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THE DELTA-NABLA CALCULUS OF VARIATIONS

Abstract. The discrete-time, the quantum, and the continuous
calculus of variations have been recently unified and extended.
Two approaches are followed in the literature: one dealing with
minimization of delta integrals; the other dealing with minimiza-
tion of nabla integrals. Here we propose a more general approach
to the calculus of variations on time scales that allows to obtain
both delta and nabla results as particular cases.
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1. Introduction

The calculus of variations on time scales was introduced by M. Bohner
using the delta derivative and integral [7]: to extremize a functional of the
form

(1) J∆(y) =
∫ b

a
L
(
t, yσ(t), y∆(t)

)
∆t .

Motivated by applications in economics [2, 5], a different formulation for the
problems of the calculus of variations on time scales has been considered,
which involve a functional with a nabla derivative and a nabla integral [1,
4, 11]:

(2) J∇(y) =
∫ b

a
L
(
t, yρ(t), y∇(t)

)
∇t .

Formulations (1) and (2) are consistent in the sense that results obtained
via delta and nabla approaches are similar among them and similar to the
classical results of the calculus of variations. An example of this is given
by the time scale versions of the Euler-Lagrange equations: if y ∈ C2

rd is an
extremizer of (1), then y satisfies the delta-differential equation

(3)
∆
∆t

∂3L
(
t, yσ(t), y∆(t)

)
= ∂2L

(
t, yσ(t), y∆(t)

)
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for all t ∈ [a, b]κ
2

[7]; if y ∈ C2
ld is an extremizer of (2), then y satisfies the

nabla-differential equation

(4)
∇
∇t

∂3L
(
t, yρ(t), y∇(t)

)
= ∂2L

(
t, yρ(t), y∇(t)

)
for all t ∈ [a, b]κ2 [11], where we use ∂iL to denote the standard partial
derivative of L(·, ·, ·) with respect to its ith variable, i = 1, 2, 3. In the
classical context T = R one has

(5) J∆(y) = J∇(y) =
∫ b

a
L
(
t, y(t), y′(t)

)
dt

and both (3) and (4) coincide with the standard Euler-Lagrange equation:
if y ∈ C2 is an extremizer of the integral functional (5), then

d

dt
∂3L

(
t, y(t), y′(t)

)
= ∂2L

(
t, y(t), y′(t)

)
for all t ∈ [a, b]. However, the problems of extremizing (1) and (2) are
intrinsically different, in the sense that is not possible to obtain the nabla
results as corollaries of the delta ones and vice versa. Indeed, if admissible
functions y are of class C2 then (cf. [10])

J∆(y) =
∫ b

a
L
(
t, yσ(t), y∆(t)

)
∆t =

∫ b

a
L
(
ρ(t), (yσ)ρ(t), y∇(t)

)
∇t

while

J∇(y) =
∫ b

a
L
(
t, yρ(t), y∇(t)

)
∇t =

∫ b

a
L
(
σ(t), (yρ)σ(t), y∆(t)

)
∆t

and one easily see that functionals (1) and (2) have a different nature and are
not compatible with each other. In this paper we introduce a more general
formulation of the calculus of variations that includes, as trivial examples,
the problems with functionals J∆(y) and J∇(y) that have been previously
studied in the literature. Our main result provides an Euler-Lagrange nec-
essary optimality type condition (cf. Theorem 1).

2. Our goal

Let T be a given time scale with a, b ∈ T, a < b, and (T \ {a, b})∩ [a, b] 6=
∅; L∆(·, ·, ·) and L∇(·, ·, ·) be two given smooth functions from T×R2 to R.
The results here discussed are trivially generalized for admissible functions
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y : T → Rn but for simplicity of presentation we restrict ourselves to the
scalar case n = 1. We consider the delta-nabla integral functional

J (y) =
(∫ b

a L∆

(
t, yσ(t), y∆(t)

)
∆t
)(∫ b

a L∇
(
t, yρ(t), y∇(t)

)
∇t
)

(6)

=
∫ b
a

∫ b
a

[
L∆

(
t, yσ(t), y∆(t)

)
L∇
(
τ, yρ(τ), y∇(τ)

)]
∆t∇τ .

Remark 1. In the particular case L∇ ≡ 1
b−a functional (6) reduces to

(1) (i.e., J (y) = J∆(y)); in the particular case L∆ ≡ 1
b−a functional (6)

reduces to (2) (i.e., J (y) = J∇(y)).

Our main goal is to answer the following question: What is the Euler-Lagrange
equation for J (y) defined by (6)?

For simplicity of notation we introduce the operators [y] and {y} defined
by [y](t) =

(
t, yσ(t), y∆(t)

)
and {y}(t) =

(
t, yρ(t), y∇(t)

)
. Then,

J∆(y) =
∫ b

a
L∆[y](t)∆t , J∇(y) =

∫ b

a
L∇{y}(t)∇t ,

J (y) = J∆(y)J∇(y) =
∫ b

a

∫ b

a
L∆[y](t)L∇{y}(τ)∆t∇τ .

3. Preliminaries to the calculus of variations

Similar to the classical calculus of variations, integration by parts will
play an important role in our delta-nabla calculus of variations. If functions
f, g : T → R are delta and nabla differentiable with continuous derivatives,
then the following formulas of integration by parts hold [8]:∫ b

a
fσ(t)g∆(t)∆t = (fg)(t)|t=b

t=a −
∫ b

a
f∆(t)g(t)∆t ,∫ b

a
f(t)g∆(t)∆t = (fg)(t)|t=b

t=a −
∫ b

a
f∆(t)gσ(t)∆t ,∫ b

a
fρ(t)g∇(t)∇t = (fg)(t)|t=b

t=a −
∫ b

a
f∇(t)g(t)∇t ,∫ b

a
f(t)g∇(t)∇t = (fg)(t)|t=b

t=a −
∫ b

a
f∇(t)gρ(t)∇t .

(7)

The following fundamental lemma of the calculus of variations on time
scales involving a nabla derivative and a nabla integral has been proved in
[11].
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Lemma 1. (The nabla Dubois-Reymond lemma [11, Lemma 14]) Let
f ∈ Cld([a, b], R). If∫ b

a
f(t)η∇(t)∇t = 0 for all η ∈ C1

ld([a, b], R) with η(a) = η(b) = 0 ,

then f(t) = c on t ∈ [a, b]κ for some constant c.

Lemma 2 is the analogous delta version of Lemma 1:

Lemma 2. (The delta Dubois-Reymond lemma [7]) Let g ∈ Crd([a, b], R).
If ∫ b

a
g(t)η∆(t)∆t = 0 for all η ∈ C1

rd with η(a) = η(b) = 0 ,

then g(t) = c on [a, b]κ for some c ∈ R.

Proposition 1 gives a relationship between delta and nabla derivatives.

Proposition 1. (Theorems 2.5 and 2.6 of [3]) (i) If f : T → R is
delta differentiable on Tκ and f∆ is continuous on Tκ, then f is nabla
differentiable on Tκ and

(8) f∇(t) =
(
f∆
)ρ

(t) for all t ∈ Tκ .

(ii) If f : T → R is nabla differentiable on Tκ and f∇ is continuous on Tκ,
then f is delta differentiable on Tκ and

(9) f∆(t) =
(
f∇
)σ

(t) for all t ∈ Tκ .

Remark 2. Note that, in general, f∇(t) 6= f∆ (ρ(t)) and f∆(t) 6=
f∇ (σ(t)). In Proposition 1 the assumptions on the continuity of f∆ and
f∇ are crucial.

Proposition 2. ([3, Theorem 2.8]) Let a, b ∈ T with a ≤ b and let f be
a continuous function on [a, b]. Then,∫ b

a
f(t)∆t =

∫ ρ(b)

a
f(t)∆t + (b− ρ(b))fρ(b) ,∫ b

a
f(t)∆t = (σ(a)− a)f(a) +

∫ b

σ(a)
f(t)∆t ,∫ b

a
f(t)∇t =

∫ ρ(b)

a
f(t)∇t + (b− ρ(b))f(b) ,∫ b

a
f(t)∇t = (σ(a)− a)fσ(a) +

∫ b

σ(a)
f(t)∇t .
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We end our brief review of the calculus on time scales with a relationship
between the delta and nabla integrals.

Proposition 3. ([10, Proposition 7]) If function f : T → R is continu-
ous, then for all a, b ∈ T with a < b we have∫ b

a
f(t)∆t =

∫ b

a
fρ(t)∇t ,(10) ∫ b

a
f(t)∇t =

∫ b

a
fσ(t)∆t .(11)

4. Main result

We consider the problem of extremizing the variational functional (6)
subject to given boundary conditions y(a) = α and y(b) = β:

J (y) =
(∫ b

a
L∆[y](t)∆t

)(∫ b

a
L∇{y}(t)∇t

)
−→ extr(12)

y(·) ∈ C1
�

y(a) = α , y(b) = β ,

where C1
� denote the class of functions y : [a, b] → R with y∆ continuous on

[a, b]κ and y∇ continuous on [a, b]κ. Before presenting the Euler-Lagrange
equations for problem (12) we introduce the definition of weak local ex-
tremum.

Definition 1. We say that ŷ ∈ C1
� ([a, b], R) is a weak local minimizer

(respectively weak local maximizer) to problem (12) if there exists δ > 0
such that J (ŷ) ≤ J (y) (respectively J (ŷ) ≥ J (y)) for all y ∈ C1

� ([a, b], R)
satisfying the boundary conditions y(a) = α, y(b) = β, and ‖ y− ŷ ‖1,∞< δ,
where

‖ y ‖1,∞ := ‖ yσ ‖∞ + ‖ yρ ‖∞ + ‖ y∆ ‖∞ + ‖ y∇ ‖∞
and ‖ y ‖∞ := supt∈[a,b]κκ

| y(t) |.

Theorem 1 gives two different forms for the Euler-Lagrange equation on
time scales associated with the variational problem (12).

Theorem 1. (The general Euler-Lagrange equations on time scales.)
If ŷ ∈ C1

� is a weak local extremizer to problem (12), then ŷ satisfies the
following delta-nabla integral equations:

(13) J∇(ŷ)

(
∂3L∆[ŷ](ρ(t))−

∫ ρ(t)

a
∂2L∆[ŷ](τ)∆τ

)

+ J∆(ŷ)
(

∂3L∇{ŷ}(t)−
∫ t

a
∂2L∇{ŷ}(τ)∇τ

)
= const ∀t ∈ [a, b]κ ;
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(14) J∇(ŷ)
(

∂3L∆[ŷ](t)−
∫ t

a
∂2L∆[ŷ](τ)∆τ

)
+ J∆(ŷ)

×

(
∂3L∇{ŷ}(σ(t))−

∫ σ(t)

a
∂2L∇{ŷ}(τ)∇τ

)
= const ∀t ∈ [a, b]κ .

Remark 3. In the classical context (i.e., when T = R) the necessary
conditions (13) and (14) coincide with the Euler-Lagrange equations recently
given in [9].

Proof. Suppose that J has a weak local extremum at ŷ. We consider
the value of J at nearby functions ŷ +εη, where ε ∈ R is a small parameter,
η ∈ C1

� ([a, b], R) with η(a) = η(b) = 0. Thus, function φ(ε) = J (ŷ + εη) has
an extremum at ε = 0. Using the first-order necessary optimality condition
φ′(ε)|ε=0 = 0,

(15) J∇(ŷ)
∫ b

a

(
∂2L∆[ŷ](t)ησ(t) + ∂3L∆[ŷ](t)η∆(t)

)
∆t

+ J∆(ŷ)
∫ b

a

(
∂2L∇{ŷ}(t)ηρ(t) + ∂3L∇{ŷ}(t)η∇(t)

)
∇t = 0 .

Let A(t) =
∫ t
a ∂2L∆[ŷ](τ)∆τ and B(t) =

∫ t
a ∂2L∇{ŷ}(τ)∇τ . Then, A∆(t) =

∂2L∆[ŷ](t), B∇(t) = ∂2L∇{ŷ}(t), and the first and third integration by parts
formula in (7) tell us, respectively, that∫ b

a
∂2L∆[ŷ](t)ησ(t)∆t =

∫ b

a
A∆(t)ησ(t)∆t = A(t)η(t)|t=b

t=a −
∫ b

a
A(t)η∆(t)∆t

= −
∫ b

a
A(t)η∆(t)∆t

and∫ b

a
∂2L∇{ŷ}(t)ηρ(t)∇t =

∫ b

a
B∇(t)ηρ(t)∇t = B(t)η(t)|t=b

t=a −
∫ b

a
B(t)η∇(t)∇t

= −
∫ b

a
B(t)η∇(t)∇t .

If we denote f(t) = ∂3L∆[ŷ](t) − A(t) and g(t) = ∂3L∇{ŷ}(t) − B(t), then
we can write the necessary optimality condition (15) in the form

(16) J∇(ŷ)
∫ b

a
f(t)η∆(t)∆t + J∆(ŷ)

∫ b

a
g(t)η∇(t)∇t = 0 .
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We now split the proof in two parts: we prove (13) transforming the delta
integral in (16) to a nabla integral by means of (10); we prove (14) trans-
forming the nabla integral in (16) to a delta integral by means of (11). By
(10) the necessary optimality condition (16) is equivalent to∫ b

a

(
J∇(ŷ)fρ(t)(η∆)ρ(t) + J∆(ŷ)g(t)η∇(t)

)
∇t = 0

and by (8) to

(17)
∫ b

a
(J∇(ŷ)fρ(t) + J∆(ŷ)g(t)) η∇(t)∇t = 0 .

Applying Lemma 1 to (17) we prove (13):

J∇(ŷ)fρ(t) + J∆(ŷ)g(t) = c ∀t ∈ [a, b]κ ,

where c is a constant. By (11) the necessary optimality condition (16) is
equivalent to

∫ b
a

(
J∇(ŷ)f(t)η∆(t) + J∆(ŷ)gσ(t)

(
η∇
)σ (t)

)
∆t = 0 and by (9)

to

(18)
∫ b

a
(J∇(ŷ)f(t) + J∆(ŷ)gσ(t)) η∆(t)∆t = 0 .

Applying Lemma 2 to (18) we prove (14):

J∇(ŷ)f(t) + J∆(ŷ)gσ(t) = c ∀t ∈ [a, b]κ ,

where c is a constant. �

Corollary 1. Let L∆

(
t, yσ, y∆

)
= L∆(t) and J∆(ŷ) 6= 0 (this is true,

e.g., for L∆ ≡ 1
b−a for which J∆ = 1; cf. Remark 1). Then, ∂2L∆ =

∂3L∆ = 0 and the Euler-Lagrange equation (13) takes the form

(19) ∂3L∇{ŷ}(t)−
∫ t

a
∂2L∇{ŷ}(τ)∇τ = const ∀t ∈ [a, b]κ .

Remark 4. If ŷ ∈ C2
ld, then nabla-differentiating (19) we obtain the

Euler-Lagrange differential equation (4) as proved in [11]:

∇
∇t

∂3L∇{ŷ}(t)− ∂2L∇{ŷ}(t) = 0 ∀t ∈ [a, b]κ2 .

Corollary 2. Let L∇
(
t, yρ, y∇

)
= L∇(t) and J∇(ŷ) 6= 0 (this is true,

e.g., for L∇ ≡ 1
b−a for which J∇ = 1; cf. Remark 1). Then, ∂2L∇ =

∂3L∇ = 0 and the Euler-Lagrange equation (14) takes the form

(20) ∂3L∆[ŷ](t)−
∫ t

a
∂2L∆[ŷ](τ)∆τ = const ∀t ∈ [a, b]κ .
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Remark 5. If ŷ ∈ C2
rd, then delta-differentiating (20) we obtain the

Euler-Lagrange differential equation (3) as proved in [7]:

∆
∆t

∂3L∆[ŷ](t)− ∂2L∆[ŷ](t) = 0 ∀t ∈ [a, b]κ
2
.

Example 1. Let T be a time scale with 0, ξ ∈ T, 0 < ξ, and (T \ {0, ξ})∩
[0, ξ] 6= ∅. Consider the problem

(21)
minimize J (y) =

(∫ ξ

0
(y∆(t))2∆t

)(∫ ξ

0

(
y∇(t))2

)
∇t
)

,

y(0) = 0, y(ξ) = ξ .

Since L∆ = (y∆)2 and L∇ = (y∇)2, we have ∂2L∆ = 0, ∂3L∆ = 2y∆,
∂2L∇ = 0, and ∂3L∇ = 2y∇. Using equation (14) of Theorem 1 we get the
following delta-nabla differential equation:

(22) 2Ay∆(t) + 2By∇(σ(t)) = C,

where C ∈ R and A, B are the values of functionals J∇ and J∆ in a solution
to problem (21), respectively. From (9) we can write equation (22) in the
form

(23) 2Ay∆(t) + 2By∆ = C.

Observe that A + B cannot be equal to 0. Thus, solving equation (23)
subject to the boundary conditions y(0) = 0 and y(ξ) = ξ we get y(t) = t
as a candidate local minimizer to problem (21).

5. Conclusion

A general necessary optimality condition for problems of the calculus of
variations on time scales has been given. The proposed calculus of varia-
tions extends the problems with delta derivatives considered in [6, 7] and
analogous nabla problems [1, 11] to more general cases described by the
product of a delta and a nabla integral. Minimization of functionals given
by the product of two integrals were considered by Euler himself, and are
now receiving an increasing interest because of their nonlocal properties and
their applications in economics [9].
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