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Abstract. In this paper sufficient conditions for oscillation of all
bounded solutions of the equation

∆m(xn + pnxn−τ ) + f(n, xn, xn−σ) = 0

where m ≥ 2, (pn) is an oscillatory sequence of real numbers,
limn→∞ pn = 0, τ and σ are positive integers, f : N×R×R −→ R
are established.
Key words: neutral difference equation, oscillating coefficient,
oscillatory solution.

AMS Mathematics Subject Classification: 39A10.

1. Introduction

Recently, there has been an increasing interest in the study of oscillatory
and asymptotic behavior of solutions higher-order neutral differential and
difference equations. Such equations appear in a number of important appli-
cations including problems in population dynamics or in ”cobweb” models
in economics. A systematic development of the oscillation theory of neutral
equations was initiated by Ladas and Sficas ([5], [6]).

In this paper we consider a higher order neutral type difference equation
of the form

(E) ∆m(xn + pnxn−τ ) + f(n, xn, xn−σ) = 0

where m ≥ 2, (pn) is an oscillatory sequence of real numbers, τ and σ are
positive integers, f : N ×R×R −→ R.
For all k ∈ N we use the usual factorial notation

nk = n(n− 1) . . . (n− k + 1) with n0 = 1.

The integer part of real number t we denote by btc.
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By a solution of equation (E) we mean a real sequence (xn) which is
defined for n = 1, 2 . . . and which satisfies equation (E) for n > max {τ, σ}.
A nontrivial solution (xn) of equation (E) is said to be nonoscillatory if it is
eventually positive or eventually negative. Otherwise it is called oscillatory.

The problem of finding sufficient conditions which ensure that all solu-
tions (or all bounded solutions) of certain classes of difference equations
of neutral type are oscillatory has been studied by a number of authors,
see for example, [2-4, 7-11, 13] and the references cited therein. Most of the
authors consider the case when the sequence (pn) inside the neutral part is of
constant sign. The results on oscillation of equation (E) when the sequence
(pn) is an oscillatory sequence are relatively scarce, see [2, 3, 4, 14]. Some
comparison results for higher order linear difference equation of the form

∆m
(
yn + pnyτ(n)

)
+ qnyσ(n) = 0

were obtained by Y. Bolat, O. Akin and H. Yildirim in recent paper [3] and
for the higher-order sublinear difference equation

∆m
(
yn + pnyτ(n)

)
+ qnyα

σ(n) = 0

where α ∈ (0, 1) is a ratio of positive odd integers, qn ≥ 0 by I. Kir and Y.
Bolat in [4]. The purpose of this paper is to establish conditions under which
all bounded solutions of equation (E) are oscillatory. Using the arguments
developed by Zafer in [12], Sundaram in [9] obtained oscillation criteria
for equation (E) when m is even and 0 < pn ≤ 1. We will use similar
arguments for the oscillation of bounded solutions of equation (E) when
(pn) is an oscillatory sequence. Similar problem for differential equations was
considered in [13]. We also establish sufficient conditions for the oscillation
of bounded solutions of equation (E) when m is even and the equation is
linear, i.e. when the function f satisfies f(n, u, v) = anv.

2. Lemmas

In the proofs of our theorems we shall need the following lemmas.

Lemma 1 ([1], Discrete analogue of Kiguradze’s Lemma). Let (un) be a
sequence of real numbers and un > 0 with (∆mun) of constant sign and not
eventually identically zero. Then, there exist integers l ∈ {0, 1, . . . ,m} with
(m + l) odd for ∆mun ≤ 0, and (m + l) even for ∆mun ≥ 0 and N > 0 such
that

∆jun > 0 for j = 0, 1, . . . , l,

(−1)j+l∆jun > 0 for j = l + 1, . . . ,m,
(1)

for n ≥ N .
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Lemma 2 ([1]). Let (un) be a sequence of real numbers and let (un)
and (∆mun) be of constant sign and such that un > 0 and ∆mun ≤ 0 not
identically equal to zero. Then there exists a large number N > 0 such that

un ≥
(n−N)m−1

(m− 1)!
∆m−1u2m−l−1n for n ≥ N.

Lemma 3. Let m ≥ 3 be an odd integer, σ be a positive integer and (un)
be a sequence of real numbers such that

(2) (−1)j∆jun > 0 for j = 0, 1 . . . , m− 1 and ∆mun ≤ 0.

Then

un−σ ≥
(m + σ − 2)m−1

(m− 1)!
∆m−1un for n ≥ σ.

Proof. By discrete Taylor’s formula (see [1], p. 43) we have

un−σ =
m−1∑
i=0

(i + σ − 1)i

i!
(−1)i∆iun

− (−1)m−1

(m− 1)!

n−1∑
l=n−σ

(l + m− 1− n + σ)m−1∆m−1ul

for n ≥ σ. Therefore, since m is odd using (2) we get

un−σ ≥
(m + σ − 2)m−1

(m− 1)!
∆m−1un.

Hence the lemma is proved. �

3. Main results

Theorem 1. Let m ≥ 2 be an even number. Assume that (pn) is an
oscillatory sequence of real numbers such that limn→∞ pn = 0 and

(i) f : N ×R×R −→ R and vf(n, u, v) > 0 for v 6= 0;
(ii) there exists a continuous function g : R+ −→ R+ and a sequence
φ : N −→ R+ such that

(3) |f(n, u, v)| ≥ φng

(
|v|(

n−σ
2m−2

)m−1

)
for all large n, where

(4)
∞∑

n=1

φn = ∞
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and the function g is nondecreasing and

(5)

β∫
0

ds

g(s)
< ∞ for every β > 0.

Then every bounded solution (xn) of the equation (E) is oscillatory.

Proof. Suppose that equation (E) has a bounded nonoscillatory solution
(xn). We may assume that (xn) is eventually positive (the proof when (xn)
is eventually negative is similar). Then, there exists an integer n0 ≥ 1 such
that xn > 0, xn−τ > 0 and xn−σ > 0 for n ≥ n0. Set

(6) zn = xn + pnxn−τ .

From (E) we have

(7) ∆mzn = −f(n, xn, xn−σ) < 0, n ≥ n0.

Therefore the sequences (∆izn), i = 0, 1, . . . ,m − 1 are strictly monotonic
and of constant sign eventually. We claim that zn > 0 for n ≥ n0. Other-
wise xn < −pnxn−τ which is a contradiction with (pn) being an oscillatory
sequence.

Since (pn) is an oscillatory sequence with limn→∞ pn = 0 and (xn) is
bounded, we have (zn) is bounded, too. By Lemma 1, there exist an odd
integer l and n1 ≥ n0 such that (1) is satisfied by (zn) for n1 ≥ n0. Since
m is even and zn > 0 and bounded it follows that l = 1 and hence (zn) is
increasing.

Using the fact that (xn) is bounded and limn→∞ pn = 0 we see that
limn→∞ pnxn−τ = 0. Then, by (6) it is easy to see that there exists n2 ≥ n0

such that

(8) xn ≥
1
2
zn, n ≥ n2,

Using Lemma 2 (with l = 1) and the fact that (zn) is increasing, we have

(9) zn ≥ z�j n
2m−2

k� ≥ 1
(m− 1)!

(⌊ n

2m−2

⌋
− n3

)m−1
∆m−1zn, n ≥ n3.

It is easy to check that for j > m holds jm ≥ jm

2(m−1)! . Hence, from (9) we
get

zn ≥ 1
2(m− 1)!(m− 2)!

(⌊ n

2m−2

⌋
− n3

)m−1
∆m−1zn

≥ 1
2(m− 1)!(m− 2)!

( n

2m−2
− 1− n3

)m−1
∆m−1zn.
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Therefore, by choosing n4 ≥ n3, arbitrary large, we have

(10) zn ≥
1

2(m− 1)!(m− 2)!

( n

2m−2

)m−1
∆m−1zn, n ≥ n4.

Hence, by (8) and using the fact that ∆m−1zn is decreasing, we have
xn−σ(

n−σ
2m−2

)m−1 ≥ c∆m−1zn, n ≥ n4

where c = 1
4(m−1)!(m−2)! Therefore, using (3) we get

∆mzn + φng(c∆m−1zn) ≤ 0.

Setting un = c∆m−1zn we have ∆un = c∆mzn and

∆un

g(un)
+ cφn ≤ 0.

Since

cφi ≤ − ∆ui

g(ui)
≤ −

ui+1∫
ui

ds

g(s)

summing the above inequality from n to n4 we obtain

c
n−1∑
i=n4

φi ≤ −
n−1∑
i=n4

ui+1∫
ui

ds

g(s)
=

un4∫
un

ds

g(s)
.

Hence

(11) c
n−1∑
i=n4

φi ≤

un4∫
un

ds

g(s)
.

Since (un) is positive and decreasing, it follows that there exists limn→∞ un =
L ≥ 0. If L 6= 0 then by (11) we must have

(12)
∞∑
i=1

φi < ∞

which contradicts (4). In the case when L = 0, letting n → ∞ in (11), we
again obtain (12). This completes the proof. �

Theorem 1 applied to the generalized Emden-Fowler difference equation

(E1) ∆m(xn + pnxn−τ ) + an |xn−σ|α sgn(xn−σ) = 0, 0 < α < 1

where m ≥ 2, (pn) is an oscillatory sequences with limn→∞ pn = 0, τ and
σ are positive integers, (an) is a sequences of real numbers leads to the
following corollary.



90 Ma lgorzata Migda

Corollary 1. Assume that
∞∑

j=1

jα(m−1)|aj | = ∞.

If m is even then every bounded solution (xn) of equation (E1) is oscillatory.

Proof. The conclusion of Corollary 1 follows from Theorem 1 with

φn =
(

n− σ

2m−2

)α(m−1)

|an| and g(u) = uα.

�

Example 1. Consider the difference equation

∆2

(
xn +

(−1)n+1

n
xn−1

)
+
(

4n2 + 8n + 2
(n + 2)3

+
(−1)n6
(n + 2)4

)
(13)

× (n− 3)
1
2 |xn−3|

1
2 sgnxn−3 = 0.

It is easy to see that
∞∑

j=1
j

1
2 (j−3)

1
2 |
(

4j2+8j+2
(j+2)3

+ (−1)j6
(j+2)4

)
| = ∞. From Corol-

lary 1 it follows that every bounded solution of equation (13) is oscillatory.
One such solution is xn = (−1)n

n .

Note, that Theorem 3.1 from [4] for equation (13) can not be applied.

Theorem 2. Let m ≥ 3 be an odd integer. Assume that (pn) is an
oscillatory sequence of real numbers such that limn→∞ pn = 0 and

(i) f : N ×R×R −→ R and vf(n, u, v) > 0 for v 6= 0;
(ii) there exists a continuous function g : R+ −→ R+ and a sequence
φ : N −→ R+ such that

(14) |f(n, u, v)| ≥ φng

(
|v|

(m + σ − 2)m−1

)
for all large n, where

(15)
∞∑

n=1

φn = ∞

and the function g is nondecreasing and

(16)

β∫
0

ds

g(s)
< ∞ for every β > 0.

Then every bounded solution (xn) of the equation (E) is oscillatory.
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Proof. Suppose that equation (E) has a bounded nonoscillatory solution
(xn). We proceed as in the of Theorem 1 and obtain that (zn) is eventually
positive and bounded and ∆mzn < 0 eventually. Therefore, since m is odd,
by Lemma 1 it follows that (1) is satisfied with l = 0. Hence, applying
Lemma 3 we get

(17) zn−σ ≥
(m + σ − 2)m−1

(m− 1)!
∆m−1zn

for sufficiently large n. From (8) and (17) it follows

xn−σ

(m + σ − 2)m−1 ≥ c∆m−1zn

where c = 1
2(m−1)! . Therefore, using (14) we get

∆mzn + φng(c∆m−1zn) ≤ 0.

The rest of the proof is similar to that of Theorem 1 and thus we omit it. �

Example 2. Consider the difference equation

(18) ∆3

(
xn +

(
−1

2

)n

xn−2

)
+
(
−8− 1

8

(
−1

2

)n)
x

1
3
n−3 = 0.

Here g(x) = x
1
3 , φn = 8 + 1

8

(
−1

2

)n
. Since qn = −8 − 1

8

(
−1

2

)n
< 0, Theo-

rem 3.2 from [4] does not apply here. But one can see that all conditions
of Theorem 2 are satisfied. Thus every bounded solution of equation (18) is
oscillatory. One such solution is xn = (−1)n.

Corollary 2. Assume that
∞∑

j=1

|aj | = ∞.

If m is odd then every bounded solution (xn) of equation (E1) is oscillatory.

Proof. Apply Theorem 2 with

φn =
(
(m + σ − 2)m−1

)α |an| and g(u) = uα.

�

Note, that Theorem 1 and Theorem 2 are not applicable to linear equa-
tions.
Let us consider linear equation

(E2) ∆m(xn + pnxn−τ ) + anxn−σ = 0



92 Ma lgorzata Migda

where m ≥ 2, (pn) is an oscillatory sequences with limn→∞ pn = 0, τ and σ
are positive integers, (an) is a sequences of positive real numbers. For even
order equations of type (E2) we have following result.

Theorem 3. Let m be even. If

(19) lim inf
n−→∞

n−1∑
j=n−σ

(
j − σ

2m−2

)m−1

aj > 4(m− 1)!(m− 2)!
(

σ

σ + 1

)σ+1

then every bounded solution (xn) of the equation (E2) is oscillatory.

Proof. Proceeding as in the proof of Theorem 1, from (7)-(10) we obtain

∆mzn +
1

4(m− 1)!(m− 2)!

(
n− σ

2m−2

)m−1

an∆m−1zn−σ ≤ 0.

Setting in the above inequality un = ∆m−1zn we get

(20) ∆un +
1

4(m− 1)!(m− 2)!

(
n− σ

2m−2

)m−1

anun−σ ≤ 0.

Now, an application of the result in [1], Theorem 6.20.5, implies that if (19) is
satisfied then (20) cannot have an eventually positive solution. Hence, every
bounded solution of equation (E2) must be oscillatory. This completes the
proof. �

Note, that from the proof of Theorem 3 it follows that every bounded
solution of equation (E2) is oscillatory if the inequality (20) has not any
eventually positive bounded solution. The resuts obtained in Theorem 3.1
in [3] and in Theorem 3 are similar.
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