$\frac{F A S C I C U L I M A T H E M A T I C I}{Nr 43}$

Çagla Yalcınkaya and Abdullah S. Kurbanlı

ON THE SOLUTIONS OF THE DIFFERENCE EQUATION $x_{n+1} = \max\left\{\frac{1}{x_n}, \frac{x_{n-1}}{x_n}\right\}$

ABSTRACT. We study the solutions of the following difference equation

$$x_{n+1} = \max\left\{\frac{1}{x_n}, \frac{x_{n-1}}{x_n}\right\},\$$

where initial conditions x_{-1} and x_0 are nonzero real numbers. In most of the cases we determine the solutions in function of the initial conditions x_{-1} and x_0 .

KEY WORDS: difference equation, max operator, fibonacci number.

AMS Mathematics Subject Classification: 39A10.

1. Introduction

In this paper we study the solutions of the following difference equation

(1)
$$x_{n+1} = \max\left\{\frac{1}{x_n}, \frac{x_{n-1}}{x_n}\right\}, \quad n = 0, 1, ...,$$

where initial conditions x_{-1} and x_0 are nonzero real numbers.

Some closely related equations were investigated, for example [1-6]. For example, the investigation of the difference equation

(2)
$$x_{n+1} = \max\left\{\frac{A_0}{x_n}, \frac{A_1}{x_{n-1}}, \dots, \frac{A_k}{x_{n-k}}\right\}, \quad n = 0, 1, \dots,$$

where A_i , i = 0, 1, ..., k are real numbers, such that at least one of them is different from zero and initial conditions $x_0, x_{-1}, ..., x_{-k}$ are different from zero, was proposed in [2] and [3].

A special case the max operator in Eq.(2) arises naturally in certain models in automatic control theory (see [4, 5]).

2. Main results

We consider the solutions of the Eq.(1). The following theorem completely desciribes the solutions of Eq.(1).

Theorem 1. Consider the Eq.(1), then the general solution of Eq.(1) is $x_m = \left(\frac{x_{-1}^p}{x_0^s}\right)^{2^k}$ where p, s are any integers and m is a function of k, (for k = 0, 1, ...).

Proof. (A) Let $1 < x_0$.

Also, F(j) is the smallest fibonacci (for F(0) = F(1) = 1) number which is holds (3) or (4) for $x_0 < x_{-1}$.

(3)
$$x_{-1}^{F(j-1)} < x_0^{F(j)}$$
 and $x_{-1}^{F(j)} < x_0^{F(j+1)}$,

(4)
$$x_0^{F(j)} < x_{-1}^{F(j-1)}$$
 and $x_0^{F(j+1)} < x_{-1}^{F(j)}$,

(i) If
$$1 < x_0 < x_{-1}$$
 and $F(j)$ holds (3), then
 $x_1 = \max\left\{\frac{1}{x_0}, \frac{x_{-1}}{x_0}\right\} = \frac{x_{-1}}{x_0}, \quad x_2 = \max\left\{\frac{x_0}{x_{-1}}, \frac{x_0^2}{x_{-1}}\right\} = \frac{x_0^2}{x_{-1}},$
 $x_3 = \max\left\{\frac{x_{-1}}{x_0^2}, \frac{x_{-1}^2}{x_0^3}\right\} = \frac{x_{-1}^2}{x_0^3}, \dots, x_{j+1} = \max\left\{\frac{x_{-1}^{F(j-1)}}{x_0^{F(j)}}, \frac{x_{-1}^{F(j)}}{x_0^{F(j+1)}}\right\} = \frac{x_{-1}^{F(j)}}{x_{-1}^{F(j+1)}},$
 $x_{j+2} = \max\left\{\frac{x_0^{F(j+1)}}{x_{-1}^{F(j)}}, \frac{x_0^{F(j+2)}}{x_{-1}^{F(j+2)}}\right\} = \frac{x_0^{F(j+2)}}{x_{-1}^{F(j+1)}},$
 $x_{j+3} = \max\left\{\frac{x_0^{F(j+1)}}{x_0^{F(j+2)}}, \frac{x_{-1}^{F(j+2)}}{x_0^{F(j+3)}}\right\} = \frac{x_0^{F(j+1)}}{x_0^{F(j+2)}},$
 $x_{j+4} = \max\left\{\frac{x_0^{F(j+2)}}{x_{-1}^{F(j+1)}}, \frac{x_0^{2F(j+2)}}{x_{-1}^{2F(j+1)}}\right\} = \frac{x_0^{2F(j+2)}}{x_{-1}^{2F(j+1)}} = \left(\frac{x_0^{F(j+2)}}{x_{-1}^{F(j+1)}}\right)^2, \dots,$

A simple argument yields that, the general solution of Eq.(1) are

$$x_{j+2+2k} = \left(\frac{x_0^{F(j+2)}}{x_{-1}^{F(j+1)}}\right)^{2^k}, \quad x_{j+2+2k+1} = \left(\frac{x_{-1}^{F(j+1)}}{x_0^{F(j+2)}}\right)^{2^k} \text{ for } k = 0, 1, 2, ...,$$

Also, First (j + 2) solutions of Eq.(1) are

$$x_{2l+1} = \frac{x_{-1}^{F(2l)}}{x_0^{F(2l+1)}}, \quad x_{2l+2} = \frac{x_0^{F(2l+2)}}{x_{-1}^{F(2l+1)}} \text{ for } l = 0, 1, 2, \dots, \frac{j}{2},$$

If F(j) is the smallest fibonacci number which is holds (4), then $x_1 = \max\left\{\frac{1}{x_0}, \frac{x_{-1}}{x_0}\right\} = \frac{x_{-1}}{x_0}, \quad x_2 = \max\left\{\frac{x_0}{x_{-1}}, \frac{x_0^2}{x_{-1}}\right\} = \frac{x_0^2}{x_{-1}},$ $x_3 = \max\left\{\frac{x_{-1}}{x_0^2}, \frac{x_{-1}^2}{x_0^3}\right\} = \frac{x_{-1}^2}{x_0^3}, \dots, x_{j+1} = \max\left\{\frac{x_0^{F(j)}}{x_{-1}^{F(j-1)}}, \frac{x_0^{F(j+1)}}{x_{-1}^{F(j)}}\right\} = \frac{x_0^{F(j+1)}}{x_{-1}^{F(j)}},$

$$\begin{split} x_{j+2} &= \max\left\{\frac{x_{-1}^{F(j)}}{x_{0}^{F(j+1)}}, \frac{x_{-1}^{F(j+1)}}{x_{0}^{F(j+2)}}\right\} = \frac{x_{-1}^{F(j+1)}}{x_{0}^{F(j+2)}},\\ x_{j+3} &= \max\left\{\frac{x_{0}^{F(j+2)}}{x_{-1}^{F(j+1)}}, \frac{x_{0}^{F(j+3)}}{x_{-1}^{F(j+2)}}\right\} = \frac{x_{0}^{F(j+2)}}{x_{-1}^{F(j+1)}},\\ x_{j+4} &= \max\left\{\frac{x_{0}^{F(j+1)}}{x_{0}^{F(j+2)}}, \frac{x_{-1}^{2F(j+1)}}{x_{0}^{2F(j+2)}}\right\} = \frac{x_{-1}^{2F(j+1)}}{x_{0}^{2F(j+2)}} = \left(\frac{x_{-1}^{F(j+1)}}{x_{0}^{F(j+2)}}\right)^{2}, \dots, \end{split}$$

A simple argument yields that, the general solution of Eq.(1) are

$$x_{j+2+2k} = \left(\frac{x_{-1}^{F(j+1)}}{x_0^{F(j+2)}}\right)^{2^k}, \quad x_{j+2+2k+1} = \left(\frac{x_0^{F(j+2)}}{x_{-1}^{F(j+1)}}\right)^{2^k} \quad \text{for} k = 0, 1, 2, \dots,$$

Also, First (j + 1) solutions of Eq.(1) are

$$x_{2l+1} = \frac{x_{-1}^{F(2l)}}{x_0^{F(2l+1)}}, \quad x_{2l} = \frac{x_0^{F(2l)}}{x_{-1}^{F(2l-1)}} \quad for \ l = 0, 1, 2, ..., \frac{j}{2},$$

(ii) If
$$1 \le x_{-1} \le x_0$$
, then similarly
 $x_1 = \max\left\{\frac{1}{x_0}, \frac{x_{-1}}{x_0}\right\} = \frac{x_{-1}}{x_0}, \quad x_2 = \max\left\{\frac{x_0}{x_{-1}}, \frac{x_0^2}{x_{-1}}\right\} = \frac{x_0^2}{x_{-1}},$
 $x_3 = \max\left\{\frac{x_{-1}}{x_0^2}, \frac{x_{-1}^2}{x_0^3}\right\} = \frac{x_{-1}}{x_0^2}, \dots,$

A simple argument yields that, the general solution of Eq.(1) are

$$x_{2k+2} = \left(\frac{x_0^2}{x_{-1}}\right)^{2^k}, \quad x_{2k+3} = \left(\frac{x_{-1}}{x_0^2}\right)^{2^k} \text{ for } k = 0, 1, 2, ...,$$

(*iii*) If
$$x_{-1} \le 1 \le x_0$$
 and $x_{-1} \ne 0$, then similarly
 $x_1 = \max\left\{\frac{1}{x_0}, \frac{x_{-1}}{x_0}\right\} = \frac{1}{x_0}, \quad x_2 = \max\left\{x_0, x_0^2\right\} = x_0^2,$
 $x_3 = \max\left\{\frac{1}{x_0^2}, \frac{1}{x_0^3}\right\} = \frac{1}{x_0^2}, \dots,$

A simple argument yields that, the general solution of Eq.(1) are

$$x_{2k} = (x_0)^{2^k}, \quad x_{2k+1} = (\frac{1}{x_0})^{2^k} \text{ for } k = 0, 1, 2, \dots,$$

(B) Let
$$0 < x_0 \le 1$$
.
(i) If $1 \le x_{-1}$, then
 $x_1 = \max\left\{\frac{1}{x_0}, \frac{x_{-1}}{x_0}\right\} = \frac{x_{-1}}{x_0}, \quad x_2 = \max\left\{\frac{x_0}{x_{-1}}, \frac{x_0^2}{x_{-1}}\right\} = \frac{x_0}{x_{-1}},$
 $x_3 = \max\left\{\frac{x_{-1}}{x_0}, \frac{x_{-1}^2}{x_0^2}\right\} = \frac{x_{-1}^2}{x_0^2}, \dots,$

A simple argument yields that, the general solution of Eq.(1) are

$$x_{2k+1} = \left(\frac{x_{-1}}{x_0}\right)^{2^k}, \quad x_{2k+2} = \left(\frac{x_0}{x_{-1}}\right)^{2^k} \text{ for } k = 0, 1, 2, ...,$$

(*ii*) If $x_{-1} \leq 1$, $(x_{-1} \neq 0)$, then

$$x_{1} = \max\left\{\frac{1}{x_{0}}, \frac{x_{-1}}{x_{0}}\right\} = \frac{1}{x_{0}}, \quad x_{2} = \max\left\{x_{0}, x_{0}^{2}\right\} = x_{0}$$
$$x_{3} = \max\left\{\frac{1}{x_{0}}, \frac{1}{x_{0}^{2}}\right\} = \frac{1}{x_{0}^{2}}, \dots,$$

A simple argument yields that, the general solution of Eq.(1) are

$$x_{2k+1} = (\frac{1}{x_0})^{2^k}, \ x_{2k+2} = (x_0)^{2^k}$$
 for $k = 0, 1, 2, ...,$

(C) Let $x_0 < 0$. (*i*) If $0 < x_{-1} \le 1$, then $x_1 = \max\left\{\frac{1}{x_0}, \frac{x_{-1}}{x_0}\right\} = \frac{x_{-1}}{x_0}, \quad x_2 = \max\left\{\frac{x_0}{x_{-1}}, \frac{x_0^2}{x_{-1}}\right\} = \frac{x_0^2}{x_{-1}},$ $x_3 = \max\left\{\frac{x_{-1}}{x_0^2}, \frac{x_{-1}^2}{x_0^3}\right\} = \frac{x_{-1}}{x_0^2}.$ If $x_0^2 < x_{-1}$, then $x_{4} = \max\left\{\frac{x_{0}^{2}}{x_{-1}}, \frac{x_{0}^{4}}{x_{-1}^{2}}\right\} = \frac{x_{0}^{2}}{x_{-1}}, \quad x_{5} = \max\left\{\frac{x_{-1}}{x_{0}^{2}}, \frac{x_{-1}^{2}}{x_{0}^{4}}\right\} = \frac{x_{-1}^{2}}{x_{0}^{4}}, \dots,$ A simple argument yields that, the general solution of Eq.(1) are

$$x_{2k+3} = \left(\frac{x_{-1}}{x_0^2}\right)^{2^k}, \ x_{2k+4} = \left(\frac{x_0^2}{x_{-1}}\right)^{2^k}$$
 for $k = 0, 1, 2, ...$

If
$$x_{-1} < x_0^2$$
, then
 $x_4 = \max\left\{\frac{x_0^2}{x_{-1}}, \frac{x_0^4}{x_{-1}^2}\right\} = \frac{x_0^4}{x_{-1}^2}, \quad x_5 = \max\left\{\frac{x_{-1}^2}{x_0^4}, \frac{x_{-1}^3}{x_0^6}\right\} = \frac{x_{-1}^2}{x_0^4}, \dots$
A simple argument yields that, the general solution of Eq.(1) are

$$x_{2k+2} = \left(\frac{x_0^2}{x_{-1}}\right)^{2^k}, \quad x_{2k+3} = \left(\frac{x_{-1}}{x_0^2}\right)^{2^k} \text{ for } k = 0, 1, 2, ...,$$

(ii) If
$$-1 \le x_0 < 0$$
 and $1 \le x_{-1}$, then
 $x_1 = \max\left\{\frac{1}{x_0}, \frac{x_{-1}}{x_0}\right\} = \frac{1}{x_0}, \quad x_2 = \max\left\{x_0, x_0^2\right\} = x_0^2,$
 $x_3 = \max\left\{\frac{1}{x_0^2}, \frac{1}{x_0^3}\right\} = \frac{1}{x_0^2}, \dots$

A simple argument yields that, the general solution of Eq.(1) are

$$x_{2k+1} = (\frac{1}{x_0})^{2^k}, \quad x_{2k+4} = (x_0^2)^{2^k} \text{ for } k = 0, 1, 2, ...,$$

(*iii*) $x_0 \le -1$ and $1 \le x_{-1}$, then $x_1 = \max\left\{\frac{1}{x_0}, \frac{x_{-1}}{x_0}\right\} = \frac{1}{x_0}, \quad x_2 = \max\left\{x_0, x_0^2\right\} = x_0^2, \dots,$ A simple argument yields that, the general solution of Eq.(1) are

$$x_{2k} = (x_0)^{2^k}, \ x_{2k+1} = (\frac{1}{x_0})^{2^k}$$
 for $k = 0, 1, 2, ...,$

(*iv*) If $x_{-1} \le x_0 < 0$, then

$$x_{1} = \max\left\{\frac{1}{x_{0}}, \frac{x_{-1}}{x_{0}}\right\} = \frac{x_{-1}}{x_{0}}, \quad x_{2} = \max\left\{\frac{x_{0}}{x_{-1}}, \frac{x_{0}^{2}}{x_{-1}}\right\} = \frac{x_{0}}{x_{-1}},$$
$$x_{3} = \max\left\{\frac{x_{-1}}{x_{0}}, \frac{x_{-1}^{2}}{x_{0}^{2}}\right\} = \frac{x_{-1}^{2}}{x_{0}^{2}}, \dots,$$

A simple argument yields that, the general solution of Eq.(1) are

$$x_{2k+1} = \left(\frac{x_{-1}}{x_0}\right)^{2^k}, \quad x_{2k+2} = \left(\frac{x_0}{x_{-1}}\right)^{2^k} \text{ for } k = 0, 1, 2, \dots,$$

(v) If
$$x_0 \le x_{-1} < 0$$
, then
 $x_1 = \max\left\{\frac{1}{x_0}, \frac{x_{-1}}{x_0}\right\} = \frac{x_{-1}}{x_0}, \quad x_2 = \max\left\{\frac{x_0}{x_{-1}}, \frac{x_0^2}{x_{-1}}\right\} = \frac{x_0}{x_{-1}},$
 $x_3 = \max\left\{\frac{x_{-1}}{x_0}, \frac{x_{-1}^2}{x_0^2}\right\} = \frac{x_{-1}}{x_0}, \dots,$

A simple argument yields that, the general solution of Eq.(1) are

$$x_{2k+2} = \left(\frac{x_0}{x_{-1}}\right)^{2^k}, \ x_{2k+3} = \left(\frac{x_{-1}}{x_0}\right)^{2^k}$$
 for $k = 0, 1, 2, ...,$

Then, the proof is completed.

References

- CINAR C., STEVIC S., YALCINKAYA I., On the positive solutions of a reciprocal difference equation with minimum, J. Appl. Math. & Computing, 17(1-2)(2005), 307-314.
- [2] LADAS G., Open problems and conjectures, J. Diff. Equations Appl., 22 (1996), 339-341.
- [3] LADAS G., Open problems and conjectures, J. Diff. Equations Appl., 4(3) (1998), 312.
- [4] MISHKIS A.D., On some problems of the theory of differential equations with deviating argument, UMN, 32(2)(194)(1977), 173-202.
- [5] POPOV E.P., Automatic regulation and control, (in Russian), Moscow (1966), 305-308.
- [6] YALCINKAYA I., IRICANIN B.D., CINAR C., On a max type difference equation, *Discrete Dynamics in Nature and Society*, (2007), Article ID 47264, 10 pages.

Çagla Yalcınkaya Mehmet Begen Primary School 42099, Konya, Turkiye *e-mail:* cyalcınkaya42@hotmail.com

Abdullah Selcuk Kurbanlı Selcuk University Ahmet Keleşoğlu Education Faculty Mathematics Department 42099, Konya, Turkiye *e-mail:* agurban@selcuk.edu.tr

Received on 18.03.2009 and, in revised form, on 02.06.2009.