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UNBOUNDED SOLUTIONS ∗

Abstract. We show that there are ordinary differential equations
in Rd with unbounded solutions, for which the difference equations
obtained by using the forward Euler method have all solutions
bounded.
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1. Introduction

The most straightforward way of numerically solving an ordinary differen-
tial equation in Rd is to use the Euler method (called also the forward Euler
method). The right-hand side of a differential equation is a vector field;
with the Euler method we move consecutively by those vectors multiplied
by a small constant ε, called step. That is, we approximate the differential
equation

(1) ẋ = F (x)

with the difference equation

(2) xn = xn−1 + εF (xn−1).

We will call (2) the Euler approximation of (1) with step ε.
If ε is very small, the solutions of (2) approximate well the solution of (1)

in the sense that if x(t) is a solution to (1) with the initial condition x(0) = y
and (xn) is the solution to (2) with the initial condition x0 = y, then xn

is close to x(nε). However, this closeness works only for finite pieces of
trajectories. The smaller ε is, the larger nε we can consider, but we can

∗This research has been inspired by the talk of N. Maćkowiak during the conference
Progress On Difference Equations 2009 in Bȩdlewo, Poland, and it has been conducted
partially at this conference. The paper was partially written when the second author was
visiting the Max-Planck Institut für Mathematik in Bonn, Germany.



44 Richard T. Guy and Micha l Misiurewicz

never claim (in the general case) that the solutions are close to each other
forever.

From the point of view of the Dynamical Systems Theory the long-term
behavior of the trajectories is the most interesting thing. Thus, it is tempting
to try to show that even though the quantitative behaviors of the solutions to
a differential equation and its Euler approximations are different, the qual-
itative behavior (for small ε > 0) is maybe similar. The standard example
of the harmonic oscillator

(ẋ, ẏ) = (−y, x)

shows that this is not the case. The solutions of the differential equation
are all bounded (they are circles), while the solutions of the Euler approxi-
mations are all (except the fixed point (0, 0)) unbounded “spirals.”

The mechanism of the above example is simple, but it produces only solu-
tions of the difference equation “wider” than the solutions of the differential
equation.Therefore the question arises: is it possible to construct a differen-
tial equation in Rd that has an unbounded (in forward time) solution, but its
Euler approximations for sufficiently small ε have only bounded solutions?
In this paper we construct such examples.

We are of course not the first authors comparing differential equations
and their discretizations. The literature on this subject is substantial; let
us mention for instance [4], [6], [7] and [8] and the references therein. Impli-
cations of differences in the behavior of differential and difference equations
in some models in economy are discussed in [1] (see also [3] and [2]). How-
ever, all those papers concentrate on a more or less local behavior of the
solutions – what happens in some compact set. Here we investigate a global
behavior of solutions – are they bounded or not? This type of questions has
been studied for instance in [5], but for a different dependence between the
differential and difference equations.

Let us introduce notation that will be used throughout the paper. We will
consider equations (1) and (2) with the function F different in different ex-
amples. For the example in R2, we will set x = (x, y) and xn = (xn, yn); sim-
ilarly, for the examples in R3 we will set x = (x, y, z) and xn = (xn, yn, zn).

The solutions of the difference equation (2) are the trajectories of a dy-
namical system with discrete time, given by the map fε : Rd → Rd, defined
by

(3) fε(x) = x + εF (x).

Note that there is no reason for the map fε to be one-to-one. We would
also like to consider the solutions of the differential equation (1) as the
trajectories of a dynamical system with continuous time. For this we need
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the function F to be sufficiently regular. It should be at least continuous,
and if it is not smooth, we will have to prove that there is uniqueness of
solutions of (1). Moreover, we will have to show for each example that F
treated as a vector field is complete, that is, the solutions of (1) do not
escape to infinity in finite time.

Of course, the higher the smoothness of F , the stronger the example.
However, we have to take also into account other properties of the solutions.
Similarly, the lower the dimension, the stronger the example. Increasing the
dimension of the examples is simple; just take G(x,y) = (F (x),−y), where
y ∈ Rm. Therefore, we will provide more than one example.

Observe that in dimension 1 the criterion for the existence of unbounded
solutions is the same for both (1) and (2): F (x) has to be positive for
sufficiently large x or negative for sufficiently small x. Therefore we start
with dimension 2. In Section we provide an example with F continuous
in R2. In Section we give an example with F of class C∞ in R3, having
an additional property that fε has a fixed point that is globally attracting.
Finally, in Section we give an example also in R3, but with F real analytic
(in fact, rational).

2. First example

In this section we give an example in dimension 2. Set

(4) F (x, y) =


(−x, 1) for x ≤ −1/e(

x ln |x|, 1
1+ln | ln |x||

)
for x ∈ (−1/e, 0)

(−x, 0) for x ≥ 0

and consider the differential equation (1) and the associated difference equa-
tion (2).

Since the way the function F is defined is a little complicated, we have
to prove some properties of this function and the equation (1).

Lemma 1. The function F is continuous.

Proof. If x /∈ {−1/e, 0} then continuity at (x, y) follows from the fact
that the components of F are compositions of continuous functions. Conti-
nuity when x = 0 follows from the limits

lim
x→0

x ln |x| = 0 and lim
x→0

ln
∣∣ ln |x|

∣∣ = ∞.

Continuity when x = −1/e follows from the equalities

ln | − 1/e| = −1 and ln
∣∣ ln | − 1/e|

∣∣ = 0.

This completes the proof. �
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Lemma 2. For every x ∈ R2 there is a unique solution of the differential
equation (1) with the initial condition x(0) = x with F given by (4).

Proof. The function F is locally Lipschitz continuous except at the line
x = 0 from the left. Therefore the only danger that there is no uniqueness
of solutions is that the solutions starting to the left of this line approach it
in finite time. However, this is not the case, because for every δ ∈ (−1/e, 0)
the integral ∫ 0

δ

dx

x ln |x|
is infinite (use the substitution u = ln |x| to see it). �

Lemma 3. The vector field F given by (4) is complete.

Proof. Looking at the definition of F , we see that the only possible
problem is whether the solutions do not escape to infinity in the y-direction
when x approaches 0 from the left. However, as we established in Lemma 1,
the corresponding limit of the second component of F is 0, so the solutions
do not escape to infinity there. �

Now we prove the main result of this section.

Theorem 1. For F given by (4), equation (1) has an unbounded (in for-
ward time) solution, but all solutions to the associated Euler approximation
(2) with ε ∈ (0, 1) are bounded.

Proof. We note that the line {x : x = 0} is the set of fixed points of
both (1) and (2).

The solution of (1) with the initial condition

x(0) = (−1/e, 0)

can be written explicitly for t ≥ 0 as

x(t) = (−e−et
, ln(1 + t)).

Since ln(1 + t) goes to ∞ as t→∞, this solution is unbounded.
We now consider the Euler approximation (2) for a fixed positive time

step ε < 1. It is helpful to consider several cases for the first variable.
(a) If xn ≥ 0 then xn+1 = (1 − ε)xn, the second component is a fixed

constant y and the solution asymptotically approaches (0, y).
(b) If −e−1/ε < xn < 0 then ln |xn| < −1/ε, so

xn+1 = xn(1 + ε ln |xn|) > 0

and (a) describes the remainder of the trajectory.
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(c) If xn ∈ (−1/e,−e−1/ε] then

xn ln |xn| >
e−1/ε

ε
> 0

since the function x 7→ x ln |x| is decreasing in [−1/e, 0], and thus there
is an N > 0 such that xN > −e−1/ε.

(d) If xn ≤ −1/e then xn+1 = (1 − ε)xn > xn and there is an N > 0 such
that xN > −1/e.

In each case, solutions approach a fixed point. �

3. Second example

In this section we provide a stronger example, but to do it we have to go
to dimension 3. By “stronger” we mean that it is of class C∞ and that the
associated Euler approximation has not only all orbits bounded, but it has
a globally attracting fixed point.

Let us fix a function ψ : R → [0, 1] of class C∞ such that ψ(t) = 0 for
t ≤ 0 and ψ(t) = 1 for t ≥ 1. Existence of such functions is proved in
practically every textbook in mathematical analysis.

Now we define a function ϕ : R → [−1, 1] by

ϕ(t) = 2ψ(t)ψ(2− t)− 1.

This function is of class C∞, ϕ(0) = −1, ϕ(1) = 1 and ϕ(t) = −1 for t ≥ 2.
Finally, we define a function F = (F1, F2, F3) : R3 → R3 by

F1(x, y, z) = −yψ(z − 1)− x(1− ψ(z − 1)),(5)
F2(x, y, z) = xψ(z − 1)− y(1− ψ(z − 1)),(6)

F3(x, y, z) = ϕ(x2 + y2)ψ(z − 2)− z(1− ψ(z − 2)).(7)

Clearly, F is of class C∞.
We will consider a differential equation (1) and the difference equa-

tion (2).

Lemma 4. The vector field F given by (5)-(7) is complete.

Proof. We have

(F1(x, y, z), F2(x, y, z)) · (x, y) = −(x2 + y2)(1− ψ(z − 1)) ≤ 0,

so the projections of the solutions of (1) to the (x, y)-plane are bounded.
Moreover, F3(x, y, z) = −z if z ≤ 0, and F3(x, y, z) ≤ 1 if z ≥ 3. Therefore
the third component of the solutions also cannot escape to infinity in finite
time. �
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Theorem 2. For F given by (5)-(7), the differential equation (1) has
an unbounded (in forward time) solution, while the difference equation (2)
with any ε > 0 has a globally attracting fixed point.

Proof. Let us start by listing several properties of the function F that
follow immediately from the formulas (5)-(7) and the properties of the func-
tions ψ and ϕ:
(a) if z ≤ 1 then (F1(x, y, z), F2(x, y, z), F3(x, y, z)) = (−x,−y,−z),
(b) if z ≥ 2 then (F1(x, y, z), F2(x, y, z)) = (−y, x),
(c) if z ≤ 2 then F3(x, y, z) = −z,
(d) if z ≥ 2 and either (x, y) = (0, 0) or x2 + y2 ≥ 2 then F3(x, y, z) ≤ −1,
(e) if z ≥ 3 and x2 + y2 = 1 then F3(x, y, z) = 1.

By (b) and (e), the solution of (1) with the initial condition

(x(0), y(0), z(0)) = (1, 0, 3)

can be written explicitly for t ≥ 0 as

(x(t), y(t), z(t)) = (cos t, sin t, t+ 3).

Since z(t) goes to ∞ as t→∞, this solution is unbounded.
Let us fix ε > 0 and consider the solutions of the equation (2). If z0 ≤ 2

then by (c) and (a) (xn, yn, zn) converges to (0, 0, 0) as n→∞. Thus, for any
(x0, y0, z0), if there is k ≥ 0 such that zk ≤ 2, then (xn, yn, zn) converges to
(0, 0, 0) as n→∞. We will show that this happens for all (x0, y0, z0) ∈ R3.

Suppose that there is a point (x0, y0, z0) ∈ R3 such that zn > 2 for
all n ≥ 0. If (x0, y0) = (0, 0) then by (b) and (d) (xn, yn) = (0, 0) and
zn+1 ≤ zn − ε for all n ≥ 0, a contradiction. Hence, (x0, y0) 6= (0, 0). Now
by (b) we get x2

n+1 + y2
n+1 = (1 + ε2)(x2

n + y2
n) for all n ≥ 0, so there is

N ≥ 0 such that x2
n + y2

n ≥ 2 for all n ≥ N . Then by (d) zn+1 ≤ zn − ε for
all n ≥ N , a contradiction. This proves that all solutions of (2) converge to
(0, 0, 0). �

4. Third example

In this section we modify the example from the preceding section. In one
sense, we make it stronger. Namely, the vector field is real analytic, and
even rational. However, we pay for it by weakening the properties of the
corresponding difference equations. There will be no longer a global attract-
ing fixed point; however, there will be no unbounded solutions. Moreover,
this will work not for every ε > 0, but only for ε ∈ (0, 1).

We define rational functions σ, τ : [0,∞) → R by

σ(t) =
(t− 1)2(t− 2)

(t+ 1)3
, τ(t) =

1− 2(t− 1)2

(t+ 1)2
.
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Lemma 5. The functions σ and τ have the following properties:
(a) σ(1) = σ(2) = 0,
(b) if t ∈ [0, 1) ∪ (1, 2) then σ(t) ∈ [−2, 0),
(c) if t > 2 then σ(t) ∈ (0, 1),
(d) the function σ is increasing on [2,∞),
(e) τ(0) = −1 and τ(1) = 1/4,
(f) if t ≥ 2 then τ(t) ∈ (−2,−1/9],
(g) if t ≥ 0 then τ(t) ≤ 1.

Proof. Properties (a) and (e) follow immediately from the definitions of
σ and τ .

Assume that t ∈ [0, 1) ∪ (1, 2). Then σ(t) is negative, the distance of t
from 1 is smaller than or equal to the distance of t from −1, and the distance
of t from 2 is smaller than or equal to 2 times the distance of t from −1.
This proves (b).

Assume that t > 2. Then σ(t) is positive and the distances of t from 1
and 2 are smaller than the distance of t from −1. This proves (c).

The functions (t− 1)/(t+ 1) and (t− 2)/(t+ 1) are increasing on [2,∞),
so σ is also increasing there. This proves (d).

Simple calculations show that τ(t) ≤ −1/9 is equivalent to the inequality

(t− 2)(17t− 4) ≥ 0,

which holds for t ≥ 2. Moreover, for t ≥ 2 we have

τ(t) =
1− 2(t− 1)2

(t+ 1)2
> −2

(
t− 1
t+ 1

)2

> −2.

This proves (f).
If t ≥ 0 then 1 − 2(t − 1)2 ≤ 1 and (t + 1)2 ≥ 1, so τ(t) ≤ 1. This

proves (g). �

Now we define a function G = (G1, G2) : R2 → R2 by

G1(x, y) = −y − σ(x2 + y2)x,(8)

G2(x, y) = x− σ(x2 + y2)y,(9)

and a function F = (F1, F2, F3) : R3 → R3 by

F1(x, y, z) = G1(x, y) = −y − σ(x2 + y2)x,(10)

F2(x, y, z) = G2(x, y) = x− σ(x2 + y2)y,(11)

F3(x, y, z) = τ(x2 + y2)z.(12)

As in the preceding sections, we consider the differential equation (1), dif-
ference equations (2) and maps (3).
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Lemma 6. The vector field F given by (10)-(12) is complete.

Proof. Similarly as in the preceding section, we have

(F1(x, y, z), F2(x, y, z)) · (x, y) = −(x2 + y2)σ(x2 + y2).

By Lemma 5, this is negative if x2 + y2 > 2. Therefore the projections of
the solutions of (1) to the (x, y)-plane are bounded. Moreover, F3(x, y, z) =
τ(x2 + y2)z, and by Lemma 5 (c), τ(x2 + y2) is bounded from above by 1.
Therefore the third component of the solutions also cannot escape to infinity
in finite time. �

In order to investigate what happens with the two first components of
the trajectories of fε, we define a map gε : R2 → R2 by

gε(x, y) = (x, y) + εG(x, y) = (1− εσ(x2 + y2))(x, y) + ε(−y, x).

Observe that the norm of gε(x, y) depends only on the norm of (x, y). There-
fore it makes sense to introduce one more map, hε, defined by

hε(t) = t
(
(1− εσ(t))2 + ε2

)
.

Then

(13) ‖gε(x, y)‖2 = hε(‖(x, y)‖2).

Note that hε(0) = 0 and hε((0,∞)) ⊂ (0,∞).

Lemma 7. Assume that ε ∈ (0, 1). Then the map hε has in (0,∞) a
globally attracting point tε > 2.

Proof. Let t > 0. Elementary computations show that the sign of
hε(t) − t is the same as the sign of ε(σ(t))2 − 2σ(t) + ε. The function
s 7→ εs2 − 2s + ε = 0 has two zeros, s− ∈ (0, 1) and s+ > 1. Hence, this
function is positive for s < s− and negative for s ∈ (s−, 1). Therefore, by
Lemma 5, the function t 7→ ε(σ(t))2−2σ(t)+ε has in (0,∞) one zero tε, this
zero is located in (2,∞), and the function is positive for t < tε and negative
for t > tε. This proves that the point tε is a globally attracting point of hε

in (0,∞). �

Theorem 3. For the function F defined by (10)-(12), the differential
equation (1) has an unbounded (in forward time) solution, while the differ-
ence equation (2) with any ε ∈ (0, 1) has all solutions bounded.

Proof. Let us start by listing several properties of the functions F and
G that follow immediately from the formulas (8)-(12) and Lemma 5:
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(a) if x2 + y2 = 1 then F (x, y, z) = (−y, x, z/4),
(b) if (x, y) = (0, 0) then F (x, y, z) = (0, 0,−z),
(c) if x2 + y2 ≥ 2 then F3(x, y, z) is between −1

9z and −2z.
By (a), the solution of (1) with the initial condition

(x(0), y(0), z(0)) = (1, 0, 1)

can be written explicitly for t ≥ 0 as

(x(t), y(t), z(t)) = (cos t, sin t, et/4).

Since z(t) goes to ∞ as t→∞, this solution is unbounded.
Let us fix ε ∈ (0, 1) and consider the solutions of the equation (2). Con-

sider first the case when (x0, y0) = (0, 0). By (b), (xn, yn) stays (0, 0), while
zn+1 = (1− ε)zn for all n ≥ 0, so zn converges to 0 as n→∞. Thus, those
solutions are bounded.

Assume now that (x0, y0) 6= (0, 0). By (13) and Lemma 7, x2
n + y2

n

converges to tε as n → ∞. Since tε > 2, by Lemma 5 zn converges to 0 as
n→∞. Therefore those solutions are also bounded. �
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