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ON A LINEAR DIFFERENCE EQUATION

WITH SEVERAL INFINITE LAGS∗

Abstract. This paper deals with asymptotic properties of the
solutions of a variable order linear difference equation. As the
main result, we derive the effective asymptotic estimate valid for
all solutions of this equation. Moreover, we are going to discuss
some consequences of this theoretical result, especially with re-
spect to the numerical analysis of the multi-pantograph differen-
tial equation.
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1. Introduction and preliminaries

We consider the linear difference equation

(1) y(n + 1) = ay(n) +
m∑

j=1

bjy(bλjnc), n = 0, 1, . . . ,

where −1 < a < 1, bj 6= 0 and 0 < λj < 1, j = 1, . . . ,m are real scalars and
the symbol b c means an integer part. Our principal interest in this paper
is the discussion on the asymptotic behaviour of the solutions y(n) of (1) as
n →∞.

The problem of asymptotic behaviour of linear difference equations has
a long tradition. Among most frequent topics belong especially asymptotic
expansions for Poincaré difference equations (see, e.g. [1], [8] and [9]) or
the study of asymptotic properties for delay difference equations (see, e.g.
[3], [7], [10] and [16]). However, contrary to (1), the difference equations
considered in the frame of these investigations are usually of a fixed constant
order. This is not the case of the equation (1) which is a linear difference
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equation of a variable order which becomes even unbounded as n → ∞.
This makes its asymptotic (and more generally qualitative) analysis more
difficult.

The equation (1) can be viewed as the discrete analogue of the multi-panto-
graph equation

(2) u′(t) = pu(t) +
m∑

j=1

qju(λjt), t ≥ 0 .

More precisely, if we employ a suitable discretization of the equation (2)
with a constant stepsize, then we arrive either directly at the form (1) or
at the form very close to (1). To obtain the discretization of (2) of a fixed
order, the non-constant stepsize method has to be used (see [14]). We note
that a general reference for the investigation of various discretizations of the
pantograph equations provide books [2] and [12]. Among numerous papers
on this topic we can mention, e.g. [4], [11], [15] or [6]. In particular, it follows
from the analysis performed in these papers that some problems remain
open especially in the framework of the constant stepsize discretizations,
i.e. discretizations leading to the difference equation of the form (1) or its
modifications.

As we have declared above, we wish to give the asymptotic description of
the solutions of the difference equation (1) with m infinite lags. In Section
2, we present the main result of this paper, namely the asymptotic estimate
of the solutions of (1). This result shows that any solution of (1) can be
estimated via a power sequence whose exponent can be determined as the
(unique) real root of an auxiliary nonlinear equation. Some consequences
of the main result, especially with respect to the numerical analysis of the
differential equation (2), are the topic of Section 3.

2. The main result

We start with some preliminary considerations which enable us to for-
mulate the asymptotic description of the solutions of (1). For its given real
coefficients a, bj and λj , where |a| < 1, bj 6= 0 and 0 < λj < 1, we introduce
the function

F (γ) :=
m∑

j=1

|bj |(λj)γ + |a| − 1

of a real variable γ. Since F is decreasing and

lim
γ→−∞

F (γ) = ∞, lim
γ→∞

F (γ) = |a| − 1 < 0 ,
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there exists a unique real root γ∗ of the equation

F (γ) = 0 .

Moreover, γ∗ ≥ 0 if and only if
∑m

j=1 |bj |+ |a| ≥ 1. Further, we put

λ := max(λ1, . . . , λm)

and for n = 1, 2, . . . we define

(3) ϕ(n) =

{
nγ∗ , if

∑m
j=1 |bj |+ |a| ≥ 1,(

n + 1
1−λ

)γ∗
, if

∑m
j=1 |bj |+ |a| < 1 .

Using this notation we can formulate and prove the main result of this
paper.

Theorem 1. Consider the equation (1), where |a| < 1, bj 6= 0 and
0 < λj < 1, j = 1, . . . ,m. Then

(4) y(n) = O
(
nγ∗

)
as n →∞

for any solution y(n) of (1).

Proof. First we note that the upper bound sequence (nγ∗) is asymptot-
ically equivalent to the sequence (ϕ(n)). Hence, we can replace (4) by the
property y(n) = O(ϕ(n)) and that is what we are going to prove.

Put n0 = 0 and ni = bλ−ic, i = 1, 2, . . . . Assuming a 6= 0 we divide (1)
by an+1 to get

a−n−1y(n + 1) = a−ny(n) + a−n−1
m∑

j=1

bjy(bλjnc) .

Since a−n−1y(n + 1)− a−ny(n) = ∆(a−ny(n)), we can write

(5) ∆(a−ny(n)) = a−n−1
m∑

j=1

bjy(bλjnc) .

Now consider arbitrary n ∈ Z+, n ≥ λ−1 and let k = b− logλ nc. Then
nk ≤ n < nk+1. Further, we rewrite (5) with n replaced by a different
running index and sum from nk to n − 1. Then using the convention∑nk−1

l=nk
cl = 0 we have

y(n) = an−nky(nk) +
n−1∑
l=nk

an−l−1
m∑

j=1

bjy(bλjlc) .
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If we set z(n) = y(n)/ϕ(n), then z(n) satisfies the relation

z(n) =
an−nkϕ(nk)

ϕ(n)
z(nk) +

n−1∑
l=nk

an−l−1

ϕ(n)

m∑
j=1

bjϕ(bλjlc)z(bλjlc)

and can be estimated as

|z(n)| ≤ Mk
|a|n−nkϕ(nk)

ϕ(n)
+ Mk

n−1∑
l=nk

|a|n−l−1

ϕ(n)

m∑
j=1

|bj |ϕ(bλjlc) ,

where we denoted Mk := max(|z(s)|, n0 ≤ s ≤ nk). Further, it holds

(6)
m∑

j=1

|bj |ϕ(bλjlc) ≤ (1− |a|)ϕ(l) .

To verify (6) we first assume that
∑m

j=1 |bj |+ |a| ≥ 1, i.e. γ∗ ≥ 0. Then

m∑
j=1

|bj |ϕ(bλjlc) =
m∑

j=1

|bj |(bλjlc)γ∗ ≤
m∑

j=1

|bj |(λj)γ∗ lγ
∗

= ϕ(l)
m∑

j=1

|bj |(λj)γ∗ = (1− |a|)ϕ(l) .

If
∑m

j=1 |bj |+ |a| < 1, then γ∗ < 0 and

m∑
j=1

|bj |ϕ(bλjlc) =
m∑

j=1

|bj |(bλjlc+
1

1− λ
)γ∗ ≤

m∑
j=1

|bj |(λjl − 1 +
1

1− λ
)γ∗

=
m∑

j=1

|bj |(λjl +
λj

1− λ
)γ∗

=
m∑

j=1

|bj |λγ∗

j

(
l +

1
1− λ

)γ∗ = (1− |a|)ϕ(l) .

Using (6) we can write

|z(n)| ≤ Mk

 |a|n−nkϕ(nk)
ϕ(n)

+
n−1∑
l=nk

|a|n−l−1

ϕ(n)
(1− |a|)ϕ(l)

(7)

= Mk

 |a|n−nkϕ(nk)
ϕ(n)

+
n−1∑
l=nk

ϕ(l)
ϕ(n)

∆|a|n−l

 .
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The sum on the right-hand side of (7) can be processed via the summation
by parts:

n−1∑
l=nk

ϕ(l)
ϕ(n)

∆|a|n−l = 1− |a|n−nkϕ(nk)
ϕ(n)

−
n−1∑
l=nk

|a|n−l−1 ∆ϕ(l)
ϕ(n)

.

Substituting back into (7) we have

|z(n)| ≤ Mk

1−
n−1∑
l=nk

|a|n−l−1 ∆ϕ(l)
ϕ(n)

 .

Now, if
∑m

j=1 |bj |+ |a| ≥ 1, then ∆ϕ(l) ≥ 0, hence

(8) |z(n)| ≤ Mk .

If
∑m

j=1 |bj |+ |a| < 1, then ∆ϕ(l) < 0 and, moreover, ∆ϕ(l) ≤ ∆ϕ(l +1) for
all l. On this account we get

|z(n)| ≤ Mk

1− ∆ϕ(nk)
ϕ(n)

n−1∑
l=nk

|a|n−l−1

 ≤ Mk

(
1− ∆ϕ(nk)

(1− |a|)ϕ(nk+1)

)
.

By the mean value theorem,

−∆ϕ(nk)
ϕ(nk+1)

=

(
bλ−kc+ 1

1−λ

)γ∗ −
(
bλ−kc+ 1

1−λ + 1
)γ∗(

bλ−k−1c+ 1
1−λ

)γ∗

≤ −γ∗
(
bλ−kc+ 1

1−λ

)γ∗−1(
bλ−k−1c+ 1

1−λ

)γ∗ ≤ −γ∗
(
λ−k − 1 + 1

1−λ

)γ∗−1(
λ−k−1 + 1

1−λ

)γ∗ = O(λk) ,

hence

(9) |z(n)| ≤ Mk(1 + O(λk)) .

Now considering (8) and (9) we can conclude that

Mk+1 ≤ Mk(1 + O(λk)) ,

hence z(n) is bounded. Then y(n) = O(ϕ(n)) and the property (4) is proved.
Recall that previous procedures have been performed under the assump-

tion a 6= 0. The proof in the case a = 0 is much more simple. Utilizing our
previous notation we have

z(n) =
1

ϕ(n)

m∑
j=1

bjϕ(bλj(n− 1)c)z(bλj(n− 1)c) ,
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i.e.

|z(n)| ≤ Mk

ϕ(n)

m∑
j=1

|bj |ϕ(bλj(n− 1)c) ≤ Mk
ϕ(n− 1)

ϕ(n)
,

where we utilized the inequality (6). If
∑m

j=1 |bj |+ |a| ≥ 1, then ϕ(n− 1) ≤
ϕ(n) and we get (8). If

∑m
j=1 |bj |+ |a| < 1, then

ϕ(n− 1)
ϕ(n)

=

(
n− 1 + 1

1−λ

)γ∗(
n + 1

1−λ

)γ∗ = 1 + O(λk)

which implies (9). The derivation of the property (4) is now quite analogous
as in the case a 6= 0. �

Remark 1. The technique employed in the proof of Theorem 1 admits
some extensions of this asymptotic result. E.g., we can assume that coef-
ficients a, bj are complex scalars or even that they are depending on n (in
such a case some additional restrictions on a = a(n) and bj = bj(n) turn out
to be necessary). Similarly, we can consider the equation (1) in a slightly
modified form such as

(10) y(n + 1) = ay(n) +
m∑

j=1

r∑
k=1

bjky(bλjnc+ k), n = 0, 1, . . .

which appears as a result of various discretizations of the multi-pantograph
equation (2). The reformulation of the asymptotic property (4) for the equa-
tion (10) requires only some simple technical modifications. In particular, if
y(n) is a solution of (10), where |a| < 1, bjk 6= 0 for some k = 1, . . . , r and
0 < λj < 1, j = 1, . . . ,m, then the asymptotic estimate (4) holds, where γ∗

is a (unique) real root of

m∑
j=1

r∑
k=1

|bjk|(λj)γ + |a| − 1 = 0 .

3. Some consequences

In this section, we give the application of Theorem 1 to the stability
and asymptotic theory of numerical methods for the differential equation
(2). We start with the following condition on the asymptotic stability of (2)
which is taken from [17].
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Lemma 1. Assume that the coefficients p and qj, j = 1, . . . ,m in (2)
satisfy

(11)
m∑

j=1

|qj | < −p .

Then any solution u(t) of (2) satisfies

lim
t→∞

u(t) = 0 .

Now we investigate the asymptotic stability condition for a numerical
discretization of the equation (2). As the illustration, we consider the back-
ward Euler method utilizing a piecewise linear interpolation of the delayed
term (for more details and some necessary calculations we refer, e.g. to [12]
or [13]). Applying this method to (2) we arrive at

(12) y(n + 1) = ay(n) +
m∑

j=1

bj1y(bλj(n + 1)c) + bj2y(bλj(n + 1)c+ 1),

n = 0, 1, . . . , where

a =
1

1− ph
, bj1 =

qjh

1− ph
− bj2,(13)

bj2 =
qjh

1− ph
(λj(n + 1)− bλj(n + 1)c) ,

j = 1, . . . ,m. Here y(n) means an approximation of u(tn), where tn = nh
and h > 0 is the stepsize. The difference equation (12) is of the type (10)
with the coefficients bj1, bj2 formally slightly different from those in(10)
(in particular, bj1, bj2 are now depending on n). However, because of the
property

bj1(n) + bj2(n) =
qjh

1− ph
, j = 1, . . . ,m

it requires only a trivial modification to extend the corresponding assertion
concerning the asymptotics of the difference equation (10) (mentioned in
Remark 1) also to this case. In particular, if

(14)
m∑

j=1

|bj1(n)|+ |bj2(n)|+ |a| − 1 < 0 ,

then any solution y(n) of (12) tends to zero as n → ∞. Substituting (13)
into (14) one gets

m∑
j=1

|qj |h
|1− ph|

+
1

|1− ph|
− 1 < 0
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which is equivalent to (11). In other words, the asymptotic stability condi-
tion for the numerical solution of (2) is equivalent to the asymptotic stability
condition for the exact solution. These observations are closely related to
the notion of asymptotic stability of a numerical method.

Definition 1. A numerical method for solving the multi-pantograph equa-
tions is called asymptotic stable if and only if when it is applied to the test
equation (2) with its coefficients satisfying (11), its approximate solution
y(n) satisfies

lim
n→∞

y(n) = 0 ,

where y(n) is an approximation of u(tn), tn = nh and h > 0 is arbitrary
stepsize.

An immediate consequence of our previous ideas is the following

Corollary 1. The backward Euler method for the multi-pantograph equa-
tion is asymptotic stable.

Note that Corollary 1 generalizes the result on the asymptotic stability
of the backward Euler method for the pantograph equation with one pro-
portional delay (see Corollary 9.2.1 of [12]). Furthermore, we can deduce a
stronger result from Theorem 1. Considering the multi-pantograph equation
(2) and assuming that p < 0, qj 6= 0 and 0 < λj < 1, it holds

(15) u(t) = O
(
tα

∗)
as t →∞

for any solution u(t) of (2), where α∗ is a unique real root of the equation

(16)
m∑

j=1

|qj |(λj)γ + p = 0

(see [5]). If we take the discretization (12), then Theorem 1 and Remark 1
imply that

(17) y(n) = O
(
nγ∗

)
as n →∞

for any solution y(n) of (12), where γ∗ is a root of

(18)
m∑

j=1

(|bj1(n)|+ |bj2(n)|)(λj)γ + |a| − 1 = 0 .

Now it is simple to verify that substituting (13) into (18) we can observe
the equivalence between (16) and (18). Consequently, the asymptotic rela-
tions (15) and (17) present the same estimate for both exact and numerical
solution of the multi-pantograph equation (2).
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Finally we note that the extension of the previous results and ideas to
other discretizations of the multi-pantograph equation (e.g., to the linear
θ-methods) is not obvious and some related problems in this area remain
open.

Acknowledgment. The author is grateful to the referee for his sugges-
tions and notices which helped to improve the content of this paper.

References

[1] Agarwal R.P., Pituk M., Asymptotic expansions for higher-order scalar
difference equations, Advances in Difference Equations, 2007(2007), 1-12.

[2] Bellen A., Zennaro M., Numerical Methods For Delay Differential Equa-
tions, Numerical Mathematics and Scientific Computation, The Clarendon
Press, Oxford University Press, New York, 2003.

[3] Berezansky L., Braverman E., Exponential stability of difference equa-
tions with several delays: Recursive approach, Advances in Difference Equa-
tions, 2009(2009), 1-13.

[4] Buhmann M.D., Iserles A., Stability of the discretized pantograph differ-
ential equation, Math. Comp., 60(1993), 575-589.

[5] Čermák J., Asymptotic estimation for functional differential equations with
several delays, Archivum Math. (Brno), 35(1999), 337-345.
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[10] Györi I., Pituk M., Asymptotic formulae for the solutions of a linear delay
difference equations, J. Math. Anal. Appl., 195(1995), 376-392.

[11] Iserles A., Numerical analysis of delay differential equations with variable
delays, Ann. Numer. Math., 1(1994), 133-152.

[12] Kuang J., Cong Y., Stability of Numerical Methods For Delay Differential
Equations, Science Press, Beijing, 2005.

[13] Liu Y., On the θ-method for delay differential equations with infinite lag, J.
Comput. Appl. Math., 71(1996), 177-190.

[14] Liu M.Z., Li D., Properties of analytic solution and numerical solution of
multi-pantograph equation, Appl. Math. Comput., 155(2004), 853-871.

[15] Liu M.Z., Yang Z.W., Hu G.D., Asymptotical stability of numerical meth-
ods with constant stepsize for the pantograph equations, BIT, 45(2005),
743-759.
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