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FURTHER INSTANCES OF PERIODICITY

IN MAY’S HOST PARASITOID EQUATION

Abstract. May’s host parasitoid equation is the difference equa-
tion

(1) xn+1 =
αx2

n

(1 + xn)xn−1
, α > 1.

We show that for each α there is a number k such that, whenever
n > k, equation (1) has a one cycle periodic solution of period n.
We also give some results on two cycle periodic solutions.
Key words: difference equation, periodicity.

AMS Mathematics Subject Classification: 39A23, 39A20.

1. Introduction

May’s host parasitoid equation (1) shows a lot of almost periodic cyclic
behavior. In [1] it is shown that if α ∈ (0, 1] every solution goes to zero
(hence our assumption that α > 1), and that if α > 1 then α − 1 is the
unique positive equilibrium, which is not asymptotically stable. In [2] it is
shown that with α > 1, if x−1 = x0 = 1 then there are values of α giving one
cycle periodic solutions of period n for all integers n ≥ 7, and that there are
no non-equilibrium periodic solutions of period less than 7. In this paper
we adapt the results in [2] to get further periodicity results, including the
results described in the abstract.

2. Getting periodic solutions

In [2] we fixed the initial conditions, setting x−1 = x0 = 1, and thought
of α as a variable. In the present context we still take x−1 = x0 but we take
the common value to be x. We assume x > 0 but think of x as a variable.

By taking x−1 = x0 we get the same criteria for periodic solutions as
in [2]:
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Theorem 1. Consider any difference equation which can be put in the
form xn+1xn−1 = f(xn), and take x−1 = x0 = x. For k ≥ 0

(i) we get a periodic solution of period 2k + 2 if and only if xk = xk+1,
and

(ii) we get a periodic solution of period 2k + 3 if and only if xk = xk+2.

Proof. The proof of Theorem 1 of [2] is easily adapted to cover this
situation. �

Note that this result applies to May’s host parasitoid equation.
We can use (1) to compute a few values of xi:

x1 = αx
1+x ,

x2 = α3x
(1+x)(1+x+αx) ,

x3 = α6x
(1+x+αx)((1+x)(1+x+αx)+α3x)

,

x4 = α10x(1+x)
((1+x)(1+x+αx)+α3x)((1+x+αx)((1+x)(1+x+αx)+α3x)+α6x)

.

Direct computation using theorem 1 shows that there are no solutions to
equation (1) with x−1 = x0 of prime period 2, 3, 4, 5, or 6.

With simplification, solutions of period 8 (where x3 = x4) correspond to
solutions of

0 = x3(α2 + 2α + 1) + x2(−α5 + α3 + α2 + 4α + 3) +(2)
+ x(α6 − α5 − 2α4 + α3 + 2α + 3) + (−α4 + 1).

We anticipate that one solution to this equation will correspond to the
equilibrium of (1), the value x = α− 1. Thus x− (α− 1) will be a factor of
the right hand side of (2); we factor it out and set the other factor equal to
zero to get

0 = x2(α2 + 2α + 1) + x(−α5 + 2α3 + 2α2 + 3α + 2) +(3)
+ (α3 + α2 + α + 1).

Descartes’ Rule of Signs tells us that if the x coefficient is greater than
or equal to 0 there are no positive solutions for x, and that there is one
positive value of α making this coefficient 0. This α value turns out to be
2, and we see there are no periodic solutions of prime period 8 to equation
(1) if α ≤ 2. If α > 2 solutions to (3) are given by the quadratic formula,
and these are real only if ”b2 − 4ac”≥ 0. This is the inequality

(4) α10 − 4α8 − 4α7 − 2α6 + 4α4 + 8α3 + α2 ≥ 0.

Descartes’ Rule of Signs says the equation (4) has two or zero positive
roots; in fact, it has two, one less than 2 and one between 2.4 and 2.45.
With the restriction α > 2 we get
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Note 1. There is a number s between 2.4 and 2.45 such that equation
(1) has a prime period 8 solution with x−1 = x0 for α > s and not for
α ≤ s. We get two solutions for x in these cases, corresponding to the
values x−1 = x0 and x3 = x4 above. For one of these values the sequence
will start out decreasing with x0 > x1 , and for the other it will start out
increasing.

A similar but more difficult analysis shows

Note 2. There is a number t between 4.0 and 4.1 such that equation (1)
has a prime period 7 solution with x−1 = x0 if and only if α > t. Again we
get two values of x, one with the sequence starting out increasing and one
with the sequence starting out decreasing.

In this case, after dividing out by the factor x− (α−1), we want to solve
the equation

0 = x4(α3 + 3α2 + 3α + 1) + x3(2α5 + 5α4 + 6α3 + 9α2 + 10α + 4)(5)
+ x2(−α8 + α7 + 4α6 + 5α5 + 9α4 + 10α3 + 10α2 + 12α + 6)
+ x(α7 + 4α6 + 4α5 + 5α4 + 6α3 + 5α2 + 6α + 4)
+ (α6 + α5 + α4 + α3 + α2 + α + 1).

Note 3. We can rewrite equations (3) and (5) thinking of α as the
variable and having coefficients involving x. Descartes’ Rule of Signs again
says that for fixed postitive x there is exactly one solution for α, and this
solution will be greater than 1. Thus for fixed x > 0 there will be one
and only one value of α > 1 so that May’s Host Parasitoid Equation has a
periodic solution of period 7 or 8 with x−1 = x0 = x.

3. Long decreasing sequences

As in [2], the key to establishing periodicity results for longer periods
lies in showing that there are solution sequences which start with arbitrarily
many decreasing terms. Specifically,

Theorem 2. With May’s host parasitoid equation (1), for a fixed value
of α > 1 and for any natural number N , there is a number M such that for
any value x > M , if x−1 = x0 = x, then x0 > x1 > . . . > xN .

Proof. Rewriting (1) we get

(6)
xn+1

xn
=

α

(1 + xn)
xn

xn−1
.

Using (6) recursively we get
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xn+1

xn
=

α

(1 + xn)
α

(1 + xn−1)
· · · α

(1 + x0)
x0

x−1
,

or
xn+1 =

α

(1 + xn)
α

(1 + xn−1)
· · · α

(1 + x0)
x0

x−1
xn.

Now we are assuming that x−1 = x0 = x. Also, since x > 0 it follows
that xk > 0 for all k, so 1

1+xk
< 1. Thus xn+1 < αn+1

1+x xn. If we choose
x > αN+1 − 1 = M , the theorem follows. �

Even though we get arbitrarily long decreasing sequences, it follows from
[1] that every such sequence eventually stops decreasing–that is, there will
be some k with xk+1 > xk.

4. Periodic solutions

We now prove a theorem which will have as a corollary the existence of
more periodic solutions in May’s host parasitoid equation.

Theorem 3. Let the difference equation xn+1xn−1 = f(xn) involve a
parameter c. Suppose f(x) is continuous in c for values of c in the interval
I, and that no value of c in I gives an equilibrium solution to the difference
equation. Suppose there are numbers a and b in I so that when c = a we
get x−1 = x0 > x1 > x2 > . . . > xm−1, xm−1 < xm, and that when c = b we
get x−1 = x0 > x1 > x2 > . . . > xm+k. Then there are values of c giving
periodic solutions of periods 2m, 2m + 1, . . . , 2m + 2k − 1.

Proof. Case 1: Even periods. Let n = 2l be in the list of periods above,
so m ≤ l < m + k. Without loss of generality suppose b > a. Let X = {d

∣∣
for all c in [d, b], when c is used in f(x), x−1 = x0 ≥ x1 ≥ . . . ≥ x

l−1
≥ x

l
}.

Then X is non-empty as b is in X. Also X is bounded below by a. Thus
X has a greatest lower bound L, which will be in I. We claim that when
c = L, x−1 = x0 > x1 > . . . > x

l−1
= x

l
, so we get a periodic cycle of period

2l by theorem 1. Since the values of x
k

are continuous in the parameter, by
the definition of X we conclude that for c = L we get

(∗) x−1 = x0 ≥ x1 ≥ . . . ≥ x
l−1

≥ x
l
.

If we have x0 = x1 we have an equilibrium solution, but L ∈ I and no
value of c in I gives an equilibrium. Thus x0 > x1 . If we have x

k
= x

k+1

for 1 ≤ k < l − 1, then x
k+2

= x
k−1

because of the form of the difference
equation, and hence x

k+2
> x

k+1
, contradicting (∗). Thus we have x0 >

x1 > . . . > x
l−1

. If also x
l−1

> x
l
, by the continuity of the x

k
’s we can find

an interval [L−ε, L] in X, contradicting the statement that L is the greatest
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lower bound of X. Thus x
l−1

= x
l
and we get a periodic solution of period

2l by Theorem 1.
The case of odd periods is similarly proved using the set Y = {d

∣∣ for all
c in [d, b], when c is used in f(x), x−1 = x0 ≥ x1 ≥ . . . ≥ x

l−1
≥ x

l
, x

l+1
≥

x
l−1
}. �

Corollary 1. Let α > 1 be fixed. There is a positive number N so that
for all natural numbers n > N , May’s host parasitoid equation (1) has a
single cycle solution of period n.

Proof. Our parameter c in the theorem is the value of x−1 = x0 . Pick an
x = a > α− 1. By Ladas et al. ([1]) the sequence we get is not (eventually)
monotone, and since x1 = αx

1+x < x = x0 , this sequence must look like x−1 =
x0 > x1 ≥ x2 ≥ . . . ≥ x

k
, x

k
< x

k+1
for some k. By theorem 2, for some

larger value of x, say x = b, we have x−1 = x0 > x1 > . . . > x
k

> . . . > xn ,
where n can be chosen as large as we like. With I = [a, b] the hypotheses of
Theorem 3 are satisfied and we can thus get one cycle periodic solutions of
all periods greater than 2k + 1. �

Corollary 2. For all values of α greater than the number s in Note 1,
there are periodic soluitions of prime period n for all values of n ≥ 8, and
for all values of α greater than the number t in Note 2, there are periodic
solutions of prime period n for all values of n ≥ 7.

5. Two cycle periodic solutions

The continuity of the functions xi can be further exploited to get two
cycle periodic solutions:

Theorem 4. (A) Consider α to be fixed. If there is a value of x (x = E)
with

E = x−1 = x0 > x1 > . . . > xk = xk+1 (one cycle, period 2k+2)

then there is a value of x giving a two cycle periodic solution of period 4k+5.
(B) With α considered fixed, if there is a value of x (x = F ) with

F = x−1 = x0 > . . . > xk > xk+1, xk = xk+2, (one cycle, period 2k + 3)

then there is a value of x giving a two cycle periodic solution of period 4k+7.

Proof. (A) By Theorem 3 there is also a solution (x = E1 > E) with

E1 = x−1 = x0 > x1 > . . . > xk > xk+1, xk+2 = xk,

(one cycle, period 2k + 3).
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Let

S = {x
∣∣x ≥ E, and for all y ∈ [E, x], if y = x−1 = x0,

then x0 > x1 > . . . > xk ≥ xk+1

and x2k+1 ≥ x2k > x2k−1 > . . . > xk+1 and x2k+2 ≤ x2k}.

Then E ∈ S so S is non-empty, and E1 /∈ S so S is bounded above.
Again the least upper bound of S gives a solution with x2k+2 = x2k, that is,
a solution of period 4k + 5. The symmetry of the solution before and after
x2k = x2k+2 shows that this solution consists of two cycles.

(B) is proved similarly. �

Likewise we get

Theorem 5. Consider α to be variable, α > 1, and take x−1 = x0 = 1
(as in [2]). Then for any odd integer n greater than or equal to 19 there is
a value of α giving a two cycle period n solution.

Proof. The proof is adapted from proofs in [2] in a manner similar to
the proof of Theorem 4. The requirement n ≥ 19 is added to avoid getting
the equilibrium solution. �

Adapting the proof of theorem 4 to get periodic solutions of period k with
n cycles, where k/n ≥ 7, seems a formidable task at best. It would seem a
different, as yet untried, approach will be needed to prove this result.

6. Problems

1. (Ladas) For α > 1 and x−1 , x0 > 0, show every solution to May’s host
parasitoid equation is bounded.

2. Show that no two cycles in a given solution to equation (1) differ in
length by more than one element. (This could be used to solve problem 3).

3. Show that for some values of α equation (1) has periodic solutions of
period k with n cycles whenever k/n ≥ 7.

Also see [2].
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