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1. Introduction

In 1974, Ciri¢ ([3]) has first introduced orbitally continuous mappings
and orbitally complete metric spaces.

Definition 1. Let T be a self-mapping on a metric space (X,d). If for
any x € X, every Cauchy sequence of the orbit Op(x) := {x, Tz, T?x,...} is
convergent in X, then the metric space is said to be T—orbitally complete.

Remark 1. Every complete metric space is T'—orbitally complete for
any T'. An orbitally complete space may not be complete metric space (see
[8], Example and [14], Example 1).

In [6], to generalize some results of Boyd and Wong [2], Ciri¢ [4], Massa
[9], Sehgal [15] and Danes [7], J. Danes [6] introduced the notion of ¢-max-
contractions.

Let (X,d) be a metric space, T' : X — X a self-mapping of X. For
any arbitrary point x in X, the orbit of x under T is defined as the set
Or(z) = {x, Tz, T?x,...}.

Let D be the set of functions ¢ : [0, 00) — [0, 00) satisfying the following
conditions:

(D1) : ¢ is right continuous on [0, c0).

(D2) : ¢ is non-decreasing on [0, 00).

(D3) : ¢(t) <t forall t € (0,00).

We recall the following definition from [6].
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Definition 2. ([6]) Let (X,d) be a metric space and T : X — X a
mapping. For x,y € X, we denote

(1) M(z,y) := max{d(z,y), d(z, Tx), d(y, Ty), d(x, Ty), d(y, Tx)}

Let ¢ € D. The mapping T is called a p-max-contraction if the following
nequality

(2) d(Tx,Ty) < $(M(z,y))
holds true for all x,y € X.

Using this concept J. Danes has proved some fixed point theorems in [6].

The aim of this paper is to study the well-posedness (see Definition 3
below) of the fixed point problem for the ¢-max-contractions of orbitally
complete metric spaces. More precisely we provide natural conditions on
the functions ¢ which ensure the well-posedness of the fixed point problem
for the associated ¢-max-contractions.

The notion of well-posednes of a fixed point problem has evoked much
interest to a several mathematicians, for examples, F.S. De Blasi and J. My-
jak (see [1]), S. Reich and A. J. Zaslavski (see [12]), B.K. Lahiri and P. Das
(see [8]) and V. Popa (see [10] and [11]).

Definition 3. Let (X,d) be a metric space and T : (X,d) — (X,d) a
mapping. The fized point problem of T is said to be well posed if:

(a) T has a unique fixed point z in X ;

(b) for any sequence {x,} of points in X such that lim d(Txy,,z,) =0,

n—oo
we have lim d(x,,z) = 0.
n—oo

2. Main result

For any arbitrary function ¢ : [0,00) — [0, 00) and for each real number
t €1[0,00), we set

(3) Jp(t) :={s €[0,00) : s — ¢(s) < t}.

In fact, for each non-negative number ¢, we have Jy(t) = (Id — ¢)~*([0,t]).
We introduce the following definition.

Definition 4. We denote A the set of functions ¢ : [0,00) — [0,00)
satisfying the following conditions:
(A1) : ¢ is right upper semi-continuous on [0,00).
(A2) : ¢ is non-decreasing on [0, 00).
(A3) : ¢(t) <t for allt € (0,00).
(A4) : (a) For each t € [0,00), the set J4(t) is bounded, and we have
(b) %iiﬂl)sup{s ts € Jy(t)} =0.
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To simplify notations, if ¢ € A, we set

p(t) :=sup{s: s e Jy(t)},

for every t > 0.
We give examples of elements of the class A.

Examples.
(1) ¢(t) = gqt, for all t € [0,00), where 0 < g < 1.
(2) ¢(t) = 145, for all £ € [0, 00).

We recall the following elementary and classical result.

Lemma 1. Let f : [0,00) — [0,00) be a function satisfying the conditions
(A1), (A2) and (A3), then f satisfies

lm f™(t) =0 Vt>0,

n—oo
where f*: fo f...of n-times. (By definition f° = Id).

Before giving the main result, we need to recall the following lemma of [6].
Let (X, d) be a metric space and T': X — X a mapping. For z in X and
n and integer, let
Or(z,n) :=A{z,Tz,...,T"z}.

Then we have
OT(I‘) = UnZlOT(I‘,n).

Lemma 2 ([6]). Let (X,d) be a metric space. Let ¢ : [0,00) — [0, 00)
be a function satisfying the condition (D2). Suppose that T : X — X is a
¢-maz-contraction. i.e., T satisfies the inequality

d(Tz,Ty) < p(max{d(z,y),d(x,Tx),d(y, Ty),d(x,Ty),d(y, Tz)})

forall x,y € X.
Let x be an arbitrary © € X. Then
(i) for any non-negative integers n and m, we have

(4) diam (Op(T™x,n)) < ¢™(diam (Op(x,n + m))).
(ii) For any non-negative integer m, we have
(5) diam (Op(T™x)) < ¢ (diam (Op(z))),

provided that diam (Or(x)) is finite.

The main result of this paper reads as follows.
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Theorem 1. Let (X,d) be a metric space and T : X — X be a
self-mapping satisfying the inequality

(6) d(Tz,Ty) < ¢ (max{d(z,y), d(Tz,z),d(Ty,y),d(Tz,y),d(Ty,z)})

for all x,y € X, where ¢ is a given element in A.
Suppose that (X,d) is T—orbitally complete. Then, we have:
(¢) T has a unique fized point z in X.
(ii) The fixed point problem of T is well-posed.
(1it) T 1is continuous at its unique fized point.

Proof. (i) Let xo be an arbitrary point in X. We consider the Picard
sequence associated to xg. That is the sequence {x,} defined by zp4+1 :=
Tmxy = T(xg), for every non negative integer n.

We start by showing that the Picard sequence {z,} is a Cauchy sequence.
For each non negative integer n, we consider the set Or(zg,n) := {T7z :
0 < j <n}. We observe that

diam (Op(xg)) = sup{diam (Op(xg,n)) : n > 0},

where for any subset A of X, we denote diam (A) to mean the diameter of A.
By (i) of Lemma 2, we know that

(7) diam (Op(T™xp,n)) < ¢ (diam (Op(xg,n + m)))

holds true for any positive integers n and m.
Let n > 1. For all integers 4, j such that 1 <4, j < n, by (6), we have

(8) d(T'z,T'z) = d(T(T" 'z), T(T"x))
< ¢ (max{d(Ti_la:, 7 z), d(T e, T ),
d(Tj_lx,zj),d(Ti:U,Tj_lm),d(ij,Ti_lm)})
< ¢ (diam (O7(zo,n))) .

From (8), we deduce that there exists k such that 1 <k <n and
diam (O (zo,n)) = d(zo, TFx0).
Then

diam (O (xo,n)) = d(xo, T*z0) < d(z0, Txo) + d(Txo, T*x0)
< d(zo,Tzo) + diam (O (T'zg,n — 1)).

Taking into account the inequality (i) of Lemma 2, we obtain that

diam (Or(xo,n)) < d(xo, Txo) + ¢ (diam (O (zo,n))) .
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By virtue of the properties (a) and (b) of the assumption (A4), the previous
inequality implies that
(9) diam (Or(x0,n)) < ¢ (d(xg, Txg)), Vn > 1.
From (9), we deduce that diam (Or(xg)) is finite and that
diam (Or(xo)) < ¢ (d(zo,Txp)) .
By using (i7) of Lemma 2, we obtain that
(10) diam (Op(T™x0)) < ¢™ (¢ (d(x0, T'x0)))
holds true for all positive integer m. In particular, (10) implies
(11)  d(TPxo,TPx0) < @™ (¢ (d(z9,Tx0))), for all integers p,q > m.
By Lemma 1, we have

lim ¢™(s) =0, Vse0,00).

m—00

We conclude from (11), that the Picard sequence {7z} is a Cauchy se-
quence. Since (X, d) is a T—orbitally complete metric space, there is some
z in X such that

(12) lim z, = z.

n—oo

Now we show that z is a fixed point of T". By using (6), we have

(13) d(Tz,xpy1) = d(Tz,Txy)

< ¢ (max{d(z,2,), d(T'z, 2), d(@ns1, 70),

d(Tz,xy),d(Tnt1,2)}) -
By making n — oo and using right upper-semi-continuity of the function ¢,
we obtain from (13) that
d(Tz,z) < ¢ (max{0,d(Tz,z),0,d(Tz,z),0})

= ¢ (d(Tz,z)),
from which, with the help of the assumption (A3), we deduce that d(T'z, z) =
0, or equivalently, that z is a fixed point of T'.

To complete the proof of the assertion (i), we need to prove the uniqueness
of z. Let us suppose that v and v are two different fixed points of 7. From
(6), we have

d(u,v) = d(Tu,Tv)
< ¢ (max{d(u, v), d(Tu, u), d(Tv,v),d(Tu,v),d(Tv, u)})
= ¢(d(u7 U))?
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from which, with the help of the assumption (A3), we deduce that that
d(u,v) = 0, or equivalently, that v = v, which is a contradiction. We
conclude that z is the unique fixed point of T. Thus we have proved the
assertion ().

(ii) We show the well-posedness. Let {y,} be any arbitrary sequence of
points in X such that

(14) nlgglo d<Tyn7 yn) = 0.

We have to prove that the sequence {y,, } converges to the unique fixed point
zof T.
By using (6), for every nonnegative integer n, we have

(15) d(Yn, 2) d(Yn: Tyn) + d(Tyn, T'z)
d(Yn: Tyn) + ¢ (max{d(yn, 2), d(TYn, yn),
d(Tz,2),d(Tyn, z),d(Tz,yn)})
< d(Yn, Tyn) + ¢ (max{d(yn, 2), d(Tyn, yn), 0,
d(TYns yn) + d(Yn, 2),d(2,yn) })
= d(Yn, Tyn) + ¢ (d(TYn, yn) + d(Yn, 2))) -

From (15), we get

(16)  d(Yn,2) + d(Yn» Tyn) < 2d(Yn, Tyn) + ¢ (A(TYn, yn) + d(yn, 2))) -

By using the conditions (a) and (b) of the assumption (A4), we deduce that

d(Yn> 2) + d(Yn, Tyn) < (2(d(TYn, yn)))

which implies that lim,, . d(yn,2) = 0. This proves that the fixed point
problem of T is well-posed. Thus we have established the assertion (7).

(797) It remains to show that 7" is continuous at z. To this end, let {w,}
be any arbitrary sequence in X such that w,, — z = Tz (i.e., {w,} converges
to z). Then from (6), we have

<
<

A

(17) d(Twy, z) = d(Twy, Tz)
¢ (max{d(wy, 2), d(Twy, wy,),d(Tz, z),
d(Twp, 2),d(Tz,wy,)})
< ¢ (max{d(wp, 2), d(Twy, 2) + d(z,wy,), 0,
(Twp, 2),d(z,wy)})
= ¢ (d(Twp, z) + d(z,wy))

From (17), we obtain that

A

(18) d(Twy, z) + d(z, w,) < d(z,wy) + ¢ (d(Twp, 2) + d(z,wy)) .
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From (18) and the assumption (b) of (A4), we deduce that
(19) d(Twy, z) + d(z,w,) <Y (d(z,w,)) — 0 as n — 0.

From (19) we deduce that the sequence {T'(wy)} converges to z = Tz.
Hence, T is continuous at its unique fixed point z. Thus the assertion (i)
is proved and this ends the proof. |
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