\left((m+n)!\left|x_{m n}\right|\right)^{1 / m+n} \rightarrow 0$ as $m, n \rightarrow \infty$. The double gai sequences will be denoted by χ^{2}. The space Λ^{2} is a metric space with the metric

$$
\begin{equation*}
d(x, y)=\sup _{m n}\left\{\left|x_{m n}-y_{m n}\right|^{1 / m+n}: m, n: 1,2,3, \ldots\right\} \tag{2}
\end{equation*}
$$

for all $x=\left\{x_{m n}\right\}$ and $y=\left\{y_{m n}\right\}$ in Λ^{2}.
The space χ^{2} is a metric space with the metric

$$
\begin{equation*}
d(x, y)=\sup _{m n}\left\{\left((m+n)!\left|x_{m n}-y_{m n}\right|\right)^{1 / m+n}: m, n: 1,2,3, \ldots\right\} \tag{3}
\end{equation*}
$$

for all $x=\left\{x_{m n}\right\}$ and $y=\left\{y_{m n}\right\}$ in χ^{2}.
Throughout the article $w^{2}, \chi^{2}(\Delta), \Lambda^{2}(\Delta)$ denote the spaces of all, prime sense double gai difference sequence spaces and prime sense double analytic difference sequence spaces respectively.

Let w^{2} denote the set of all complex double sequences $x=\left(x_{m n}\right)_{m, n=1}^{\infty}$.
Given a double sequence $x \in w^{2}$, define the sets

$$
\begin{aligned}
& \chi^{2}(\Delta)=\left\{x \in w^{2}:\left((m+n)!\left|\Delta x_{m n}\right|\right)^{1 / m+n} \rightarrow 0 \text { as } m, n \rightarrow \infty\right\} \\
& \Lambda^{2}(\Delta)=\left\{x \in w^{2}: \sup _{m n}\left|\Delta x_{m n}\right|^{1 / m+n}<\infty\right\}
\end{aligned}
$$

The space $\Lambda^{2}(\Delta)$ is a metric space with the metric

$$
d(x, y)=\sup _{m n}\left\{\left|\Delta x_{m n}-\Delta y_{m n}\right|^{1 / m+n}: m, n=1,2, \cdots\right\}
$$

for all $x=\left(x_{m n}\right)$ and $y=\left(y_{m n}\right)$ in $\Lambda^{2}(\Delta)$.
The space $\chi^{2}(\Delta)$ is a metric space with the metric

$$
d(x, y)=\sup _{m n}\left\{\left((m+n)!\left|\Delta x_{m n}-\Delta y_{m n}\right|\right)^{1 / m+n}: m, n=1,2, \cdots\right\}
$$

for all $x=\left(x_{m n}\right)$ and $y=\left(y_{m n}\right)$ in $\chi^{2}(\Delta)$.
Now we define the following sequence spaces:

$$
\begin{aligned}
& \chi^{2}\left(\Delta_{v}^{m}, s, p\right) \\
& \quad=\left\{x=\left(x_{m n}\right) \in w^{2}:(m n)^{-s}\left(\left((m+n)!\left|\Delta_{v}^{m} x_{m n}\right|\right)^{1 / m+n}\right)^{p_{m n}} \rightarrow 0\right. \\
& \quad(m, n \rightarrow \infty), s \geq 0\} \\
& \Lambda^{2}\left(\Delta_{v}^{m}, s, p\right) \\
& \quad=\left\{x=\left(x_{m n}\right) \in w^{2}: \sup _{m n}(m n)^{-s}\left(\left|\Delta_{v}^{m} x_{m n}\right|^{1 / m+n}\right)^{p_{m n}}<\infty, s \geq 0\right\}
\end{aligned}
$$

where

$$
\begin{aligned}
\Delta_{v}^{0} x_{m n} & =\left(v_{m n} x_{m n}\right) \\
\Delta_{v} x_{m n} & =\left(v_{m n} x_{m n}-v_{m n+1} x_{m n+1}-v_{m+1 n} x_{m+1 n}+v_{m+1 n+1} x_{m+1 n+1}\right) \\
\Delta_{v}^{m} x_{m n} & =\Delta \Delta_{v}^{m-1} x_{m n} \\
& =\left(\Delta_{v}^{m-1} x_{m n}-\Delta_{v}^{m-1} x_{m n+1}-\Delta_{v}^{m-1} x_{m+1 n}+\Delta_{v}^{m-1} x_{m+1 n+1}\right)
\end{aligned}
$$

we get the following sequence spaces from the above sequence spaces by choosing some special p, m, s and v.

If $s=0, m=1$ and

$$
v=\left(\begin{array}{ccccc}
1, & 1, & \ldots 1, & 1, & 0, \ldots \\
1, & 1, & \ldots 1, & 1, & 0, \ldots \\
\cdot & & & & \\
\cdot & & & & \\
\cdot & & & \\
1, & 1, & \ldots 1, & 1, & 0, \ldots \\
0, & 0, & \ldots 0, & 0, & 0, \ldots
\end{array}\right)
$$

with 1 upto $(m, n)^{t h}$ position and zero other wise and $p_{m n}=1$ for all m, n. We have

$$
\begin{aligned}
& \chi^{2}(\Delta)=\left\{x=\left(x_{m n}\right): \Delta x \in \chi^{2}\right\} \\
& \Lambda^{2}(\Delta)=\left\{x=\left(x_{m n}\right): \Delta x \in \Lambda^{2}\right\}
\end{aligned}
$$

If $s=0$ and $p_{m n}=1$ for all m, n, we have the following sequence spaces

$$
\begin{aligned}
& \chi^{2}\left(\Delta_{v}^{m}\right)=\left\{x=\left(x_{m n}\right) \in w^{2}: \Delta_{v}^{m} x \in \chi^{2}\right\} \\
& \Lambda^{2}\left(\Delta_{v}^{m}\right)=\left\{x=\left(x_{m n}\right) \in w^{2}: \Delta_{v}^{m} x \in \Lambda^{2}\right\}
\end{aligned}
$$

If $s=0, m=0$ and

$$
v=\left(\begin{array}{ccccc}
1, & 1, & \ldots 1, & 1, & 0, \ldots \\
1, & 1, & \ldots 1, & 1, & 0, \ldots \\
\cdot & & & & \\
\cdot & & & & \\
\cdot & & & \\
1, & 1, & \ldots 1, & 1, & 0, \ldots \\
0, & 0, & \ldots 0, & 0, & 0, \ldots
\end{array}\right)
$$

with 1 upto $(m, n)^{t h}$ position and zero other wise. We have the following sequence spaces

$$
\begin{aligned}
& \chi^{2}(p)=\left\{x=\left(x_{m n}\right) \in w^{2}:\left((m+n)!\left|x_{m n}\right|\right)^{p_{m n} / m+n} \rightarrow 0,(m, n \rightarrow \infty)\right\} \\
& \Lambda^{2}(p)=\left\{x=\left(x_{m n}\right) \in w^{2}: \sup _{m n}\left|x_{m n}\right|^{p_{m n} / m+n}<\infty\right\}
\end{aligned}
$$

If $m=0$ and

$$
v=\left(\begin{array}{ccccc}
1, & 1, & \ldots 1, & 1, & 0, \ldots \\
1, & 1, & \ldots 1, & 1, & 0, \ldots \\
\cdot & & & & \\
\cdot & & & & \\
\cdot & & & \\
1, & 1, & \ldots 1, & 1, & 0, \ldots \\
0, & 0, & \ldots 0, & 0, & 0, \ldots
\end{array}\right)
$$

with 1 upto $(m, n)^{t h}$ position and zero other wise. We have the following sequence spaces

$$
\begin{aligned}
& \chi^{2}(p, s)=\left\{x=\left(x_{m n}\right) \in w^{2}:(m n)^{-s}\left((m+n)!\left|x_{m n}\right|\right)^{p_{m n} / m+n} \rightarrow 0\right. \\
& (m, n \rightarrow \infty), s \geq 0\} \\
& \Lambda^{2}(p, s)=\left\{x=\left(x_{m n}\right) \in w^{2}: \sup _{m n}(m n)^{-s}\left|x_{m n}\right|^{p_{m n} / m+n}<\infty, s \geq 0\right\}
\end{aligned}
$$

If $s=0, m=0$ and $p_{m n}=1$

$$
v=\left(\begin{array}{ccccc}
1, & 1, & \ldots 1, & 1, & 0, \ldots \\
1, & 1, & \ldots 1, & 1, & 0, \ldots \\
\cdot & & & & \\
\cdot & & & & \\
\cdot & & & & \\
1, & 1, & \ldots 1, & 1, & 0, \ldots \\
0, & 0, & \ldots 0, & 0, & 0, \ldots
\end{array}\right)
$$

for all m, n with 1 upto $(m, n)^{t h}$ position and zero other wise. We have χ^{2} and Λ^{2}. If $s=0$ we have $\chi^{2}\left(\Delta_{v}^{m}, p\right)$ and $\Lambda^{2}\left(\Delta_{v}^{m}, p\right)$

For a subspace ψ of a linear space is said to be sequence algebra if $x, y \in \psi$ implies that $x \cdot y=\left(x_{m n} y_{m n}\right) \in \psi$, see Kamptan and Gupta [13].

A sequence E is said to be solid (or normal) if $\left(\lambda_{m n} x_{m n}\right) \in E$, whenever $\left(x_{m n}\right) \in E$ for all sequences of scalars $\left(\lambda_{m n}=k\right)$ with $\left|\lambda_{m n}\right| \leq 1$.

If X is a linear space over the field C, then a paranorm on X is a function $g: g(\theta)=0$ where $\theta=(0,0,0, \cdots), g(-x)=g(x), g(x+y) \leq g(x)+g(y)$ and $\left|\lambda-\lambda_{0}\right| \rightarrow 0, g\left(x-x_{0}\right)$ imply $g\left(\lambda x-\lambda_{0} x_{0}\right) \rightarrow 0$, where $\lambda, \lambda_{0} \in C$ and $x, x_{0} \in X$. A paranormed space is a linear space X with a paranorm g and is written (X, g).

4. Main results

Theorem 1. The following statements are hold
(i) $\chi^{2}\left(\Delta_{v}^{m}, s\right) \subset \Lambda^{2}\left(\Delta_{v}^{m}, s\right)$ and the inclusion is strict.
(ii) $X\left(\Delta_{v}^{m}, s, p\right) \subset X\left(\Delta_{v}^{m+1}, s, p\right)$ does not hold in general for any $X=\chi^{2}$ and Λ^{2}.
Proof. (i) If we choose $s=0$,

$$
x=\left(\begin{array}{lllll}
1, & 0, & \ldots 1, & 0, & 0, \ldots \\
1, & 0, & \ldots 1, & 0, & 0, \ldots \\
\cdot & & & & \\
\cdot & & & & \\
\cdot & & & & \\
1, & 0, & \ldots 1, & 0, & 0, \ldots \\
0, & 0, & \ldots 0, & 0, & 0, \ldots
\end{array}\right) \text { and } v=\left(\begin{array}{lllll}
1, & 1, & \ldots 1, & 1, & 0, \ldots \\
1, & 1, & \ldots 1, & 1, & 0, \ldots \\
\cdot & & & & \\
\cdot & & & & \\
\cdot & & & \\
1, & 1, & \ldots 1, & 1, & 0, \ldots \\
0, & 0, & \ldots 0, & 0, & 0, \ldots
\end{array}\right)
$$

Hence $x \in \Lambda^{2}\left(\Delta_{v}^{m}, s\right)$, but $x \notin \chi^{2}\left(\Delta_{v}^{m}, s\right)$
(ii) Let $v=\left(\begin{array}{lllll}1, & 1, & \ldots 1, & 1, & 0, \ldots \\ 1, & 1, & \ldots 1, & 1, & 0, \ldots \\ \cdot & & & & \\ . & & & \\ \cdot & & & \\ 1, & 1, & \ldots 1, & 1, & 0, \ldots \\ 0, & 0, & \ldots 0, & 0, & 0, \ldots\end{array}\right), p=\left(p_{m n}\right)$ and $x=\left(x_{m n}\right)$ given
by

$$
\begin{aligned}
& p_{m n}=1, \quad\left((m+n)!\left|x_{m n}\right|\right)^{1 / m+n}=m^{2} n^{2} \text { if } m, n \text { is odd } \\
& p_{m n}=2, \quad\left((m+n)!\left|x_{m n}\right|\right)^{1 / m+n}=m n \text { if } m, n \text { if even }
\end{aligned}
$$

$$
0 \text { otherwise. }
$$

Since for $m, n \geq 1$,

$$
\left((m+n)!\left|\Delta_{v}^{0} x_{m n}\right|\right)^{p_{m n} / m+n}=\left((m+n)!\left|x_{m n}\right|\right)^{p_{m n} / m+n}=m^{2} n^{2}
$$

$$
m^{-3} n^{-3}\left((m+n)!\left|\Delta_{v}^{0} x_{m n}\right|\right)^{p_{m n} / m+n}=m^{-3} n^{-3} m^{2} n^{2}=m^{-1} n^{-1} \rightarrow 0
$$ $(m, n \rightarrow \infty)$ and for $j \geq 1$

$$
\begin{aligned}
& \left((4 j)!\left|\Delta_{v} x_{2 j, 2 j}\right|\right)^{p_{2 j, 2 j} / 4 j}=\left(4 j^{3}+4 j^{2}+1\right)^{2} \\
& (4 j)^{-3}\left((4 j)!\left|\Delta_{v} x_{2 j, 2 j}\right|\right)^{p_{2 j, 2 j} / 4 j} \geq 4 j \rightarrow \infty \quad(j \rightarrow \infty) .
\end{aligned}
$$

Now, we can see that $x \in \chi^{2}\left(\Delta_{v}^{0}, 3, p\right)$ and $x \notin \Lambda^{2}\left(\Delta_{v}^{0}, 3, p\right)$, which imply that $X\left(\Delta_{v}^{m}, s, p\right)$ is not a subset of $X\left(\Delta_{v}^{m+1}, s, p\right)$. This completes the proof.

Theorem 2. $\chi^{2}\left(\Delta_{v}^{m}, s, p\right)$ and $\Lambda^{2}\left(\Delta_{v}^{m}, s, p\right)$ are linear spaces over the complex field C.

Proof. Suppose that $M=\max \left(1, \sup _{m, n \geq \aleph} p_{m n}\right)$ Since $p_{m n} / M \leq 1$, we have for all m, n

$$
\begin{equation*}
\left|\Delta_{v}^{m}\left(x_{m n}+y_{m n}\right)\right|^{p_{m n} / M} \leq\left(\left|\Delta_{v}^{m} x_{m n}\right|^{p_{m n} / M}+\left|\Delta_{v}^{m} y_{m n}\right|^{p_{m n} / M}\right) \tag{4}
\end{equation*}
$$

and for all $\lambda \in C$

$$
\begin{equation*}
|\lambda|^{p_{m n} / M} \leq \operatorname{Max}(1,|\lambda|) \tag{5}
\end{equation*}
$$

Now the linearity follows from (4) and (5). This completes the proof.
Theorem 3. Let

$$
\begin{aligned}
& N_{1}=\min \left\{n_{0}: \sup _{m, n \geq n_{0}}(m n)^{-s}\left(\left((m+n)!\left|\Delta_{v}^{m} x_{m n}\right|\right)^{1 / m+n}\right)^{p_{m n}}<\infty\right\}, \\
& N_{2}=\min \left\{n_{0}: \sup _{m, n \geq n_{0}} p_{m n}<\infty\right\} \text { and } N=\max \left\{N_{1}, N_{2}\right\}, \chi^{2}\left(\Delta_{v}^{m}, s, p\right)
\end{aligned}
$$

is a paranormed space with

$$
\begin{align*}
g(x)= & \sum_{m=1}^{i} \sum_{n=1}^{j}(m+n)!\left|x_{m n}\right| \tag{6}\\
& +\lim _{N \rightarrow \infty} \sup _{m, n \geq N}(m n)^{-S / M}\left((m+n)!\left|\Delta_{v}^{m} x_{m n}\right|\right)^{p_{m n} / M}
\end{align*}
$$

if and only if $\mu>0$, where $\mu=\lim _{N \rightarrow \infty} \inf _{m, n \geq N} p_{m n}$ and $M=\max \left(1, \sup _{m, n \geq N} p_{m n}\right)$.

Proof.

(i) Necessity: Let $\chi^{2}\left(\Delta_{v}^{m}, s, p\right)$ be a paranormed space with (6) and suppose that $\mu=0$. Then $\alpha=\inf _{m, n \geq N} p_{m n}=0$ for all $N \in \aleph$ and hence we obtain

$$
g(\lambda x)=\sum_{m=1}^{i} \sum_{n=1}^{j}(m+n)!\left|x_{m n}\right|+\lim _{N \rightarrow \infty} \sup _{m, n \geq N}(m n)^{-s}|\lambda|^{p_{m n} / M}=1
$$

for all $\lambda \in(0,1]$, where $x=\alpha \in \chi^{2}\left(\Delta_{v}^{m}, s, p\right)$. Whence $\lambda \rightarrow 0$ does not imply $\lambda x \rightarrow \theta$, when x is fixed. But this contradicts to (6) to be a paranorm.

Sufficiency: Let $\mu>0$. It is trivial that $g(\theta)=0, g(-x)=g(x)$ and $g(x+y) \leq g(x)+g(y)$. Since $\mu>0$ there exists a positive number β such that $p_{m n}>\beta$ for sufficiently large positive integer m, n. Hence for any $\lambda \in C$, we may write $|\lambda|^{p_{m n}} \leq \max \left(|\lambda|^{M},|\lambda|^{\beta}\right)$ for sufficiently large positive integers $m, n \geq \aleph$. Therefore, we obtain that $g(\lambda x) \leq \max \left(|\lambda|,|\lambda|^{\beta / M}\right) g(x)$ using this, one can prove that $\lambda x \rightarrow \theta$, whenever x is fixed and $\lambda \rightarrow 0$ (or) $\lambda \rightarrow 0$ and $x \rightarrow \theta$ or λ is fixed and $x \rightarrow \theta$. This completes the proof.

Theorem 4. Let $0<p_{m n} \leq q_{m n} \leq 1$ then
(i) $\Lambda^{2}\left(\Delta_{v}^{m}, s, p\right) \subseteq \Lambda^{2}\left(\Delta_{v}^{m}, s, q\right)$
(ii) $\chi^{2}\left(\Delta_{v}^{m}, s, p\right) \subseteq \chi^{2}\left(\Delta_{v}^{m}, s, q\right)$.

Proof. (i) Let $x \in \Lambda^{2}\left(\Delta_{v}^{m}, s, p\right)$. Then there exists a constant $M>1$ such that

$$
(m n)^{-s}\left|\Delta_{v}^{m} x_{m n}\right|^{q_{m n} / m+n} \leq M \text { for all } m, n
$$

and so

$$
(m n)^{-s}\left|\Delta_{v}^{m} x_{m n}\right|^{q_{m n} / m+n} \leq M \text { for all } m, n
$$

suppose that $x^{i} \in \Lambda^{2}\left(\Delta_{v}^{m}, s, q\right)$ and $x^{i} \rightarrow x \in \Lambda^{2}\left(\Delta_{v}^{m}, s, p\right)$. Then for every $0<\epsilon<1$, there exist \aleph such that for all m, n

$$
(m n)^{-s}\left|\Delta_{v}^{m}\left(x_{m n}^{(i)}-x_{m n}\right)\right|^{p_{m n} / m+n}<\epsilon \text { for all } m, n
$$

Now,

$$
\begin{aligned}
(m n)^{-s}\left|\Delta_{v}^{m}\left(x_{m n}^{(i)}-x_{m n}\right)\right|^{q_{m n} / m+n} & <(m n)^{-s}\left|\Delta_{v}^{m}\left(x_{m n}^{(i)}-x_{m n}\right)\right|^{p_{m n} / m+n} \\
& <\epsilon \text { for all } i>N
\end{aligned}
$$

Therefore $x \in \Lambda^{2}\left(\Delta_{v}^{m}, s, q\right)$. This completes the proof.
(ii) It is easy. Therefore omit the proof.

Proposition 1. For $X=\chi^{2}$ and Λ^{2}, then we obtain
(i) $X\left(\Delta_{v}^{m}, s, p\right)$ is not sequence algebra, in general
(ii) $X\left(\Delta_{v}^{m}, s, p\right)$ is not solid, in general.

Proof. (i) This result is clear from the following example :
Example 1. Let $p_{m n}=1,(m+n)!v_{m n}=\frac{1}{(m n)^{2(m+n)}},(m+n)!x_{m n}=$ $(m n)^{2(m+n)}$ and $(m+n)!y_{m n}=(m n)^{2(m+n)}$ for all m, n. Then we have $x, y \in \chi^{2}(\Delta, 0, p)$ but $x, y \notin \chi^{2}(\Delta, 0, p)$ with $m=1$ and $s=0$.
(ii) This result is clear from the following example

Example 2. Consider $x_{m n}=\left(\begin{array}{lllll}1, & 1, & \ldots 1, & 1, & 0, \ldots \\ 1, & 1, & \ldots 1, & 1, & 0, \ldots \\ \cdot & & & & \\ \cdot & & & & \\ \cdot & & & \\ 1, & 1, & \ldots 1, & 1, & 0, \ldots \\ 0, & 0, & \ldots 0, & 0, & 0, \ldots\end{array}\right) \in \chi^{2}\left(\Delta_{v}^{m}, s p\right)$ Let $p_{m n}=1, \alpha_{m n}=(-1)^{m+n}$, then $\alpha_{m n} x_{m n} \notin \chi^{2}\left(\Delta_{v}^{m}, s, p\right)$ with $m=1$ and $s=0$.

The following proposition's proof is a routine verification.
Proposition 2. For $X=\chi^{2}$ and Λ^{2}, then we obtain
(i) $s_{1}<s_{2}$ implies $X\left(\Delta_{v}^{m}, s_{1}, p\right) \subset X\left(\Delta_{v}^{m}, s_{2}, p\right)$,
(ii) Let $0<\operatorname{infp}_{m n}<p_{m n} \leq 1$ then $X\left(\Delta_{v}^{m}, s, p\right) \subset X\left(\Delta_{v}^{m}, s\right)$,
(iii) Let $1 \leq p_{m n} \leq \sup _{m n} p_{m n}<\infty$, then $X\left(\Delta_{v}^{m}, s\right) \subset X\left(\Delta_{v}^{m}, s, p\right)$,
(iv) Let $0<p_{m n} \leq q_{m n}$ and $\left(\frac{q_{m n}}{p_{m n}}\right)$ be bounded, then

$$
X\left(\Delta_{v}^{m}, s, q\right) \subset X\left(\Delta_{v}^{m}, s, p\right)
$$

References

[1] Apostol T., Mathematical Analysis, Addison-wesley, London, 1978.
[2] Basarir M., Solancan O., On some double sequence spaces, J. Indian Acad. Math., 21(2)(1999), 193-200.
[3] Bromwich, An Introduction to the Theory of Infinite Series, Macmillan and Co. Ltd., New York, 1965.
[4] Colak R., Turkmenoglu A., The double sequence spaces $\ell_{\infty}^{2}(p), c_{0}^{2}(p)$ and $c^{2}(p)$, (to appear)
[5] Hardy G.H., On the convergence of certain multiple series, Proc. Camb. Phil. Soc., 19(1917), 86-95.
[6] Kamptan P.K., Gupta M., Sequence Spaces and Series, Marcel Dekker Inc., New York, 1981.
[7] Kizmaz H., On certain sequence spaces, Cand. Math. Bull., 24(2)(1981), 169-176.
[8] Kreyszig E., Introductory Functional Analysis with Applications, by John wiley and sons Inc., 1978.
[9] Moricz F., Extention of the spaces c and c_{0} from single to double sequences, Acta. Math. Hungerica, 57(1-2)(1991), 129-136.
[10] Moricz F., Rhoades B.E., Almost convergence of double sequences and strong regularity of summability matrices, Math. Proc. Camb. Phil. Soc., 104(1988), 283-294.
[11] Tripathy B.C., On statistically convergent double sequences, Tamkang J. Math., 34(3)(2003), 231-237.
[12] Turkmenoglu A., Matrix transformation between some classes of double sequences, Jour. Inst. of math. and Comp. Sci. (Math. Seri.), 12(1)(1999), 23-31.
[13] Wilansky A., Summability through Functional Analysis, North-Holland Mathematics studies, Vol. 85, North-Holland Publishing, Amsterdam, 1984.

Nagarajan Subramanian
Department of Mathematics
SASTRA University
TANJORE-613 402, India
e-mail: nsmaths@yahoo.com

Umakanta Misra
Department of Mathematics
Berhampur University
Berhampur- 760 007,Orissa, India
e-mail: umakanta_misra@yahoo.com
Received on 18.02.2009 and, in revised form, on 25.05.2009.

