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SYSTEM xn+1 = α1+β1xn

A1+C1yn
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Abstract. We establish the boundedness character of solutions
of the rational system in the title, with the parameters α1, β1

positive and the remaining eight parameters nonnegative and with
arbitrary nonnegative initial conditions such that the denomina-
tors are always positive. We present easily verifiable necessary and
sufficient conditions, explicitly stated in terms of the parameters,
which determine the boundedness character of the system.
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1. Introduction

We establish the boundedness character of solutions of the rational sys-
tem in the plane,

(1)


xn+1 = α1+β1xn

A1+C1yn
,

yn+1 = α2+β2xn+γ2yn

A2+B2xn+C2yn
,

n = 0, 1, . . .

with the parameters α1, β1 positive and the remaining eight parameters
nonnegative and with arbitrary nonnegative initial conditions such that the
denominators are always positive.

System (1) contains

(22 − 1)× (23 − 1)× (23 − 1) = 147

special cases of systems, each with positive parameters.
We establish easily verifiable necessary and sufficient conditions, explic-

itly stated in terms of the parameters, under which the boundedness char-
acterization of the system is:

(B,B), (B,U), (U,B) or (U,U).
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A special case of System (1) has the boundedness characterization (B,B)
when both components of every solution of the system, in this special case,
are bounded.

A special case of System (1) has the boundedness characterization (B,U)
when the first component of every solution in this special case of the system
is always bounded and there exist solutions in which the second component is
unbounded in some range of the parameters and for some initial conditions.
Similarly, we define the boundedness characterizations (U,B) and (U,U)
for a special case of System (1).

The boundedness character of solutions of a system is one of the main
ingredients in understanding the global behavior of the system including its
global stability. Boundedness is also essential in the study of most applica-
tions.

System (1) is a special case of the “full” rational system in the plane,

(2)


xn+1 = α1+β1xn+γ1yn

A1+B1xn+C1yn
,

yn+1 = α2+β2xn+γ2yn

A2+B2xn+C2yn
,

n = 0, 1, . . .

which contains
7× 7× 7× 7 = 2401

special cases each with positive parameters. A large number of open prob-
lems and conjectures about System (2) were posed in [9] and [11]. For some
work on the boundedness character of System (2) see [1]-[8], and [11]-[12].
For the numbering system of the 2401 special cases contained in System (2),
see Appendices 1 and 2 in [9]. Also for some basic results in the area of
difference equations and systems see [10] and [13]-[15].

System (1) has the boundedness characterization (B,B), if and only if:

(3) B2 = 0, C1, β2 ∈ (0,∞) and (γ2 = 0 or C2 > 0).

System (1), under condition (3) is restricted to the group of the following
20 special cases

(4)


(21, 7), (21, 8), (21, 16), (21, 22), (21, 23),
(21, 26), (21, 31), (21, 34), (21, 41), (21, 46),
(29, 7), (29, 8), (29, 16), (29, 22), (29, 23),
(29, 26), (29, 31), (29, 34), (29, 41), (29, 46).

and has the boundedness characterization (B,B).
System (1) has the boundedness characterization (B,U), if and only if:

(5) B2 = C2 = 0 and C1, β2, γ2 ∈ (0,∞).
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System (1) has the boundedness characterization (U,B), if and only if:

(β2 = 0 or B2 > 0), (γ2 = 0 or C2 > 0), and(6)
(α2 + γ2 = 0, or A2 + C2 > 0, or C1 = 0).

When none of the above three conditions (3), (5), and (6) is satisfied, System
(1) has the boundedness characterization (U,U).

One can see that System (1) contains 147 special cases of which, 20 spe-
cial cases have the boundedness characterization (B,B), 4 special cases have
the boundedness characterization (B,U), 77 special cases have the bound-
edness characterization (U,B), and 46 special cases have the boundedness
characterization (U,U).

In Section 2 we will establish that Condition (3) is sufficient for every
solution of System (1) to be bounded. The proof that Condition (3) is
necessary for every solution of System (1) to be bounded will be presented
in [7]. More precisely, we will show in [7] that when

(7) C1 = 0,

or when

(8) C1 > 0 and β2 = 0,

or when

(9) C1 > 0, β2 > 0 and B2 > 0,

or when

(10) C1 > 0, β2 > 0, γ2 > 0 and B2 = C2 = 0,

System (1) has unbounded solutions in a certain region of the parameters
and for some initial conditions. In fact, we will prove that in each of the 127
special cases that correspond to Conditions (7)-(10) the component {xn}
or the component {yn}, of each solution, is unbounded in a certain region
of the parameters and for some initial conditions. More precisely, we will
obtain the boundedness characterization of each one of the 127 special cases.
This will complete the proof that Condition (3) is a necessary and sufficient
condition for every solution of System (1) to be bounded.

Finally, we should mention that in [7] we will give a detailed presentation
of the boundedness characterizations of all 1029 special cases of the rational
system

(11)


xn+1 = α1+β1xn

A1+B1xn+C1yn
,

yn+1 = α2+β2xn+γ2yn

A2+B2xn+C2yn
,

n = 0, 1, . . . .
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The two special cases:

(12, 31) and (30, 31)

of System (11), will be shown to have the boundedness characterization
(U,U) which refutes the conjectures given in [11], for these two special cases.

2. Necessary and sufficient conditions for the boundedness
of solutions of system (1)

The main result in this section is the following theorem.

Theorem 1. Every solution of System (1) is bounded, if and only if,
Condition (3) is satisfied.

As we mentioned in the Introduction, here we will establish that Condi-
tion (3) is sufficient for every solution of System (1) to be bounded. That
is, we will show that each one of the 20 special cases listed in (4) has the
boundedness characterization (B,B).

The proof of boundedness of solutions of the four special cases (21, 7),
(21, 8), (21, 22), and (21, 23) is straightforward and the details will be omit-
ted. The special case (21, 26) can be reduced to the special case (29, 16)
which we will be investigated in Lemma 3 of this paper. For the remaining
two special cases, (21, 16) and (21, 31), we have the following lemma.

Lemma 1. Assume that

α1, β1, A2 ∈ (0,∞) and α2 ∈ [0,∞).

Then every solution of the system

(12)


xn+1 = α1+β1xn

yn
,

yn+1 = α2+β2xn

A2+yn
,

n = 0, 1, . . .

is bounded.

Proof. Let {xn, yn} be a solution of System (12). Note that

(13)
xn+1

yn+1
=

α1 + β1xn

α2 + β2xn

yn + A2

yn
, for n ≥ 0,

together with the first equation of the system imply that the sequences xn
yn

and xn are bounded from below by a positive constant. From this and

(14) yn+1 =
α2

A2 + yn
+

β2xn

A2 + yn
=

α2

A2 + yn
+

xn

yn

β2yn

A2 + yn
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it follows that the component {yn} of the solution {xn, yn} is bounded from
below by positive constants. From this and in view of (13) it follows that
the ratio xn

yn
is bounded and the result follows. �

The next lemma establishes the boundedness character of solutions of the
special case (21, 34).

Lemma 2. Assume that

β2, γ2, A2 ∈ (0,∞).

Then every solution of the system

(15)


xn+1 = α1+xn

yn
,

(21, 34) :
yn+1 = β2xn+γ2yn

A2+yn
,

n = 0, 1, . . .

is bounded.

Proof. Let {xn, yn} be a solution of System (15). Note that

(16) xn+2 =
α1 + xn+1

yn+1
=

α1 + α1yn + xn

β2xn + γ2yn
(1 +

A2

yn
), for n ≥ 0,

implies that the component {xn} of the solution {xn, yn} is bounded from
below by a positive constant from which the result follows. �

Lemma 3. In each of the following nine special cases:

(29, 7), (29, 8), (29, 16), (29, 22),

(29, 26), (29, 31), (29, 34), (29, 41), (29, 46),

every solution is bounded.

Proof. The proof of boundedness for the special case (29, 8) will be given
separately. The remaining eight special cases are included in the system

(17)


xn+1 = α1+β1xn

1+yn
,

yn+1 = α2+xn+γ2yn

A2+C2yn
,

n = 0, 1, . . .

with
β1 > 0, A2 + γ2 > 0 and (γ2 = 0 or C2 > 0).

First note that

(18)
xn+1

yn+1
=

α1 + β1xn

α2 + xn + γ2yn

A2 + C2yn

1 + yn
, for all n ≥ 0.
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We divide the proof in five cases:
Case 1:

α2 > 0.

Clearly the quotient, xn+1

yn+1
is bounded from above by the positive num-

ber M

M =


(α1

α2
+ β1) max{A2, C2} if A2 > 0 and C2 > 0

(α1
α2

+ β1)A2 if A2 > 0 and C2 = 0

(α1
α2

+ β1)C2 if A2 = 0 and C2 > 0.

Hence,

xn+1 =
α1 + β1xn

1 + yn
< α1 + β1

xn

yn
< α1 + β1M, for n ≥ 1

and so the component {xn} of every solution is bounded. Then, eventually,

yn+1 =
α2 + γ2yn

A2 + C2yn
+

xn

A2 + C2yn
≤ max(α2, γ2)

min(A2, C2)
+

1
C2

xn

yn
≤ max(α2, γ2)

min(A2, C2)
+

M

C2

when
A2 > 0 and C2 > 0,

or
yn+1 ≤

γ2

C2
+

M

C2

when
α2 = A2 = 0 and C2 > 0,

or
yn+1 ≤

α2 + α1 + β1M

A2

when
γ2 = C2 = 0 and A2 > 0.

Therefore, the component {yn} of every solution is also bounded.
Case 2:

α2 = 0 and γ2 > 0.

Observe that the sequence {xn + γ2yn} is bounded from below by a positive
constant, namely m. Therefore, the quotient, xn+1

yn+1
is bounded from above

by the positive number M

M =


(α1

m + β1) ·max{A2, C2} if A2 > 0 and C2 > 0

(α1
m + β1)A2 if A2 > 0 and C2 = 0

(α1
m + β1)C2 if A2 = 0 and C2 > 0
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from which the result follows.
Case 3:

α2 = γ2 = 0 and A2C2 > 0.

Observe that the ratio xn+1

yn+1
is bounded from below by a positive constant,

and so consequently, the sequence xn is bounded from below by a positive
constant, namely m. Therefore, the quotient, xn+1

yn+1
is bounded from above

by the positive number M

M = (
α1

m
+ β1) max{A2, C2}

from which the result follows.
Case 4:

α2 = γ2 = A2 = 0 and C2 > 0.

The proof in this case has been established in [3].
Case 5:

α2 = γ2 = C2 = 0 and A2 > 0.

In this case the component {xn} of the solution satisfies a second-order
rational equation for which it is known that every solution is bounded and
the result follows.

To complete the proof of the lemma we need to establish the boundedness
of all solutions of the system

(19)


xn+1 = α1+β1xn

1+yn
,

(29, 8) :
yn+1 = xn

yn
,

n = 0, 1, . . .

with positive parameters. Note that

xn+1 =
α1

1 + yn
+

yn−1

xn−1 + yn−1

β1α1

1 + yn−1
+

xn−1

xn−1 + yn−1

β2
1yn−1

1 + yn−1

from which it follows that the component {xn} of the solution is bounded.
Also,

yn+1 =
α1yn−1

(1 + yn−1)(α1 + β1xn−2)
+

α1yn−1

1 + yn−1

1
α1

yn−2
+ β1yn−1

+
β1yn−1

1 + yn−1

implies that the component {xn} of the solution is bounded. �

The next lemma establishes the boundedness of solutions in the special
case:

(20)


xn+1 = α1+β1xn

1+yn
,

(29, 23) :
yn+1 = α2+β2xn

yn
,

, n = 0, 1, . . . .



16 E. Camouzis, E. Drymonis and G. Ladas

Lemma 4. Assume that

β1, α2 ∈ (0,∞).

Then every solution of System (20) is bounded.

Proof. Let {xn, yn} be a solution of System (20).
Then, clearly

(21)
xn+1

yn+1
=

α1 + β1xn

α2 + xn

yn

1 + yn
<

max{α1, β1}
min{α2, β2}

, n = 0, 1, . . .

and
xn+1 =

α1 + β1xn

1 + yn
< α1 + β1

max{α1, β1}
min{α2, β2}

, n = 1, 2, . . .

which implies that the sequence {xn} is bounded. Assume for the sake of
the contradiction that there exists a sequence of indices {ni} such that

lim
n→∞

yni+1 = ∞ and yni+1 > yn, for n < ni + 1.

From
yn+1 =

α2 + xn

yn

it follows that

yni , yni−2 → 0 and yni−1, yni−3 →∞.

Clearly,
xni → 0 and xni−1 → α2.

Then, eventually,

yni+1 =
α2 + β2xni

α2 + β2xni−1
yni−1 < yni−1

which is a contradiction and the proof is complete. �

Next, we establish the boundedness of solutions in the remaining two
special cases which are listed in (4):

(21, 41) and (21, 46).

The change of variables
yn = γ2 + Yn

transforms system (21, 41) to a system of the form (29, 31), whose bounded-
ness was established in Lemma 3. Finally, the following lemma establishes
the boundedness of solutions of the special case (21, 46).
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Lemma 5. Assume that

β1, α2, β2, γ2, A2 ∈ (0,∞).

Then every solution of the system

(22)


xn+1 = α1+β1xn

yn
,

(21, 46) :
yn+1 = α2+β2xn+γ2yn

A2+yn
,

n = 0, 1, . . .

is bounded.

Proof. Let {xn, yn} be a solution of System (22). Clearly,

yn+1 =
α2 + β2xn + γ2yn

A2 + yn
≥ min{α2, γ2}

max{A2, 1}

and so the component {yn} of the solution is bounded from below by the
positive number

m =
min{α2, γ2}
max{A2, 1}

.

From this and in view of

xn+1

yn+1
=

α1 + β1xn

α2 + β2xn + γ2yn
(
A2

yn
+ 1) ≤ (

α1

α2
+

β1

β2
) (

A2

m
+ 1), for all n ≥ 1,

we see that the component {xn} of the solution is bounded. By the second
equation of the system it follows that the component {yn} of the solution is
also bounded and the proof is complete. �
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