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ANALYSIS OF A STOCHASTIC DIFFERENCE

EQUATION: EXIT TIMES AND INVARIANT

DISTRIBUTIONS

Abstract. The mean return time of a discrete Markov chain
to a point x is the reciprocal of the invariant probability π(x).
We revisit this classical theme to investigate certain exit times
for stochastic difference equations of autoregressive type. More
specifically, we will discuss the asymptotics, as ε → 0, of the first
time τ that the n-dimensional process

Yt = f(Yt−1) + εξt, t = 1, 2, . . .

(where ξ1, ξ2, . . . is a sequence of i.i.d. random n-vectors) leaves a
given neighborhood of the fixed point of the contraction f .
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Mark Kac proved in 1947 that the mean return time of a discrete Markov
chain to a point x is the reciprocal of the invariant probability π(x). This
result was extended to chains on general measure spaces (subject to some
irreducibility conditions) by Cogburn (1975). We revisit this classical theme
to investigate certain exit times for stochastic difference equations of an
autoregressive type.

In the first section, we introduce some notation and recall the results
for return times that were given by Cogburn (1975). In section 2, we use
these results to analyse an exit time from a set for a stochastic difference
equation. In the last section we study certain examples, among them the
exit time from an interval for the autoregressive process.

1. Mean return times for recurrent sets

Consider a Markov process X0, X1, X2, . . . taking values in a measurable
state space (H,A). Under the assumption that the chain is Harris recurrent,
it has a σ-finite invariant measure π. Furthermore, a set A ∈ A is recurrent if
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and only if π(A) > 0. We assume that π is actually an invariant probability
measure and consider return times to a recurrent set A for the process. The
first return time is defined as

(1) τ1
A = inf{t ≥ 1 : Xt ∈ A},

and the k:th return time, where k ≥ 2, is defined recursively as

(2) τk
A = inf{t > τk−1

A : Xt ∈ A}.

Let πA denote the restriction of the invariant probability measure π to the
set A. Then, as Cogburn (1975) shows in his Corollary 3.1.,

(3) EπA(τ1
A) =

1
π(A)

,

where the notation EπA refers to the assumption that the initial state X0

of the chain is distributed according to πA. For a similar result for the k:th
return time, we may consider the chain restricted to A, that is, the process
X0, Xτ1

A
, Xτ2

A
, . . ., where X0 ∈ A. This process has the invariant probability

measure πA. Thus, by considering Xτ1
A

as a new starting point, one gets
that EπA(τ2

A) = 2/π(A), and that

(4) EπA(τk
A) =

k

π(A)

for a general integer k ≥ 1.

2. Exit times for a stochastic difference equation

We will now study the exit time from the set for the process {Yt}t≥1 in
Rn, defined by the stochastic difference equation

Yt = f(Yt−1) + εξt, Y0 = y0 ∈ Rn.

Here, the function f is assumed to be continuous and contractive, the para-
meter ε is a positive real number and {ξt}t≥1 is a sequence of independent
and identically distributed random variables with mean 0 and finite covari-
ance matrix. We want to consider the exit time from a set Γ ⊂ Rn, so we
assume that y0 ∈ Γ and define

T := inf{t ≥ 1 : Yt /∈ Γ}.

We assume that f and {ξt}t≥1 are such that the process is Harris recurrent.
The process has an invariant probability measure π (this follows from The-
orem 12.3.4 in Meyn, Tweedie (1993), since the process is weak Feller and
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satisfies a drift condition). To apply Cogburn’s result, let us compare the
exit time T with a certain return time. For this, we define another process
{Xt}t≥1 in Rn, where

Xt = f(Xt−1) + εξt, X0 = x0.

Here, the function f and the sequence {ξt}t≥1 are the same as in the defini-
tion of the process {Yt}t≥1. This process has the same stationary distribution
π as {Yt}t≥1. Since f is contractive, the sequences {Yt}t≥1 and {Xt}t≥1 will
be arbitrarily close together after a sufficient number of steps, that is, for
an arbitrary η > 0 there is an M > 0 such that t ≥ M ⇒ ||Yt −Xt|| < η.
Now, for fixed η, h > 0, we define the set Aη as

Aη = {x ∈ Rn : η < inf
y∈Γ

||y − x|| ≤ η + h}

and consider return times to this set. Let τ1
Aη

= inf{t ≥ 1 : Xt ∈ Aη} be
the first return time, and τk

Aη
= inf{t > τk−1

Aη
: Xt ∈ Aη}, where k ≥ 2,

the time of the k:th return to the set Aη. Assume also that x0 follows the
distribution πAη , that is, the stationary distribution of the process restricted
to Aη. Now, consider the time of the M :th return to Aη. If τM

Aη
= t, then

Xt ∈ Aη. Also, t ≥ M , so ||Yt − Xt|| < η. This implies that Yt /∈ Γ, so
T ≤ t. Thus, T ≤ τM

Aη
. The result (4) stated that EπAη

τM
Aη

= M/π(Aη) and
this implies that

(5) ET ≤ M

π(Aη)
.

Thus, we have an upper bound for the expected exit time from the set Γ.

3. Exit times for a process of autoregressive type

We illustrate the result (5) by applying it to a process of autoregressive
type. Let {Yt}t≥1 in Rn be such that

Yt = RYt−1 + εSξt, Y0 = y0,

where y0 ∈ Γ ⊂ Rn, R is an n × n-matrix, S is an n × p-matrix for some
p ≤ n and {ξt}t≥1 is a sequence of independent and identically distributed
multivariate normal random variables with mean 0 and covariance matrix
I, taking values in Rp. It has been shown in Meyn, Tweedie (1993) that
under the assumptions that all eigenvalues of R fall within the open unit
disk in the complex plane and that the matrix [Rn−1S|Rn−2S| . . . |RS|S]
has rank n, the process is Harris recurrent and has an invariant probability
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distribution π. This π is a multivariate normal distribution with mean 0
and covariance matrix ε2Σ, where Σ is the solution of

Σ = RΣRT + SST .

We consider the exit time T from a set Γ ∈ Rn. The result (5) states that
ET ≤ M/π(Aη), where Aη is defined as before and M is a constant that
depends on η. In this case,

π(Aη) =
∫

Aη

1
(2π)n/2εn|Σ|1/2

exp(− 1
2ε2

uT Σ−1u) du.

When ε is small, this integral is of the same order of magnitude as

sup
u∈Aη

1
(2π)n/2εn|Σ|1/2

exp(− 1
2ε2

uT Σ−1u),

which implies that

lim
ε→0

ε2 log π(Aη) = − inf
u∈Aη

1
2
uT Σ−1u.

(This can also be deduced by using a large deviation principle for the multi-
variate normal distribution.) Since M is constant,

lim sup
ε→0

ε2 log ET ≤ − lim
ε→0

ε2 log π(Aη) = inf
u∈Aη

1
2
uT Σ−1u.

Since this holds for any choice of η, we can let η → 0, and get

(6) lim sup
ε→0

ε2 log ET ≤ inf
u∈A0

1
2
uT Σ−1u,

where A0 = {x ∈ Rn : 0 < infy∈Γ ||y − x|| ≤ h}. The infimum on the right
hand side is then attained in the point where the level curve of the density
function of the stationary distribution touches the boundary of the set Γ.

A simple example of the kind of process considered is the autoregressive
process of order one, where {Yt}t≥1 in R is such that

Yt = rYt−1 + εξt, Y0 = y0,

where {ξt}t≥1 is a sequence of independent and identically distributed nor-
mal random variables, each with mean 0 and variance σ2. If |r| < 1,
the process is Harris recurrent and has a stationary distribution which
is normal with mean 0 and variance σ2/(1 − r2). If Γ is the interval
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(−1, 1) and T is the exit time from this interval, the set A0 is defined as
A0 = {x ∈ R : 1 ≤ |x| ≤ 1 + h}. The upper bound in (6) is then

(7) lim sup
ε→0

ε2 log ET ≤ inf
1≤|u|≤1+h

u2(1− r2)
2σ2

=
1− r2

2σ2
.

In this case, this is the smallest possible upper bound, since it has been
shown by other methods in Ruths (2008) that lim

ε→0
ε2 log ET = (1−r2)/(2σ2).

As another example we can consider the more general case of the auto-
regressive process of order n, where {Yt}t≥1 in R is such that

Yt = r1Yt−1 + . . . + rnYt−n + εξt, Y0 = y0,

where {ξt}t≥1 is again a sequence of independent and identically distributed
normal random variables with mean 0 and variance σ2. By introducing the
new notations

Ỹt :=


Yt

Yt−1
...

Yt−n+1

 , R :=


r1 r2 . . . rn

1 0 . . . 0

0
. . . 0 0

0 . . . 1 0

 and ξ̃t :=


ξt

0
...
0

 ,

we can write the autoregressive process of order n in multivariate form as

Ỹt = RỸt−1 + εξ̃t.

It has been shown in Meyn, Tweedie (1993) that this R is such that the
matrix [Rn−1S|Rn−2S| . . . |RS|S], where S = (1, 0, . . . , 0)T , has rank n. If
all eigenvalues of R fall within the open unit disk in the complex plane,
the process has an invariant probability distribution π which is multivariate
normal with mean 0 and covariance matrix ε2Σ, where Σ is the solution of

Σ = RΣRT + SST .

Let us consider exits from the interval Γ = (−1, 1) for the autoregressive
process {Yt}t≥1, and thus define

T = inf{t ≥ 1 : |Yt| ≥ 1}.

We then define A0 = {x ∈ Rn : 1 ≤ |xn| ≤ 1 + h} and the upper bound in
(6) is

(8) lim sup
ε→0

ε2 log ET ≤ inf
1≤|un|≤1+h

1
2
uT Σ−1u =

1
2Σ11

,

where one can determine the infimum by using Lagrange multipliers. Here,
Σ11 is the variance of the stationary distribution for the process {Yt}t≥1.
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