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Abstract. In this paper three-dimensional nonlinear difference
system with delays ∆xn = anf(yn−l),

∆yn = bng(zn−m),
∆zn = δcnh(xn−k),

is investigated. The classification of nonoscillatory solutions of
the considered system are presented. Next, the sufficient condi-
tions under which nonoscillatory solution of considered system is
bounded or is unbounded are given.
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1. Introduction

We consider a nonlinear three-dimensional difference system of the form
∆xn = anf(yn−l),
∆yn = bng(zn−m), n ∈ N(n0) = {n0, n0 + 1, . . . } ,
∆zn = δcnh(xn−k),

(1)

where n0 ∈ N = {1, 2, . . . }, l, m, k are given positive integer and δ = ±1.
Here a, b : N(n0) → R+ ∪ {0}, c : N(n0) → R+, where R, R+ denote the set
of real numbers and the set of positive real numbers respectively. Moreover

(2)
∞∑

n=1

an =
∞∑

n=1

bn = ∞.

Assume that f, g, h : R → R are functions such that

(3) uf(u) > 0, ug(u) > 0, uh(u) > 0 for u 6= 0,
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and there exists a positive constants M∗, M∗∗ and M∗∗∗ such that

(4)
f(u)

u
≥ M∗,

g(u)
u

≥ M∗∗ and
h(u)

u
≥ M∗∗∗ for u 6= 0.

Set M = min {M∗,M∗∗,M∗∗∗}.
We don’t assume that functions f , g and h are continuous nor monotonic.
We note that for given initial condition x(n0), y(n0), z(n0) there exists

the unique solution ({xn} , {yn} , {zn}) = (x, y, z) of system (1).
A solution (x, y, z) of system (1) is called nonoscillatory if all its com-

ponents are nonoscillatory (that is either eventually positive or eventually
negative). A solution (x, y, z) of system (1) is called bounded if all its
components are bounded. Otherwise it is called unbounded.

The background for difference systems can be found in the well known
monograph [1] by Agarwal and Kocić and Ladas [2].

The oscillatory theory is considered usually for two-dimensional difference
systems (see, for example, [3], [4], [6] and [7] and the references cited therein).

Oscillatory results for three-dimensional system are investigated by Thanda-
pani and Ponnammal in [5]. Results which are presented in this paper
partially answered the open problems stated in the paper mentioned above.

2. Some basic lemmas

We begin with some lemmas which will be useful in the sequel.

Lemma 1. Assume that condition (3) holds. Let (x, y, z) be a solu-
tion of system (1) and let sequence x be nonoscillatory. Then (x, y, z) is
nonoscillatory and sequences x, y, z are monotonic for sufficiently large n.

Proof. Because sequence x is nonoscillatory then it is of the constant
sign for large n. From the third equation of the system (1) and condition
(3) we get that sequence z is eventually monotonic. This implies that z is of
the constant sign for large n. Analogously we obtain that sequences x and
y are monotonic, and y is nonoscillatory. �

Corollary 1. Assume that condition (3) holds. Let (x, y, z) be a solution
of system (1) and let sequence y (or z) be nonoscillatory. Then (x, y, z) is
nonoscillatory and sequences x, y, z are monotonic for sufficiently large n.

Lemma 2. Assume that conditions (2) and (4) hold. Let (x, y, z) be a
nonoscillatory solution of system (1). If

(5) lim
n→∞

xn is finite

then
lim

n→∞
yn = lim

n→∞
zn = 0.
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Proof. We note that condition (4) implies usual signed condition (3).
Because (x, y, z) is a nonoscillatory solution of (1) then, by Lemma 1, se-
quence y is monotonic. Hence limit of this sequence exists. Set

lim
n→∞

yn = L∗.

For the sake of contradiction suppose that L∗ > 0. (In the case L∗ < 0 the
proof is similar and hence omitted.) Since that yn > 0 for large n. Then
there exists an integer n1 ≥ n0 such that yn−l ≥ L∗

2 , for n ≥ n1. By (4),
there exists a positive constant M such that f(yn−l) ≥ Myn−l > 0. Thus,
from the first equation of system (1), we have

∆xn ≥ Manyn−l ≥ Man
L∗

2
> 0.

Summing the above inequality from n1 to n− 1, we get

xn ≥ xn1 + M
L∗

2

n−1∑
i=n1

ai.

Letting n → ∞, by (2), the right hand side of the above inequality tends
to infinity, so the left side too. This contradicts (5). Therefore we get
lim

n→∞
yn = 0.

Analogously, using the second equation of system (1), we obtain that

lim
n→∞

zn = 0.

This complete the proof. �

Lemma 3. Assume that conditions (2) and (4) hold and (x, y, z) is a
nonoscillatory solution of system (1). Then one of the following three cases
holds:

(I) sgn xn = sgn yn = sgn zn,
(II) sgn xn = sgn zn 6= sgn yn,

(III) sgn xn = sgn yn 6= sgn zn,
for large n.

Moreover, if δ = −1 in system (1) then every nonoscillatory solution of
(1) fulfills condition (I) or (II), if δ = 1 then every nonoscillatory solution
of (1) fulfills condition (I) or (III).

Proof. Let (x, y, z) be a nonoscillatory solution of system (1). Without
loss of the generality assume that xn > 0.

First, we assume that δ = −1 in this system. From Lemma 1 sequence y
is monotonic for large n. Hence yn < 0 or yn > 0 for large n. By the same
arguments zn < 0 or zn > 0 for large n.
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For contrary, suppose that zn < 0 for large n. Then there exists n2 such
that zn−m < 0 for n ≥ n2. From the third equation of system (1) we get
that sequence z is decreasing, so zn−m < zn2−m < 0 for n ≥ n2. By (4), we
get g(zn−m) ≤ Mzn−m for n ≥ n2. From this and the second equation of
system (1), we have

∆yn ≤ bnMzn−m < bnMzn2−m

for n ≥ n2. Summing the above inequality from n2 to n− 1, we obtain

yn < yn2 + Mzn2−m

n−1∑
i=n2

bi.

Letting n to infinity, by (2) and negativity of zn2−m, the right hand side of
the above inequality tends to −∞. So, the left side too. Hence lim

n→∞
yn =

−∞. Then there exists an integer n3 ≥ n2 such that yn−l < 0 for n ≥ n3.
From (4), we get f(yn−l) ≤ Myn−l for n ≥ n3. From the first equation of
system (1), we have

∆xn ≤ anMyn−l < anMyn3−l

for n ≥ n3. Summing the above inequality from n3 to n− 1 and letting n to
infinity, we get that lim

n→∞
xn = −∞. This contradicts the fact that xn > 0

for large n. On the virtue of this contradiction we exclude that zn < 0.
Hence we obtain that zn > 0 for large n. Therefore if δ = −1 the thesis of
Lemma 3 holds.

Next, we assume that δ = 1 in system (1). From the third equation of
system (1) we get that sequence z is eventually increasing. Therefore zn < 0
or zn > 0 for large n.

Let zn > 0. From the second equation of system (1) we have that sequence
y is eventually of one sign. Hence yn < 0 or yn > 0 for large n. Suppose
that yn < 0 for large n. Thus sequence x is eventually nonincreasing. Then
there exists lim

n→∞
xn = c < ∞. By Lemma 2, we have

lim
n→∞

zn = 0.

This contradicts the fact that z is an eventually positive increasing sequence
and exclude the case that yn < 0 for large n.

Let zn < 0. By the analogous arguments as above, we exclude case
yn < 0. Therefore also if δ = 1 the thesis of Lemma 3 holds.

This completes the proof. �
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3. Main results

Theorem 1. Assume that conditions (2) and (4) hold. Then every
solution (x, y, z) of system (1) fulfilling condition (I) is unbounded.

Proof. Let (x, y, z) be nonoscillatory solution of system (1) for which
condition (I) holds. Without loss of generality xn > 0, yn > 0 and zn > 0 for
large n, say n ≥ n4. Hence sequence y is eventually nondecreasing. Summing
the first equation of system (1) from n5 = n4 + l to n− 1 we have

xn = xn5 +
n−1∑
i=n5

aif(yi−l) for n ≥ n5.

Therefore, by positivity of sequences x and y and (4) we get

xn ≥ M

n−1∑
i=n5

aiyi−l.

Since y is nondecreasing then

xn ≥ Myn5−l

n−1∑
i=n5

ai.

Thus, using (2), we obtain that lim
n→∞

xn = ∞. Then every solution of system

(1) which fulfills (I) is unbounded. �

Example 1. Let as consider the following system of difference equations,
where δ = −1, 

∆xn = 2yn−1,
∆yn = 22n−2zn−2, n ∈ N,
∆zn = −2−2n+1xn−2.

(6)

All assumptions of the Theorem 1 hold. Hence this system has unbounded
solution which satisfies condition (I). It easy to see that (2n, 2n, 2−n) is such
solution.

Example 2. Let as consider the following system of difference equations,
where δ = 1, 

∆xn = yn−1,
∆yn = 8zn−2, n ∈ N,
∆zn = 8xn−3.

(7)

All assumptions of the Theorem 1 hold. Hence this system has unbounded
solution which satisfies condition (I). It easy to see that (2n, 2n+1, 2n) is
such solution.
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Theorem 2. Assume that conditions (2) and (4) hold. Then every
solution (x, y, z) of system (1) fulfilling condition (II) is bounded.

Proof. Assume that (x, y, z) is nonoscillatory solution of system (1)
which satisfied condition (II). Notice that, by Lemma 3 this system has
such solution if and only if δ = −1 in the third equation of the system.
Without loss of the generality xn > 0, yn < 0 and zn > 0 for large n. Then
sequence x is nonincreasing, y is nondecreasing and z is decreasing. Hence
sequences x, y and z have finite limits. So, the thesis holds. �

Theorem 3. Assume that conditions (2) and (4) hold, and

(8)
∞∑

n=1

cn = ∞.

Then system (1) has not solution (x, y, z) which fulfilled condition (III).

Proof. Assume that (x, y, z) is nonoscillatory solution of system (1)
which satisfied condition (III). Notice that, by Lemma 3, this system has
such solution if and only if that δ = 1 in the third equation of the system.
Without loss of the generality xn > 0 for large n, say n ≥ n6. Therefore,
by Lemma 3, yn > 0 and zn < 0 for large n. Since z is increasing sequence
we have that lim

n→∞
zn = L∗∗ ≤ 0. For the sake of contradiction suppose that

lim
n→∞

zn = L∗∗ < 0. Then there exists n7 ∈ N such that zn ≤ L∗∗ for n ≥ n7.

Summing the second equation of system (1) from n8 = max{n6 +k, n7 +m}
to n− 1 we obtain

yn = yn8 +
n−1∑
i=n8

big(zi−m) for n ≥ n8.

Hence, by negativity of sequences z, (3) and (4), we get

yn ≤ yn8 + M

n−1∑
i=n8

bizi−m < yn8 + ML∗∗
n−1∑
i=n8

bi,

for n ≥ n8. Letting n to infinity and using (2) we obtain lim
n→∞

yn = −∞.
This contradicts positivity of sequence y. So, lim

n→∞
zn = 0.

Summing the third equation of system (1) from n9 = n8 + k to n− 1 we
have

zn = zn9 +
n−1∑
i=n9

cih(xi−k) for n ≥ n9.
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Then, by (4), we obtain

zn ≥ zn9 + M
n−1∑
i=n9

cixi−k.

Hence, using the fact that sequence x is positive and nondecreasing, we get

zn ≥ zn9 + Mxn9−k

n−1∑
i=n9

ci.

The left side of the above inequality tends to zero whereas the right hand
side, by (8), tends to infinity. This contradiction ends the proof. �

Corollary 2. Assume that conditions (2), (4) and (8) hold, and δ = 1.
Then every nonoscillatory solution of system (1) is unbounded.
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