```
F A S C I C U L I M A T H E M A T I C I
```

Nr 43

Çagla Yalcinkaya and Abdullah S. Kurbanli

> ON THE SOLUTIONS OF THE DIFFERENCE EQUATION $x_{n+1}=\max \left\{\frac{1}{x_{n}}, \frac{x_{n-1}}{x_{n}}\right\}$

Abstract. We study the solutions of the following difference equation

$$
x_{n+1}=\max \left\{\frac{1}{x_{n}}, \frac{x_{n-1}}{x_{n}}\right\}
$$

where initial conditions x_{-1} and x_{0} are nonzero real numbers. In most of the cases we determine the solutions in function of the initial conditions x_{-1} and x_{0}.
KEY words: difference equation, max operator, fibonacci number.
AMS Mathematics Subject Classification: 39A10.

1. Introduction

In this paper we study the solutions of the following difference equation

$$
\begin{equation*}
x_{n+1}=\max \left\{\frac{1}{x_{n}}, \frac{x_{n-1}}{x_{n}}\right\}, \quad n=0,1, \ldots \tag{1}
\end{equation*}
$$

where initial conditions x_{-1} and x_{0} are nonzero real numbers.
Some closely related equations were investigated, for example [1-6]. For example, the investigation of the difference equation

$$
\begin{equation*}
x_{n+1}=\max \left\{\frac{A_{0}}{x_{n}}, \frac{A_{1}}{x_{n-1}}, \ldots, \frac{A_{k}}{x_{n-k}}\right\}, \quad n=0,1, \ldots \tag{2}
\end{equation*}
$$

where $A_{i}, i=0,1, \ldots, k$ are real numbers, such that at least one of them is different from zero and initial conditions $x_{0}, x_{-1}, \ldots, x_{-k}$ are different from zero, was proposed in [2] and [3].

A special case the max operator in Eq.(2) arises naturally in certain models in automatic control theory (see $[4,5]$).

2. Main results

We consider the solutions of the Eq.(1). The following theorem completely desciribes the solutions of Eq.(1).

Theorem 1. Consider the Eq.(1), then the general solution of Eq.(1) is $x_{m}=\left(\frac{x_{-1}^{p}}{x_{0}^{s}}\right)^{2^{k}}$ where p, s are any integers and m is a function of k, (for $k=0,1, \ldots)$.

Proof. (A) Let $1<x_{0}$.
Also, $F(j)$ is the smallest fibonacci (for $F(0)=F(1)=1$) number which is holds (3) or (4) for $x_{0}<x_{-1}$.

$$
\begin{equation*}
x_{-1}^{F(j-1)}<x_{0}^{F(j)} \quad \text { and } \quad x_{-1}^{F(j)}<x_{0}^{F(j+1)} \tag{3}
\end{equation*}
$$

$$
\begin{equation*}
x_{0}^{F(j)}<x_{-1}^{F(j-1)} \quad \text { and } \quad x_{0}^{F(j+1)}<x_{-1}^{F(j)}, \tag{4}
\end{equation*}
$$

(i) If $1<x_{0}<x_{-1}$ and $F(j)$ holds (3), then

$$
\begin{aligned}
& x_{1}=\max \left\{\frac{1}{x_{0}}, \frac{x_{-1}}{x_{0}}\right\}=\frac{x_{-1}}{x_{0}}, \quad x_{2}=\max \left\{\frac{x_{0}}{x_{-1}}, \frac{x_{0}^{2}}{x_{-1}}\right\}=\frac{x_{0}^{2}}{x_{-1}}, \\
& x_{3}=\max \left\{\frac{x_{-1}}{x_{0}^{2}}, \frac{x_{-1}^{2}}{x_{0}^{3}}\right\}=\frac{x_{-1}^{2}}{x_{0}^{3}}, \ldots, x_{j+1}=\max \left\{\frac{x_{-1}^{F(j-1)}}{x_{0}^{F(j)}}, \frac{x_{-1}^{F(1)}}{x_{0}^{F(j+1)}}\right\}=\frac{x_{-1}^{F(j)}}{x_{0}^{F(j+1)}}, \\
& x_{j+2}=\max \left\{\frac{x_{0}^{F(j+1)}}{x_{-1}^{F(j)}}, \frac{x_{0}^{F(j+2)}}{x_{-1}^{F(j+1)}}\right\}=\frac{x_{0}^{F(j+2)}}{x_{-1}^{F(j+1)}}, \\
& x_{j+3}=\max \left\{\frac{x_{-1}^{F(j+1)}}{x_{0}^{F(j+2)}}, \frac{x_{-1}^{F(j+2)}}{\left.x_{0}^{F(j+3)}\right\}=\frac{x_{-1}^{F(j+1)}}{x_{0}^{F(j+2)}},}\right. \\
& x_{j+4}=\max \left\{\frac{x_{0}^{F(j+2)}}{x_{-1}^{F(j+1)}}, \frac{x_{0}^{2 F(j+2)}}{\left.x_{-1}^{2 F(j+1)}\right\}=\frac{x_{0}^{2 F(j+2)}}{x_{-1}^{2 F(j+1)}}=\left(\frac{x_{0}^{F(j+2)}}{x_{-1}^{F(j+1)}}\right)^{2}, \ldots,}\right.
\end{aligned}
$$

A simple argument yields that, the general solution of Eq.(1) are

$$
x_{j+2+2 k}=\left(\frac{x_{0}^{F(j+2)}}{x_{-1}^{F(j+1)}}\right)^{2^{k}}, \quad x_{j+2+2 k+1}=\left(\frac{x_{-1}^{F(j+1)}}{x_{0}^{F(j+2)}}\right)^{2^{k}} \text { for } k=0,1,2, \ldots
$$

Also, First $(j+2)$ solutions of Eq.(1) are

$$
x_{2 l+1}=\frac{x_{-1}^{F(2 l)}}{x_{0}^{F(2 l+1)}}, \quad x_{2 l+2}=\frac{x_{0}^{F(2 l+2)}}{x_{-1}^{F(2 l+1)}} \text { for } l=0,1,2, \ldots, \frac{j}{2},
$$

If $F(j)$ is the smallest fibonacci number which is holds (4), then $x_{1}=\max \left\{\frac{1}{x_{0}}, \frac{x_{-1}}{x_{0}}\right\}=\frac{x_{-1}}{x_{0}}, \quad x_{2}=\max \left\{\frac{x_{0}}{x_{-1}}, \frac{x_{0}^{2}}{x_{-1}}\right\}=\frac{x_{0}^{2}}{x_{-1}}$,
$x_{3}=\max \left\{\frac{x_{-1}}{x_{0}^{2}}, \frac{x_{-1}^{2}}{x_{0}^{3}}\right\}=\frac{x_{-1}^{2}}{x_{0}^{3}}, \ldots, x_{j+1}=\max \left\{\frac{x_{0}^{F(j)}}{x_{-1}^{F(j-1)}}, \frac{x_{0}^{F(j+1)}}{x_{-1}^{F(j)}}\right\}=\frac{x_{0}^{F(j+1)}}{x_{-1}^{F(j)}}$,

$$
\begin{aligned}
& x_{j+2}=\max \left\{\frac{x_{-1}^{F(j)}}{x_{0}^{F(j+1)}}, \frac{x_{-1}^{F(j+1)}}{\left.x_{0}^{F(j+2)}\right\}=\frac{x_{-1}^{F(j+1)}}{x_{0}^{F(j+2)}},}\right. \\
& x_{j+3}=\max \left\{\frac{x_{0}^{F(j+2)}}{x_{-1}^{F(j+1)}}, \frac{x_{0}^{F(j+3)}}{\left.x_{-1}^{F(j+2)}\right\}=\frac{x_{0}^{F(j+2)}}{x_{-1}^{F(1+1)}},}\right. \\
& x_{j+4}=\max \left\{\frac{x_{-1}^{F(j+1)}}{\left.x_{0}^{F(j+2)}, \frac{x_{-1}^{2 F(j+1)}}{x_{0}^{2 F(j+2)}}\right\}=\frac{x_{-1}^{F(j+1)}}{x_{0}^{2 F(j+2)}}=\left(\frac{x_{-1}^{F(j+1)}}{x_{0}^{F(j+2)}}\right)^{2}, \ldots,}\right.
\end{aligned}
$$

A simple argument yields that, the general solution of Eq.(1) are

$$
x_{j+2+2 k}=\left(\frac{x_{-1}^{F(j+1)}}{x_{0}^{F(j+2)}}\right)^{k}, \quad x_{j+2+2 k+1}=\left(\frac{x_{0}^{F(j+2)}}{x_{-1}^{F(j+1)}}\right)^{2^{k}} \quad \text { for } k=0,1,2, \ldots,
$$

Also, First $(j+1)$ solutions of Eq.(1) are

$$
x_{2 l+1}=\frac{x_{-1}^{F(2 l)}}{x_{0}^{F(2 l+1)}}, \quad x_{2 l}=\frac{x_{0}^{F(2 l)}}{x_{-1}^{F(2 l-1)}} \quad \text { for } l=0,1,2, \ldots, \frac{j}{2},
$$

(ii) If $1 \leq x_{-1} \leq x_{0}$, then similarly

$$
\begin{aligned}
& x_{1}=\max \left\{\frac{1}{x_{0}}, \frac{x_{-1}}{x_{0}}\right\}=\frac{x_{-1}}{x_{0}}, \quad x_{2}=\max \left\{\frac{x_{0}}{x_{-1}}, \frac{x_{0}^{2}}{x_{-1}}\right\}=\frac{x_{0}^{2}}{x_{-1}}, \\
& x_{3}=\max \left\{\frac{x_{-1}}{x_{0}^{2}}, \frac{x_{-1}^{2}}{x_{0}^{3}}\right\}=\frac{x_{-1}}{x_{0}^{2}}, \ldots,
\end{aligned}
$$

A simple argument yields that, the general solution of Eq.(1) are

$$
x_{2 k+2}=\left(\frac{x_{0}^{2}}{x_{-1}}\right)^{2^{k}}, \quad x_{2 k+3}=\left(\frac{x_{-1}}{x_{0}^{2}}\right)^{2^{k}} \text { for } k=0,1,2, \ldots,
$$

(iii) If $x_{-1} \leq 1 \leq x_{0}$ and $x_{-1} \neq 0$, then similarly

$$
\begin{aligned}
& x_{1}=\max \left\{\frac{1}{x_{0}}, \frac{x_{-1}}{x_{0}}\right\}=\frac{1}{x_{0}}, \quad x_{2}=\max \left\{x_{0}, x_{0}^{2}\right\}=x_{0}^{2}, \\
& x_{3}=\max \left\{\frac{1}{x_{0}^{2}}, \frac{1}{x_{0}^{3}}\right\}=\frac{1}{x_{0}^{2}}, \ldots,
\end{aligned}
$$

A simple argument yields that, the general solution of Eq.(1) are

$$
x_{2 k}=\left(x_{0}\right)^{2^{k}}, \quad x_{2 k+1}=\left(\frac{1}{x_{0}}\right)^{2^{k}} \quad \text { for } k=0,1,2, \ldots
$$

(B) Let $0<x_{0} \leq 1$.
(i) If $1 \leq x_{-1}$, then

$$
\begin{aligned}
& x_{1}=\max \left\{\frac{1}{x_{0}}, \frac{x_{-1}}{x_{0}}\right\}=\frac{x_{-1}}{x_{0}}, \quad x_{2}=\max \left\{\frac{x_{0}}{x_{-1}}, \frac{x_{0}^{2}}{x_{-1}}\right\}=\frac{x_{0}}{x_{-1}} \\
& x_{3}=\max \left\{\frac{x_{-1}}{x_{0}}, \frac{x_{-1}^{2}}{x_{0}^{2}}\right\}=\frac{x_{-1}^{2}}{x_{0}^{2}}, \ldots
\end{aligned}
$$

A simple argument yields that, the general solution of Eq.(1) are

$$
x_{2 k+1}=\left(\frac{x_{-1}}{x_{0}}\right)^{2^{k}}, \quad x_{2 k+2}=\left(\frac{x_{0}}{x_{-1}}\right)^{2^{k}} \text { for } k=0,1,2, \ldots
$$

(ii) If $x_{-1} \leq 1,\left(x_{-1} \neq 0\right)$, then

$$
\begin{aligned}
& x_{1}=\max \left\{\frac{1}{x_{0}}, \frac{x_{-1}}{x_{0}}\right\}=\frac{1}{x_{0}}, \quad x_{2}=\max \left\{x_{0}, x_{0}^{2}\right\}=x_{0} \\
& x_{3}=\max \left\{\frac{1}{x_{0}}, \frac{1}{x_{0}^{2}}\right\}=\frac{1}{x_{0}^{2}}, \ldots
\end{aligned}
$$

A simple argument yields that, the general solution of Eq.(1) are

$$
x_{2 k+1}=\left(\frac{1}{x_{0}}\right)^{2^{k}}, \quad x_{2 k+2}=\left(x_{0}\right)^{2^{k}} \quad \text { for } k=0,1,2, \ldots
$$

(C) Let $x_{0}<0$.
(i) If $0<x_{-1} \leq 1$, then

$$
\begin{aligned}
x_{1} & =\max \left\{\frac{1}{x_{0}}, \frac{x_{-1}}{x_{0}}\right\}=\frac{x_{-1}}{x_{0}}, \quad x_{2}=\max \left\{\frac{x_{0}}{x_{-1}}, \frac{x_{0}^{2}}{x_{-1}}\right\}=\frac{x_{0}^{2}}{x_{-1}}, \\
x_{3} & =\max \left\{\frac{x_{-1}}{x_{0}^{2}}, \frac{x_{-1}^{2}}{x_{0}^{3}}\right\}=\frac{x_{-1}}{x_{0}^{2}} . \\
\text { If } x_{0}^{2} & <x_{-1}, \text { then } \\
x_{4} & =\max \left\{\frac{x_{0}^{2}}{x_{-1}}, \frac{x_{0}^{4}}{x_{-1}^{2}}\right\}=\frac{x_{0}^{2}}{x_{-1}}, \quad x_{5}=\max \left\{\frac{x_{-1}}{x_{0}^{2}}, \frac{x_{-1}^{2}}{x_{0}^{4}}\right\}=\frac{x_{-1}^{2}}{x_{0}^{4}}, \ldots .,
\end{aligned}
$$

A simple argument yields that, the general solution of Eq.(1) are

$$
x_{2 k+3}=\left(\frac{x_{-1}}{x_{0}^{2}}\right)^{2^{k}}, \quad x_{2 k+4}=\left(\frac{x_{0}^{2}}{x_{-1}}\right)^{2^{k}} \text { for } k=0,1,2, \ldots
$$

If $x_{-1}<x_{0}^{2}$, then

$$
x_{4}=\max \left\{\frac{x_{0}^{2}}{x_{-1}}, \frac{x_{0}^{4}}{x_{-1}^{2}}\right\}=\frac{x_{0}^{4}}{x_{-1}^{2}}, \quad x_{5}=\max \left\{\frac{x_{-1}^{2}}{x_{0}^{4}}, \frac{x_{-1}^{3}}{x_{0}^{6}}\right\}=\frac{x_{-1}^{2}}{x_{0}^{4}}, \ldots
$$

A simple argument yields that, the general solution of Eq.(1) are

$$
x_{2 k+2}=\left(\frac{x_{0}^{2}}{x_{-1}}\right)^{2^{k}}, \quad x_{2 k+3}=\left(\frac{x_{-1}}{x_{0}^{2}}\right)^{2^{k}} \text { for } k=0,1,2, \ldots
$$

(ii) If $-1 \leq x_{0}<0$ and $1 \leq x_{-1}$, then

$$
\begin{aligned}
& x_{1}=\max \left\{\frac{1}{x_{0}}, \frac{x_{-1}}{x_{0}}\right\}=\frac{1}{x_{0}}, \quad x_{2}=\max \left\{x_{0}, x_{0}^{2}\right\}=x_{0}^{2}, \\
& x_{3}=\max \left\{\frac{1}{x_{0}^{2}}, \frac{1}{x_{0}^{3}}\right\}=\frac{1}{x_{0}^{2}}, \ldots
\end{aligned}
$$

A simple argument yields that, the general solution of Eq.(1) are

$$
x_{2 k+1}=\left(\frac{1}{x_{0}}\right)^{2^{k}}, \quad x_{2 k+4}=\left(x_{0}^{2}\right)^{2^{k}} \text { for } k=0,1,2, \ldots
$$

(iii) $x_{0} \leq-1$ and $1 \leq x_{-1}$, then

$$
x_{1}=\max \left\{\frac{1}{x_{0}}, \frac{x_{-1}}{x_{0}}\right\}=\frac{1}{x_{0}}, \quad x_{2}=\max \left\{x_{0}, x_{0}^{2}\right\}=x_{0}^{2}, \ldots
$$

A simple argument yields that, the general solution of Eq.(1) are

$$
x_{2 k}=\left(x_{0}\right)^{2^{k}}, \quad x_{2 k+1}=\left(\frac{1}{x_{0}}\right)^{2^{k}} \text { for } k=0,1,2, \ldots
$$

(iv) If $x_{-1} \leq x_{0}<0$, then

$$
\begin{aligned}
& x_{1}=\max \left\{\frac{1}{x_{0}}, \frac{x_{-1}}{x_{0}}\right\}=\frac{x_{-1}}{x_{0}}, \quad x_{2}=\max \left\{\frac{x_{0}}{x_{-1}}, \frac{x_{0}^{2}}{x_{-1}}\right\}=\frac{x_{0}}{x_{-1}} \\
& x_{3}=\max \left\{\frac{x_{-1}}{x_{0}}, \frac{x_{-1}^{2}}{x_{0}^{2}}\right\}=\frac{x_{-1}^{2}}{x_{0}^{2}}, \ldots
\end{aligned}
$$

A simple argument yields that, the general solution of Eq.(1) are

$$
x_{2 k+1}=\left(\frac{x_{-1}}{x_{0}}\right)^{2^{k}}, \quad x_{2 k+2}=\left(\frac{x_{0}}{x_{-1}}\right)^{2^{k}} \text { for } k=0,1,2, \ldots,
$$

(v) If $x_{0} \leq x_{-1}<0$, then

$$
\begin{aligned}
& x_{1}=\max \left\{\frac{1}{x_{0}}, \frac{x_{-1}}{x_{0}}\right\}=\frac{x_{-1}}{x_{0}}, \quad x_{2}=\max \left\{\frac{x_{0}}{x_{-1}}, \frac{x_{0}^{2}}{x_{-1}}\right\}=\frac{x_{0}}{x_{-1}}, \\
& x_{3}=\max \left\{\frac{x_{-1}}{x_{0}}, \frac{x_{-1}^{2}}{x_{0}^{2}}\right\}=\frac{x_{-1}}{x_{0}}, \ldots,
\end{aligned}
$$

A simple argument yields that, the general solution of Eq.(1) are

$$
x_{2 k+2}=\left(\frac{x_{0}}{x_{-1}}\right)^{2^{k}}, \quad x_{2 k+3}=\left(\frac{x_{-1}}{x_{0}}\right)^{2^{k}} \text { for } k=0,1,2, \ldots,
$$

Then, the proof is completed.

References

[1] Cinar C., Stevic S., Yalcinkaya I., On the positive solutions of a reciprocal difference equation with minimum, J. Appl. Math. \& Computing, 17(1-2)(2005), 307-314.
[2] Ladas G., Open problems and conjectures, J. Diff. Equations Appl., 22 (1996), 339-341.
[3] Ladas G., Open problems and conjectures, J. Diff. Equations Appl., 4(3) (1998), 312.
[4] Mishkis A.D., On some problems of the theory of differential equations with deviating argument, UMN, 32(2)(194)(1977), 173-202.
[5] Popov E.P., Automatic regulation and control, (in Russian), Moscow (1966), 305-308.
[6] Yalcinkaya I., Iricanin B.D., Cinar C., On a max type difference equation, Discrete Dynamics in Nature and Society, (2007), Article ID 47264, 10 pages.

Çagla Yalcinkaya
Mehmet Begen Primary School 42099, Konya, Turkiye
e-mail: cyalcinkaya42@hotmail.com
Abdullah Selcuk Kurbanli
Selcuk University
Ahmet Keleşoğlu Education Faculty
Mathematics Department 42099, Konya, Turkiye
e-mail: agurban@selcuk.edu.tr
Received on 18.03.2009 and, in revised form, on 02.06.2009.

