FASCICULI MATHEMATTICI
Nr 43 2010

IBRAHIM YALCINKAYA AND CENGIZ CINAR

GLOBAL ASYMPTOTIC STABILITY OF A SYSTEM
OF TWO NONLINEAR DIFFERENCE EQUATIONS

ABSTRACT. In this paper a sufficient condition is obtained for
the global asmptotic stability of the following system of difference
equations
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where the parameter ae(0, c0) and the initial values (zj, t)e(0, 00)
(for k = —1,0).
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1. Introduction

Recently there has been an increasing interest in the study of qualitative
analysis of rational difference equations and systems of difference equations.
Difference equations appear naturally as discrete analogues and as numerical
solutions of differential and delay differential equations having applications
in biology, ecology, economy, physics, etc [5].Although difference equations
are very simple in form, it is extremely difficult to understand thoroughly
the global behaviors of their solutions. (see [1-8] and the references cited
therein).

In [2] De Vault et al. proved that the unique equilibrium of the difference
equation

Tn

Tns1= A+~ - n=01.2..
e

where Ae(0, 00), is globally asymptotically stable and proved the oscillatory
behavior of the positive solutions of this difference equation.

From on, Papaschinopoluos and Schinas [5] extended the results obtained
in [2] to the following system of difference equations:

anrl:A'{' on ) yn+1:A+ o , n=0,1,2 ...

Yn—p Tn—q
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where A € (0,00), p, ¢ are positive integers and x_g, _gy1,...T0, Y—p;
Y—p+1, - - - Yo, are positive initial values.
Li and Zhu [4] proved that the unique positive equilibrium of the differ-

ence equation
xn+1:$n1)n71+a7 n:071’2’”'
Tn + Tn-1
where ae[0, 00) and x_1, zo are positive, is globally asymptotically stable.
From on, we [1] extended the results obtained in [4] to the following

difference equation

TnTn_k +a
Tppy = Enk O, 01,9,
Tn + Tn—k
where k is nonnegative integer, a € [0,00) and z_g, ...,y are positive, is
globally asymptotically stable.
Also, we [8] extended the results obtained in [4] to the following system

of difference equations
Zntp—1+a o thzn—1+a
Zn +tn—1 ’ e tn + 2n—1
where a € (0,00) and the initial values (z,tx) € (0,00) (for k = —1,0), is
globally asymptotically stable.

In this paper, we consider the following system of difference equations
tn + Zn—1 _ Zn + tn—1
thin—1+a’ ntl Zntn_1+a’

Zn+1 = , n=0,1,2,...

(1) Znpl = n=0,1,2,...

where a € (0,00) and the initial values (2, tx) € (0,00) (for K = —1,0). Our
main aim is to investigate the global asymptotic behavior of its solutions.
It is clear that the change of variables

(thn) = (\/&xny \/&yn)

reduces the system (1) to the system

(2) Yn + Tn—1 Tn + Yn—1

T = , = , n=0,1,2,...
n+1 YnTn1 + 1 Yn+1 Tntn_1 + 1

where the initial values (zx, yx) € (0,00) (for k = —1,0).

We need the following definitions and theorem [3]:
Let I be some interval of real numbers and let

frg:IxI—1

be continuously differentiable functions. Then for all initial values (xg, yx) € I,
k = —1,0, the system of difference equations

(3) Tn4+1 = f(CCn,yn—l), Yn+1 :g(yTMajn—l)u n:051727"'

[e.9]

has a unique solution {(2n,yn)},— ;-
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Definition 1. A point (Z,7) called an equilibrium point of the system (3)
if
T=f(z,y) and §=g(z,7).

It is easy to see that the system (2) has the unique positive equilibrium
(z,7) = (1,1).

Definition 2. Let (Z,y) be an equilibrium point of the system (3).

(a) An equilibrium point (Z,7y) is said to be stable if for any € > 0
there is 6 > 0 such that for every initial points (x_1,y—1) and (zo,yo) for
which |[(x-1,y-1) — (T, 9| +|(zo,v0) — (T, )| < & , the iterates (xn, yn)
of (x—1,y—1) and (xo,y0) satisfy |[(zn,yn) — (Z,7)| < € for alln > 0. An
equilibrium point (T,7y) is said to be unstable if it is not stable. (By ||.| we
denote the Buclidean norm in R? given by ||(z,y)| = V2 + 32)

(b) An equilibriumpoint (T,7y) is said to be asymptotically stable if there
exists v > 0 such that (zn,yn) — (T,Y) as n — oo for all (x_1,y—1) and
(v0,30) that satisfy [[(z_1,91) — (@ D] + (20, 30) — (@B < 7

Definition 3. Let (z,y) be an equilibrium point of a map F = (f,g),
where f and g are continuously differentiable functions at (Z,y). The Jaco-
bian matriz of F at (Z,y) is the matriz

- [ 8@y %@y ]
JF('CEJy)_ 09 (— — 3zf7

The linear map Jr(%,7) : R?2 — R? given by
of (% w of (= @
- L@ e+ 5@y
@) lh@w<§>:[3( ) @<y>]

09 (— — 0g —
52 (@, )z + 52 (2, 9)y
is called the linearization of the map F at (Z,7).

Theorem 1 (Linearized Stability Theorem). Let F' = (f,g) be a contin-
uously differentiable function defined on an open set I in R?, and let (Z,7)
in I be an equilibrium point of the map F = (f,g).

(a) If all the eigenvalues of the Jacobian matriz Jp(Z,y) have modulus
less than one, then the equilibrium point (Z,7y) is asymptotically stable.

(b) If at least one of the eigenvalues of the Jacobian matriz Jp(T,7) has
modulus greater than one, then the equilibrium point (T,y) is unstable.

(¢) An equilibrium point (Z,7y) of the map F = (f, g) is locally asymptot-
ically stable if and only if every solution of the characteristic equation

22— trJp(Z, 5)A + det Jp(Z,7) = 0
lies inside the unit circle, that is, if and only if

|trJp(Z,7)| < 1+ det Jp(Z,7) < 2.
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Definition 4. Let (Z,7) be positive equilibrium point of the system (3).
[see 6]

A 7string” of consecutive terms {xs,...,tm} (resp. {Ysy -y Ym}), s > —1,
m < oo is said to be a positive semicycle if x; = T (resp. y; = Y), i €
{s8y...,m}, x5_1 <T (resp. ys—1 <7Y), and Tpm+1 < T (1€SP. Ym+t1 < Y)-

A 7string” of consecutive terms {xs, ...,xm} (resp. {Ys, ..., Ym}), s > —1,
m < oo is said to be a negative semicycle if x; < T (resp. y; < Y), i €
{s,.com}, xs_1 =T (resp. Ys—1 2 7), and Tpmy1 =T (r€SP. Ymt1 = 7).

A 7string” of consecutive terms {(Ts,Ys), -y (Tm, Ym)} is said to be a pos-
itie (resp. megative) semicycle if {s,...,xm}, {Ys, ..., Yym} are positive (resp.
negative) semicycles. Finally a "string” of consecutive terms {(xs,ys), ...,
(Tm,Ym)} is said to be a semicycle positive (resp. negative) with respect to
x,, and negative (resp. positive) with respect to y, if {xs,...,Tm} 1S a posi-
tive (resp. negative) semicycle and {ys, ..., ym} i a negative (resp. positive)
semicycle.

We now give new definitions. These definitions can be used for different
subsequences of {x,} (resp. {yn}).

Definition 5. Let (Z,7) be positive equilibrium point of the system (3).

A 7string” of consecutive terms {Tas, 2542, ..., Tam} (1€SP. {Y2s, oy Y2m }),
s > 1, m < oo is said to be a positive sub-semicycle associated with {xay,}
(resp. {yan}) if x; = T (resp. y; = 7), i€{28,25+2,....,2m}, w950 < T
(resp. Yos—2 <7Y), and Tomia < T (resp. Yam+2 < 7).

A 7string” of consecutive terms {Tas, 2542, .-y Tam } (1€SP. {Y2ss -y Y2 }),
s > 1, m < oo is said to be a negative sub-semicycle associated with {xay,}
(resp. {yan}) if x; < T (resp. y; < Y), 1€{28,25+2,...,2m}, w950 > T
(resp. Yos—2 = 7), and Tomia = T (resp. Yomi2 = 7).

A 7string” of consecutive terms {(Ta2s, Y2s)s (2542, Y2542)s -y (T2m,s Yom) }
is said to be a positive (resp. negative) sub-semicycle if {xos, Tas42, ..., Tam },
{Y2s, -, Yom } are positive (resp. negative) sub-semicycles. Finally a ”string”
of consecutive terms {(xas,Y2s), (T25+2, Y25+2), -, (T2m, Yom)} is said to be
a sub-semicycle positive (resp. mnegative) with respect to xa, and nega-
tive (resp. positive) with respect to yon if {T2s, T2s+2, ..., Tam} @S a positive
(resp. mnegative) sub-semicycle and {yas, ..., Yyam} 1S a negative (resp. posi-
tive) sub-semicycle.

Definition 6. Let (z,y) be positive equilibrium point of the system (3).

A 7string” of consecutive terms {Tas—1,T2s4+1, .-y Tam+1} (resp. {y2s—1, -,
Yom+11}), $ = 1, m < 00 is said to be a positive sub-semicycle associated with
{zan—1} (resp. {yan—1}) if x; =T (resp. i = 7), 1 € {25+1,25+1,...,2m+1},
Tos—3 < T (1resp. Yos—3 < ), and Tomi3 < T (resp. Yom+3 < 7).
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A 7string” of consecutive terms {Tas—1, 25415 ---» Tam+1} (r€8D. {Y25-1, -,
Yom+1}), 8 = 1, m < 0o is said to be a negative sub-semicycle associated with
{zon—1} (resp. {yoan—1}) ifx; < T (resp. y; <7g), 1 € {2s—1,25+1,...,2m+1},
T3 2T (resp. yas—3 2 7), and Tami3 = T (resp. Yomys = 7).

A 7string” of consecutive terms {(x2s—1,Y2s—1)s (T25+1, Y25+1)5 -5 (T2m+1,
Yom—+1)} 18 said to be a positive (resp. negative) sub-semicycle if {xas—1, T2s+1
ooy T2m41}s {Y25—15 -y Yoms1} are positive (resp. negative) sub-semicycles.
Finally a 7string” of consecutive terms {(T2s—1,Y2s—1), (2541, Y25+1)5 -+ 5
(T2am+1, Y2m+1)} s said to be a sub-semicycle positive (resp. negative) with
respect to xa,—1 and negative (resp. positive) with respect to yon—1 if {z2s—1,
X541y -y L2m+1} 18 @ positive (resp. negative) sub-semicycle and {y2s—1, ...,
Yam+1} 1S a negative (resp. positive) sub-semicycle.

2. Some auxiliary results

In this section, we give the following lemmas which show us the behavior
of semicycles of positive solutions of system (2). Proofs of Lemmas 1 and 2
are clear from (2), So, they will be omitted.

Lemma 1. Assume that {(zn,yn)}re 1 s a solution of the system (2)
and consider the cases:

Case a:xg=2x_1 =1, Case b:yp=y-_1=1,

Case c:xg =1y =1, Cased:x_1=y_1=1.

If one of the above cases occurs, then every positive solution of system
(2) equal to (1,1).

Lemma 2. Assume that {(zn,Yn) o1 is a positive solution of the sys-
tem (2) which is not eventually equal to (1,1). Then the following statements
are true:

(1) (Tp41 — Tn—1)(1 —zp—1) >0 and (Yn+1 — Yn—1)(1 — yn—1) > 0 for all
n >0,

(i1) (@ns1— 1) (@01~ 1)1 —pa) > 0 and (gs1 — )yt — (1 ~22) > 0
for all n > 0.

Proof of Lemma 3 is clear from Lemma 2 (i) — (i7) and proofs of Lemmas
4, 5 and 6 can easily be obtained from Lemma 2 (ii). So, they will be
omitted.

Lemma 3. Assume that {(zy,yn)}re_; is a solution of system (2) and
suppose that the case, Casel: zp,yr < 1 (for k = —1,0), holds. Then
(Tan—1,Y2n—1) and (Tan,Yo2n) are negative sub-semicycles of system(2) with
an infinite number of terms and they monotonically tend to the positive
equilibrium (Z,y) = (1,1).
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Lemma 4. Assume that {(zy,yn)}re | is a solution of system (2), and
consider the cases:

Case2 : x_1,z0 >1 and y_1,y0 <1;

Case 3 : x_1,x0 <1 and y_1,y0 > 1;

Cased : x_1,y_1,y0 >1 and x¢<1;

Case b : xo,y_1,90>1 and x_1<1;

Case 6 : x_1,20,y—1 >1 and yo<1;

Case 7 :x_1,20,90 > 1 and y_1<1;

Case 8 : x_1,y—1>1 and xg,y0 < 1;

Case 9 : x_1,y-1 <1 and xg,y0 > 1;

Case 10 : z_1,x0,y—1,y0 > 1.

If one of the above cases occurs, then

(1) Every positive sub-semicycle associated with {xa,—1} and {xa,} (resp.
{yan—1} and {y2n}) of system (2) consists of two terms;

(13) Every negative sub-semicycle associated with {xon—1} and {xan} (resp.
{yan—1} and {y2n}) of system (2) consists of one term;

(131) Every positive sub-semicycle of length two is followed by a negative
sub-semicycle of length one;

(tv) Every negative sub-semicycle of length one is followed by a positive

sub-semicycle of length two.

Lemma 5. Assume that {(xn,yn)}re 4
consider the cases:

Case 11 : z_1,y_1,90 <1 and xo > 1;

Case 12 : z_1,20,90 <1 and y_1 > 1;

Case 13 : z_1,y0 <1 and xg,y—1 > 1.

If one of the above cases occurs, then

(1) {xon-1} and {y2n} are negative sub-semicycles of system (2) with
an infinite number of terms (monotonically tend to the positive equilibrium
(.y) = (1,1));

(13) Every positive sub-semicycle associated with {xon} and {yan—1} of
system (2) consists of two terms;

(131) Every negative sub-semicycle associated with {xe,} and {yan—1} of
system (2) consists of one term;

(tv) Every positive sub-semicycle of length two is followed by a negative
sub-semicycle of length one;

(v) Every negative sub-semicycle of length one is followed by a positive
sub-semicycle of length two.

be a solution of system(2) and

9]
n=-—1

Lemma 6. Assume that {(zy,yn)}
consider the cases:

Case 14 : z_1,x0,y—1 <1 and yo > 1;

Case 15 : xg,y—1,%0 <1 and xz_1 > 1;

be a solution of system (2) and
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Case 16 : xg,y—1 <1 and x_1,yp > 1.

If one of the above cases occurs, then

(7) {man} and {yan—1} are negative sub-semicycles of system(2) with an
infinite number of terms ( monotonically tend to the positive equilibrium
(E,@) = (17 1));

(13) BEvery positive sub-semicycle associated with {xon—1} and {y2n} of
system (2) consists of two terms;

(7i1) Every negative sub-semicycle associated with {xa,—1} and {ya2n} of
system (2) consists of one term;

(iv) Every positive sub-semicycle of length two is followed by a negative
sub-semicycle of length one;

(v) Every negative sub-semicycle of length one is followed by a positive
sub-semicycle of length two.

3. Main result

Theorem 2. The positive equilibrium point (T,7) = (1,1) of the system
(2) is globally asymptotically stable.

Proof. We must show that the positive equilibrium point (Z,7) = (1,1)
of the system (2) is both locally asymptotically stable and (2, yn) — (Z,7)
as n — oo (or equivalently (x2,—1,Y2n—1) — (Z,7) and (z2n, y2n) — (T,7) as
n — o0). The characteristic equation of the system (2) about the positive
equilibrium point (Z,7) = (1,1) is

A —0A+0=0

and so it is clear from Theorem 1 that positive equilibrium point (Z,7) =
(1,1) of the system (2) is locally asymptotically stable. It remains to verify
that every positive solution {(2n,yn)},_; of the system (2) converges to
(Z,y) = (1,1) as n — co. Namely, we want to prove

(5) lim z9, = lim 29,1 =72 =1
n—oo n—oo

lim yo, = limys, 1=7y=1
n—oo n—oo

If the solution {(z,, yn)}-_; of equation (2) is nonoscillatory about the
positive equilibrium point (Z,7) = (1, 1) of the system (2), then according to
Lemmas 1 and 3 respectively, we know that the solution is either eventually
equal to (1,1) or an eventually negative one which has an infinite number
of terms and monotonically tends the positive equilibrium point (7,7) =
(1,1) of the system (2) and so equation (5) holds. Therefore, it suffices
to prove that equation (5) holds for strictly oscillatory solutions. Now let
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{(zn,yn)}oe | be strictly oscillatory about the positive equilibrium point
(Z,y) = (1,1) of the system (2). By virtue of Lemmas 2 (ii) and 4 one
can see that every positive sub-semicycle associated with {zg,_1} (resp.
{zan}, {y2n—1}, {y2n}) of this solution has two terms and every negative
sub-semicycle associated with {z2,—1} (resp. {xaon}, {y2n—1}, {y2n}) except
perhaps for the first has exactly one term. Every positive sub-semicycle of
length two is followed by a negative sub-semicycle of length one.

We consider the sub-semicycles associated with {z2,} and {ya2n}.

For the convenience of statement, without loss of generality, we use the
following notation. We denote by xa,, Topt2 (resp. y2p, y2pt2) the terms
of a positive sub-semicycle of length two, followed by xo,44 (resp. yapi4)
which is the term of a negative sub-semicycle of length one. Afterwards,
there is the positive sub-semicycles zap16, Top+s (resp. Yop+6, Y2p48) in turn
followed by the negative sub-semicycles so on.

Therefore, we have the following sequences consisting of positive and neg-
ative sub-semicycles (for n = 0,1,...): {Zopt6n: Topront2}oeq s {Tpr6nratnrg
and {Yap+6n, Y2p+6n+2 g » 1Y2p+6n-+4} o

We have the following assertions:

() Zopt6n > Taptont2 and Yopi6n > Yoprent2:

(1) ToprentaTapronta > 1 and Yapient2yoprentda > 1

(i17) Topyentatopronts < 1 and yopientay2ptonts < 1.

Combining the above inequalities, we derive

1 1 1
(6) < < Toptbnt+4a < ———
T2p+6n T2p+6n-+2 L2p+6n-+6
1 1 1
< < Yopt+onts < ——
Y2p+6n Yop+6n+2 Y2p+-6n+6

From equation (6), one can see that {Zapi6n},. o and {y2prent,., are
decreasing with upper bound 1. So the limits

lim L2p+6n = Ly and lim Y2p+6n = Lo
n—oo n—oo
exist and are finite. Accordingly, in view of equation (6), we obtain
lim T2p+6n+2 = lim T2p+6n+6 = L1 and lim T2p+6n+4 = 1/L1
n—oo n—oo n—oo
and
lim yopt6nt+2 = lim yoprente = Lo and  lim yopy6n44 = 1/Lo.
n—oo n—oo n—oo

Now, we consider the sub-semicycles associated with {z2,—1} and {y2,—1}.
Similarly, for the convenience of statement, without loss of generality,
we use the following notation. We denote by xopi1,Zop+3 (resp. Yopti,
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y2p+3) the terms of a positive sub-semicycle of length two, followed by 2,5
(resp. yap+s) which is the term of a negative sub-semicycle of length one.
Afterwards, there are the positive sub-semicycles xop 17, Tapio (resp. Yopt7,
Y2p+9) in turn followed by the negative sub-semicycles so on.

Therefore, we have the following sequences consisting of positive and neg-
ative sub-semicycles (for n = 0,1, ...): {Z2pt6n+1, T2pr6n+3}, 0 s LTp+6n+5 )t
and {Y2p+6n-+1, y2p+6n+3}Z°:0 ) {y2p+6n+5}zo:o.

We have the following assertions:

(1) Topron+1 > Topront3 and Yopr6nt1 > Yop6n+3;

(11) Topton+3Tapronts > 1 and Yopi6n+3Y2prents > 1;

(741) ToprentsTaprontr < 1 and Yopients5Y2prent7 < 1.

Combining the above inequalities, we derive

1 1 1

(7) < < Topt+bnts < ——————
T2p+6n+1 L2p+6n+3 T2p+6n+7

1 1 1
< < Y2pt+6n+5 < ——
Y2p+-6n+1 Y2p+6n+3 Yop+-6n+T7

From equation (7), one can see that {T2pi6n+1}, o and {y2prenti}, g
are decreasing with upper bound 1. So the limits

lim T2p+6n+1 = L3 and lim Yop+6n+1 = L4
n—oo n—o0
exist and are finite. Accordingly, in view of equation (7), we obtain
lim 29p46n43 = lim 29y 6047 = L3 and  lim 9y 6445 = 1/L3
n—oo n—oo n—oo
and
lim yopi6n+3 = Um yopyent7 = La and  lim yopi6n45 = 1/La4.
n—oo n—oo n—oo
It suffices to verify that
Li=Lo=L3=Ls=1.
To this end, note that

T2p+6n+5 T Y2p+6n+4
T2p+6n+5Y2p+6n+d + 1

Y2p+6n+5 T T2p+6n+4
Y2p+-6n+5T2p+6n+d + 1

Top4+6n+6 = and Yopi6nt6 =

Take the limits on both sides of the above equality and obtain
1/L4+1/L 1/Ls+1/L
le /4+/1 andL2: /3+/2
1/L4'1/L1+1 1/L3-1/L2—|—1
which imply that L1 = Ly = 1. Similarly, one can see that Ly = Ly = 1.

Moreover, by virtue of Lemmas 2 (i) and 5 (resp. 6) one can see that
equation (5) holds. Therefore, the proof is complete. |
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