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OF TWO NONLINEAR DIFFERENCE EQUATIONS

Abstract. In this paper a sufficient condition is obtained for
the global asmptotic stability of the following system of difference
equations

zn+1 =
tn + zn−1

tnzn−1 + a
, tn+1 =

zn + tn−1

zntn−1 + a
, n = 0, 1, 2, ...

where the parameter aε(0,∞) and the initial values (zk, tk)ε(0,∞)
(for k = −1, 0).
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1. Introduction

Recently there has been an increasing interest in the study of qualitative
analysis of rational difference equations and systems of difference equations.
Difference equations appear naturally as discrete analogues and as numerical
solutions of differential and delay differential equations having applications
in biology, ecology, economy, physics, etc [5].Although difference equations
are very simple in form, it is extremely difficult to understand thoroughly
the global behaviors of their solutions. (see [1-8] and the references cited
therein).

In [2] De Vault et al. proved that the unique equilibrium of the difference
equation

xn+1 = A +
xn

xn−1
, n = 0, 1, 2, . . .

where Aε(0,∞), is globally asymptotically stable and proved the oscillatory
behavior of the positive solutions of this difference equation.

From on, Papaschinopoluos and Schinas [5] extended the results obtained
in [2] to the following system of difference equations:

xn+1 = A +
yn

yn−p
, yn+1 = A +

xn

xn−q
, n = 0, 1, 2, . . .
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where A ∈ (0,∞), p, q are positive integers and x−q, x−q+1, . . . x0, y−p,
y−p+1, . . . y0, are positive initial values.

Li and Zhu [4] proved that the unique positive equilibrium of the differ-
ence equation

xn+1 =
xnxn−1 + a

xn + xn−1
, n = 0, 1, 2, . . .

where aε[0,∞) and x−1, x0 are positive, is globally asymptotically stable.
From on, we [1] extended the results obtained in [4] to the following

difference equation

xn+1 =
xnxn−k + a

xn + xn−k
, n = 0, 1, 2, . . .

where k is nonnegative integer, a ∈ [0,∞) and x−k, ..., x0 are positive, is
globally asymptotically stable.

Also, we [8] extended the results obtained in [4] to the following system
of difference equations

zn+1 =
zntn−1 + a

zn + tn−1
, tn+1 =

tnzn−1 + a

tn + zn−1
, n = 0, 1, 2, . . .

where a ∈ (0,∞) and the initial values (zk, tk) ∈ (0,∞) (for k = −1, 0), is
globally asymptotically stable.

In this paper, we consider the following system of difference equations

(1) zn+1 =
tn + zn−1

tnzn−1 + a
, tn+1 =

zn + tn−1

zntn−1 + a
, n = 0, 1, 2, . . .

where a ∈ (0,∞) and the initial values (zk, tk) ∈ (0,∞) (for k = −1, 0). Our
main aim is to investigate the global asymptotic behavior of its solutions.

It is clear that the change of variables

(zn, tn) = (
√

axn,
√

ayn)

reduces the system (1) to the system

(2) xn+1 =
yn + xn−1

ynxn−1 + 1
, yn+1 =

xn + yn−1

xnyn−1 + 1
, n = 0, 1, 2, . . .

where the initial values (xk, yk) ∈ (0,∞) (for k = −1, 0).
We need the following definitions and theorem [3]:
Let I be some interval of real numbers and let

f, g : I × I → I

be continuously differentiable functions. Then for all initial values (xk, yk) ∈ I,
k = −1, 0, the system of difference equations

(3) xn+1 = f(xn, yn−1), yn+1 = g(yn, xn−1), n = 0, 1, 2, . . .

has a unique solution {(xn, yn)}∞n=−1.
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Definition 1. A point (x, y) called an equilibrium point of the system (3)
if

x = f(x, y) and y = g(x, y).

It is easy to see that the system (2) has the unique positive equilibrium
(x, y) = (1, 1).

Definition 2. Let (x, y) be an equilibrium point of the system (3).
(a) An equilibrium point (x, y) is said to be stable if for any ε > 0

there is δ > 0 such that for every initial points (x−1, y−1) and (x0, y0) for
which ‖(x−1, y−1)− (x, y)‖ + ‖(x0, y0)− (x, y)‖ < δ , the iterates (xn, yn)
of (x−1, y−1) and (x0, y0) satisfy ‖(xn, yn)− (x, y)‖ < ε for all n > 0. An
equilibrium point (x, y) is said to be unstable if it is not stable. (By ‖.‖ we
denote the Euclidean norm in R2 given by ‖(x, y)‖ =

√
x2 + y2)

(b) An equilibriumpoint (x, y) is said to be asymptotically stable if there
exists r > 0 such that (xn, yn) → (x, y) as n → ∞ for all (x−1, y−1) and
(x0, y0) that satisfy ‖(x−1, y−1)− (x, y)‖+ ‖(x0, y0)− (x, y)‖ < r.

Definition 3. Let (x, y) be an equilibrium point of a map F = (f, g),
where f and g are continuously differentiable functions at (x, y). The Jaco-
bian matrix of F at (x, y) is the matrix

JF (x, y) =

[
∂f
∂x (x, y) ∂f

∂y (x, y)
∂g
∂x(x, y) ∂g

∂y (x, y)

]
.

The linear map JF (x, y) : R2 → R2 given by

(4) JF (x, y)
(

x
y

)
=

[
∂f
∂x (x, y)x + ∂f

∂y (x, y)y
∂g
∂x(x, y)x + ∂g

∂y (x, y)y

]
is called the linearization of the map F at (x, y).

Theorem 1 (Linearized Stability Theorem). Let F = (f, g) be a contin-
uously differentiable function defined on an open set I in R2, and let (x, y)
in I be an equilibrium point of the map F = (f, g).

(a) If all the eigenvalues of the Jacobian matrix JF (x, y) have modulus
less than one, then the equilibrium point (x, y) is asymptotically stable.

(b) If at least one of the eigenvalues of the Jacobian matrix JF (x, y) has
modulus greater than one, then the equilibrium point (x, y) is unstable.

(c) An equilibrium point (x, y) of the map F = (f, g) is locally asymptot-
ically stable if and only if every solution of the characteristic equation

λ2 − trJF (x, y)λ + det JF (x, y) = 0

lies inside the unit circle, that is, if and only if

|trJF (x, y)| < 1 + det JF (x, y) < 2.
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Definition 4. Let (x, y) be positive equilibrium point of the system (3).
[see 6]

A ”string” of consecutive terms {xs, ..., xm} (resp. {ys, ..., ym}), s ≥ −1,
m ≤ ∞ is said to be a positive semicycle if xi > x (resp. yi > y), i ∈
{s, ...,m}, xs−1 < x (resp. ys−1 < y), and xm+1 < x (resp. ym+1 < y).

A ”string” of consecutive terms {xs, ..., xm} (resp. {ys, ..., ym}), s ≥ −1,
m ≤ ∞ is said to be a negative semicycle if xi < x (resp. yi < y), i ∈
{s, ...,m}, xs−1 > x (resp. ys−1 > y), and xm+1 > x (resp. ym+1 > y).

A ”string” of consecutive terms {(xs, ys), ..., (xm, ym)} is said to be a pos-
itive (resp. negative) semicycle if {xs, ..., xm}, {ys, ..., ym} are positive (resp.
negative) semicycles. Finally a ”string” of consecutive terms {(xs, ys), ...,
(xm, ym)} is said to be a semicycle positive (resp. negative) with respect to
xn and negative (resp. positive) with respect to yn if {xs, ..., xm} is a posi-
tive (resp. negative) semicycle and {ys, ..., ym} is a negative (resp. positive)
semicycle.

We now give new definitions. These definitions can be used for different
subsequences of {xn} (resp. {yn}).

Definition 5. Let (x, y) be positive equilibrium point of the system (3).
A ”string” of consecutive terms {x2s, x2s+2, ..., x2m} (resp. {y2s, ..., y2m}),

s ≥ 1, m ≤ ∞ is said to be a positive sub-semicycle associated with {x2n}
(resp. {y2n}) if xi > x (resp. yi > y), iε {2s, 2s + 2, ..., 2m}, x2s−2 < x
(resp. y2s−2 < y), and x2m+2 < x (resp. y2m+2 < y).

A ”string” of consecutive terms {x2s, x2s+2, ..., x2m} (resp. {y2s, ..., y2m}),
s ≥ 1, m ≤ ∞ is said to be a negative sub-semicycle associated with {x2n}
(resp. {y2n}) if xi < x (resp. yi < y), iε {2s, 2s + 2, ..., 2m}, x2s−2 > x
(resp. y2s−2 > y), and x2m+2 > x (resp. y2m+2 > y).

A ”string” of consecutive terms {(x2s, y2s), (x2s+2, y2s+2), ..., (x2m, y2m)}
is said to be a positive (resp. negative) sub-semicycle if {x2s, x2s+2, ..., x2m},
{y2s, ..., y2m} are positive (resp. negative) sub-semicycles. Finally a ”string”
of consecutive terms {(x2s, y2s), (x2s+2, y2s+2), ..., (x2m, y2m)} is said to be
a sub-semicycle positive (resp. negative) with respect to x2n and nega-
tive (resp. positive) with respect to y2n if {x2s, x2s+2, ..., x2m} is a positive
(resp. negative) sub-semicycle and {y2s, ..., y2m} is a negative (resp. posi-
tive) sub-semicycle.

Definition 6. Let (x, y) be positive equilibrium point of the system (3).
A ”string” of consecutive terms {x2s−1, x2s+1, ..., x2m+1} (resp. {y2s−1, ...,

y2m+1}), s ≥ 1, m ≤ ∞ is said to be a positive sub-semicycle associated with
{x2n−1} (resp. {y2n−1}) if xi > x (resp. yi > y), i ∈ {2s+1, 2s+1, ..., 2m+1},
x2s−3 < x (resp. y2s−3 < y), and x2m+3 < x (resp. y2m+3 < y).
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A ”string” of consecutive terms {x2s−1, x2s+1, ..., x2m+1} (resp. {y2s−1, ...,
y2m+1}), s ≥ 1, m ≤ ∞ is said to be a negative sub-semicycle associated with
{x2n−1} (resp. {y2n−1}) if xi < x (resp. yi < y), i ∈ {2s−1, 2s+1, ..., 2m+1} ,
x2s−3 > x (resp. y2s−3 > y), and x2m+3 > x (resp. y2m+3 > y).

A ”string” of consecutive terms {(x2s−1, y2s−1), (x2s+1, y2s+1), ..., (x2m+1 ,
y2m+1)} is said to be a positive (resp. negative) sub-semicycle if {x2s−1, x2s+1 ,
..., x2m+1}, {y2s−1, ..., y2m+1} are positive (resp. negative) sub-semicycles.
Finally a ”string” of consecutive terms {(x2s−1, y2s−1), (x2s+1, y2s+1), ... ,
(x2m+1, y2m+1)} is said to be a sub-semicycle positive (resp. negative) with
respect to x2n−1 and negative (resp. positive) with respect to y2n−1 if {x2s−1 ,
x2s+1, ..., x2m+1} is a positive (resp. negative) sub-semicycle and {y2s−1, ... ,
y2m+1} is a negative (resp. positive) sub-semicycle.

2. Some auxiliary results

In this section, we give the following lemmas which show us the behavior
of semicycles of positive solutions of system (2). Proofs of Lemmas 1 and 2
are clear from (2), So, they will be omitted.

Lemma 1. Assume that {(xn, yn)}∞n=−1 is a solution of the system (2)
and consider the cases:

Case a : x0 = x−1 = 1, Case b : y0 = y−1 = 1,
Case c : x0 = y0 = 1, Case d : x−1 = y−1 = 1.
If one of the above cases occurs, then every positive solution of system

(2) equal to (1, 1).

Lemma 2. Assume that {(xn, yn)}∞n=−1 is a positive solution of the sys-
tem (2) which is not eventually equal to (1, 1). Then the following statements
are true:

(i) (xn+1 − xn−1)(1− xn−1) > 0 and (yn+1 − yn−1)(1− yn−1) > 0 for all
n ≥ 0,

(ii) (xn+1−1)(xn−1−1)(1−yn) > 0 and (yn+1−1)(yn−1−1)(1−xn) > 0
for all n ≥ 0.

Proof of Lemma 3 is clear from Lemma 2 (i)− (ii) and proofs of Lemmas
4, 5 and 6 can easily be obtained from Lemma 2 (ii). So, they will be
omitted.

Lemma 3. Assume that {(xn, yn)}∞n=−1 is a solution of system (2) and
suppose that the case, Case1: xk, yk < 1 (for k = −1, 0), holds. Then
(x2n−1, y2n−1) and (x2n, y2n) are negative sub-semicycles of system(2) with
an infinite number of terms and they monotonically tend to the positive
equilibrium (x, y) = (1, 1).
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Lemma 4. Assume that {(xn, yn)}∞n=−1 is a solution of system (2), and
consider the cases:

Case 2 : x−1, x0 > 1 and y−1, y0 < 1;
Case 3 : x−1, x0 < 1 and y−1, y0 > 1;
Case 4 : x−1, y−1, y0 > 1 and x0 < 1;
Case 5 : x0, y−1, y0 > 1 and x−1 < 1;
Case 6 : x−1, x0, y−1 > 1 and y0 < 1;
Case 7 : x−1, x0, y0 > 1 and y−1 < 1;
Case 8 : x−1, y−1 > 1 and x0, y0 < 1;
Case 9 : x−1, y−1 < 1 and x0, y0 > 1;
Case 10 : x−1, x0, y−1, y0 > 1.
If one of the above cases occurs, then
(i) Every positive sub-semicycle associated with {x2n−1} and {x2n} (resp.

{y2n−1} and {y2n}) of system (2) consists of two terms;
(ii) Every negative sub-semicycle associated with {x2n−1} and {x2n} (resp.

{y2n−1} and {y2n}) of system (2) consists of one term;
(iii) Every positive sub-semicycle of length two is followed by a negative

sub-semicycle of length one;
(iv) Every negative sub-semicycle of length one is followed by a positive

sub-semicycle of length two.

Lemma 5. Assume that {(xn, yn)}∞n=−1 be a solution of system(2) and
consider the cases:

Case 11 : x−1, y−1, y0 < 1 and x0 > 1;
Case 12 : x−1, x0, y0 < 1 and y−1 > 1;
Case 13 : x−1, y0 < 1 and x0, y−1 > 1.
If one of the above cases occurs, then
(i) {x2n−1} and {y2n} are negative sub-semicycles of system (2) with

an infinite number of terms (monotonically tend to the positive equilibrium
(x, y) = (1, 1));

(ii) Every positive sub-semicycle associated with {x2n} and {y2n−1} of
system (2) consists of two terms;

(iii) Every negative sub-semicycle associated with {x2n} and {y2n−1} of
system (2) consists of one term;

(iv) Every positive sub-semicycle of length two is followed by a negative
sub-semicycle of length one;

(v) Every negative sub-semicycle of length one is followed by a positive
sub-semicycle of length two.

Lemma 6. Assume that {(xn, yn)}∞n=−1 be a solution of system (2) and
consider the cases:

Case 14 : x−1, x0, y−1 < 1 and y0 > 1;
Case 15 : x0, y−1, y0 < 1 and x−1 > 1;
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Case 16 : x0, y−1 < 1 and x−1, y0 > 1.
If one of the above cases occurs, then
(i) {x2n} and {y2n−1} are negative sub-semicycles of system(2) with an

infinite number of terms ( monotonically tend to the positive equilibrium
(x, y) = (1, 1));

(ii) Every positive sub-semicycle associated with {x2n−1} and {y2n} of
system (2) consists of two terms;

(iii) Every negative sub-semicycle associated with {x2n−1} and {y2n} of
system (2) consists of one term;

(iv) Every positive sub-semicycle of length two is followed by a negative
sub-semicycle of length one;

(v) Every negative sub-semicycle of length one is followed by a positive
sub-semicycle of length two.

3. Main result

Theorem 2. The positive equilibrium point (x, y) = (1, 1) of the system
(2) is globally asymptotically stable.

Proof. We must show that the positive equilibrium point (x, y) = (1, 1)
of the system (2) is both locally asymptotically stable and (xn, yn) → (x, y)
as n →∞ (or equivalently (x2n−1, y2n−1) → (x, y) and (x2n, y2n) → (x, y) as
n → ∞). The characteristic equation of the system (2) about the positive
equilibrium point (x, y) = (1, 1) is

λ2 − 0.λ + 0 = 0

and so it is clear from Theorem 1 that positive equilibrium point (x, y) =
(1, 1) of the system (2) is locally asymptotically stable. It remains to verify
that every positive solution {(xn, yn)}∞n=−1 of the system (2) converges to
(x, y) = (1, 1) as n →∞. Namely, we want to prove

lim
n→∞

x2n = lim
n→∞

x2n−1 = x = 1(5)

lim
n→∞

y2n = lim
n→∞

y2n−1 = y = 1

If the solution {(xn, yn)}∞n=−1 of equation (2) is nonoscillatory about the
positive equilibrium point (x, y) = (1, 1) of the system (2), then according to
Lemmas 1 and 3 respectively, we know that the solution is either eventually
equal to (1, 1) or an eventually negative one which has an infinite number
of terms and monotonically tends the positive equilibrium point (x, y) =
(1, 1) of the system (2) and so equation (5) holds. Therefore, it suffices
to prove that equation (5) holds for strictly oscillatory solutions. Now let
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{(xn, yn)}∞n=−1 be strictly oscillatory about the positive equilibrium point
(x, y) = (1, 1) of the system (2). By virtue of Lemmas 2 (ii) and 4 one
can see that every positive sub-semicycle associated with {x2n−1} (resp.
{x2n}, {y2n−1}, {y2n}) of this solution has two terms and every negative
sub-semicycle associated with {x2n−1} (resp. {x2n}, {y2n−1}, {y2n}) except
perhaps for the first has exactly one term. Every positive sub-semicycle of
length two is followed by a negative sub-semicycle of length one.

We consider the sub-semicycles associated with {x2n} and {y2n}.
For the convenience of statement, without loss of generality, we use the

following notation. We denote by x2p, x2p+2 (resp. y2p, y2p+2) the terms
of a positive sub-semicycle of length two, followed by x2p+4 (resp. y2p+4)
which is the term of a negative sub-semicycle of length one. Afterwards,
there is the positive sub-semicycles x2p+6, x2p+8 (resp. y2p+6, y2p+8) in turn
followed by the negative sub-semicycles so on.

Therefore, we have the following sequences consisting of positive and neg-
ative sub-semicycles (for n = 0, 1, ...): {x2p+6n, x2p+6n+2}∞n=0 , {xp+6n+4}∞n=0
and {y2p+6n, y2p+6n+2}∞n=0 , {y2p+6n+4}∞n=0.

We have the following assertions:
(i) x2p+6n > x2p+6n+2 and y2p+6n > y2p+6n+2;
(ii) x2p+6n+2x2p+6n+4 > 1 and y2p+6n+2y2p+6n+4 > 1;
(iii) x2p+6n+4x2p+6n+6 < 1 and y2p+6n+4y2p+6n+6 < 1.
Combining the above inequalities, we derive

1
x2p+6n

<
1

x2p+6n+2
< x2p+6n+4 <

1
x2p+6n+6

(6)

1
y2p+6n

<
1

y2p+6n+2
< y2p+6n+4 <

1
y2p+6n+6

From equation (6), one can see that {x2p+6n}∞n=0 and {y2p+6n}∞n=0 are
decreasing with upper bound 1. So the limits

lim
n→∞

x2p+6n = L1 and lim
n→∞

y2p+6n = L2

exist and are finite. Accordingly, in view of equation (6), we obtain

lim
n→∞

x2p+6n+2 = lim
n→∞

x2p+6n+6 = L1 and lim
n→∞

x2p+6n+4 = 1/L1

and

lim
n→∞

y2p+6n+2 = lim
n→∞

y2p+6n+6 = L2 and lim
n→∞

y2p+6n+4 = 1/L2.

Now, we consider the sub-semicycles associated with {x2n−1} and {y2n−1}.
Similarly, for the convenience of statement, without loss of generality,

we use the following notation. We denote by x2p+1, x2p+3 (resp. y2p+1,
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y2p+3) the terms of a positive sub-semicycle of length two, followed by x2p+5

(resp. y2p+5) which is the term of a negative sub-semicycle of length one.
Afterwards, there are the positive sub-semicycles x2p+7, x2p+9 (resp. y2p+7,
y2p+9) in turn followed by the negative sub-semicycles so on.

Therefore, we have the following sequences consisting of positive and neg-
ative sub-semicycles (for n = 0, 1, ...): {x2p+6n+1, x2p+6n+3}∞n=0 , {xp+6n+5}∞n=0
and {y2p+6n+1, y2p+6n+3}∞n=0 , {y2p+6n+5}∞n=0.

We have the following assertions:
(i) x2p+6n+1 > x2p+6n+3 and y2p+6n+1 > y2p+6n+3;

(ii) x2p+6n+3x2p+6n+5 > 1 and y2p+6n+3y2p+6n+5 > 1;
(iii) x2p+6n+5x2p+6n+7 < 1 and y2p+6n+5y2p+6n+7 < 1.
Combining the above inequalities, we derive

1
x2p+6n+1

<
1

x2p+6n+3
< x2p+6n+5 <

1
x2p+6n+7

(7)

1
y2p+6n+1

<
1

y2p+6n+3
< y2p+6n+5 <

1
y2p+6n+7

From equation (7), one can see that {x2p+6n+1}∞n=0 and {y2p+6n+1}∞n=0
are decreasing with upper bound 1. So the limits

lim
n→∞

x2p+6n+1 = L3 and lim
n→∞

y2p+6n+1 = L4

exist and are finite. Accordingly, in view of equation (7), we obtain

lim
n→∞

x2p+6n+3 = lim
n→∞

x2p+6n+7 = L3 and lim
n→∞

x2p+6n+5 = 1/L3

and

lim
n→∞

y2p+6n+3 = lim
n→∞

y2p+6n+7 = L4 and lim
n→∞

y2p+6n+5 = 1/L4.

It suffices to verify that

L1 = L2 = L3 = L4 = 1.

To this end, note that

x2p+6n+6 =
y2p+6n+5 + x2p+6n+4

y2p+6n+5x2p+6n+4 + 1
and y2p+6n+6 =

x2p+6n+5 + y2p+6n+4

x2p+6n+5y2p+6n+4 + 1

Take the limits on both sides of the above equality and obtain

L1 =
1/L4 + 1/L1

1/L4 · 1/L1 + 1
and L2 =

1/L3 + 1/L2

1/L3 · 1/L2 + 1

which imply that L1 = L2 = 1. Similarly, one can see that L3 = L4 = 1.
Moreover, by virtue of Lemmas 2 (ii) and 5 (resp. 6) one can see that

equation (5) holds. Therefore, the proof is complete. �
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