F A S C I C U L I M A T H E M A T I C I

Mohamed Akkouchi

WELL-POSEDNESS OF THE FIXED POINT PROBLEM FOR ϕ-MAX-CONTRACTIONS

Abstract

We study the well-posedness of the fixed point problem for self-mappings of a metric space which are ϕ-max-contractions (see [6]). KEy words: well-posedness, fixed point problem, fixed points, ϕ-max-contractions, metric spaces, orbitally complete spaces. AMS Mathematics Subject Classification: 54H25, 47H10.

1. Introduction

In 1974, Ćirić ([3]) has first introduced orbitally continuous mappings and orbitally complete metric spaces.

Definition 1. Let T be a self-mapping on a metric space (X, d). If for any $x \in X$, every Cauchy sequence of the orbit $O_{T}(x):=\left\{x, T x, T^{2} x, \ldots\right\}$ is convergent in X, then the metric space is said to be T-orbitally complete.

Remark 1. Every complete metric space is T-orbitally complete for any T. An orbitally complete space may not be complete metric space (see [8], Example and [14], Example 1).

In [6], to generalize some results of Boyd and Wong [2], Ćirić [4], Massa [9], Sehgal [15] and Daneš [7], J. Daneš [6] introduced the notion of ϕ-maxcontractions.

Let (X, d) be a metric space, $T: X \rightarrow X$ a self-mapping of X. For any arbitrary point x in X, the orbit of x under T is defined as the set $O_{T}(x):=\left\{x, T x, T^{2} x, \ldots\right\}$.

Let \mathcal{D} be the set of functions $\phi:[0, \infty) \rightarrow[0, \infty)$ satisfying the following conditions:
$(D 1): \phi$ is right continuous on $[0, \infty)$.
$(D 2): \phi$ is non-decreasing on $[0, \infty)$.
$(D 3): \phi(t)<t$ for all $t \in(0, \infty)$.
We recall the following definition from [6].

Definition 2. ([6]) Let (X, d) be a metric space and $T: X \rightarrow X$ a mapping. For $x, y \in X$, we denote

$$
\begin{equation*}
M(x, y):=\max \{d(x, y), d(x, T x), d(y, T y), d(x, T y), d(y, T x)\} \tag{1}
\end{equation*}
$$

Let $\phi \in \mathcal{D}$. The mapping T is called a ϕ-max-contraction if the following inequality

$$
\begin{equation*}
d(T x, T y) \leq \phi(M(x, y)) \tag{2}
\end{equation*}
$$

holds true for all $x, y \in X$.
Using this concept J. Daneš has proved some fixed point theorems in [6].
The aim of this paper is to study the well-posedness (see Definition 3 below) of the fixed point problem for the ϕ-max-contractions of orbitally complete metric spaces. More precisely we provide natural conditions on the functions ϕ which ensure the well-posedness of the fixed point problem for the associated ϕ-max-contractions.

The notion of well-posednes of a fixed point problem has evoked much interest to a several mathematicians, for examples, F.S. De Blasi and J. Myjak (see [1]), S. Reich and A. J. Zaslavski (see [12]), B.K. Lahiri and P. Das (see [8]) and V. Popa (see [10] and [11]).

Definition 3. Let (X, d) be a metric space and $T:(X, d) \rightarrow(X, d)$ a mapping. The fixed point problem of T is said to be well posed if:
(a) T has a unique fixed point z in X;
(b) for any sequence $\left\{x_{n}\right\}$ of points in X such that $\lim _{n \rightarrow \infty} d\left(T x_{n}, x_{n}\right)=0$, we have $\lim _{n \rightarrow \infty} d\left(x_{n}, z\right)=0$.

2. Main result

For any arbitrary function $\phi:[0, \infty) \rightarrow[0, \infty)$ and for each real number $t \in[0, \infty)$, we set

$$
\begin{equation*}
J_{\phi}(t):=\{s \in[0, \infty): s-\phi(s) \leq t\} \tag{3}
\end{equation*}
$$

In fact, for each non-negative number t, we have $J_{\phi}(t)=(I d-\phi)^{-1}([0, t])$.
We introduce the following definition.
Definition 4. We denote \mathcal{A} the set of functions $\phi:[0, \infty) \rightarrow[0, \infty)$ satisfying the following conditions:
$(A 1): \phi$ is right upper semi-continuous on $[0, \infty)$.
(A2) : ϕ is non-decreasing on $[0, \infty)$.
(A3) : $\phi(t)<t$ for all $t \in(0, \infty)$.
$(A 4):(a)$ For each $t \in[0, \infty)$, the set $J_{\phi}(t)$ is bounded, and we have
(b) $\lim _{t \rightarrow 0} \sup \left\{s: s \in J_{\phi}(t)\right\}=0$.

To simplify notations, if $\phi \in \mathcal{A}$, we set

$$
\psi(t):=\sup \left\{s: s \in J_{\phi}(t)\right\}
$$

for every $t \geq 0$.
We give examples of elements of the class \mathcal{A}.

Examples.

(1) $\phi(t)=q t$, for all $t \in[0, \infty)$, where $0 \leq q<1$.
(2) $\phi(t)=\frac{t}{1+t}$, for all $t \in[0, \infty)$.

We recall the following elementary and classical result.
Lemma 1. Let $f:[0, \infty) \rightarrow[0, \infty)$ be a function satisfying the conditions (A1), (A2) and (A3), then f satisfies

$$
\lim _{n \rightarrow \infty} f^{n}(t)=0 \quad \forall t \geq 0
$$

where $f^{n}: f \circ f \ldots \circ f$ n-times. $\left(B y\right.$ definition $\left.f^{0}=I d\right)$.
Before giving the main result, we need to recall the following lemma of [6].
Let (X, d) be a metric space and $T: X \rightarrow X$ a mapping. For x in X and n and integer, let

$$
O_{T}(x, n):=\left\{x, T x, \ldots, T^{n} x\right\}
$$

Then we have

$$
O_{T}(x)=\cup_{n \geq 1} O_{T}(x, n)
$$

Lemma $2([6])$. Let (X, d) be a metric space. Let $\phi:[0, \infty) \rightarrow[0, \infty)$ be a function satisfying the condition (D2). Suppose that $T: X \rightarrow X$ is a ϕ-max-contraction. i.e., T satisfies the inequality

$$
d(T x, T y) \leq \phi(\max \{d(x, y), d(x, T x), d(y, T y), d(x, T y), d(y, T x)\})
$$

for all $x, y \in X$.
Let x be an arbitrary $x \in X$. Then
(i) for any non-negative integers n and m, we have

$$
\begin{equation*}
\operatorname{diam}\left(O_{T}\left(T^{m} x, n\right)\right) \leq \phi^{m}\left(\operatorname{diam}\left(O_{T}(x, n+m)\right)\right) \tag{4}
\end{equation*}
$$

(ii) For any non-negative integer m, we have

$$
\begin{equation*}
\operatorname{diam}\left(O_{T}\left(T^{m} x\right)\right) \leq \phi^{m}\left(\operatorname{diam}\left(O_{T}(x)\right)\right) \tag{5}
\end{equation*}
$$

provided that diam $\left(O_{T}(x)\right)$ is finite.
The main result of this paper reads as follows.

Theorem 1. Let (X, d) be a metric space and $T: X \rightarrow X$ be a self-mapping satisfying the inequality

$$
\begin{equation*}
d(T x, T y) \leq \phi(\max \{d(x, y), d(T x, x), d(T y, y), d(T x, y), d(T y, x)\}) \tag{6}
\end{equation*}
$$

for all $x, y \in X$, where ϕ is a given element in \mathcal{A}.
Suppose that (X, d) is T-orbitally complete. Then, we have:
(i) T has a unique fixed point z in X.
(ii) The fixed point problem of T is well-posed.
(iii) T is continuous at its unique fixed point.

Proof. (i) Let x_{0} be an arbitrary point in X. We consider the Picard sequence associated to x_{0}. That is the sequence $\left\{x_{n}\right\}$ defined by $x_{n+1}:=$ $T^{n} x_{0}=T\left(x_{0}\right)$, for every non negative integer n.

We start by showing that the Picard sequence $\left\{x_{n}\right\}$ is a Cauchy sequence. For each non negative integer n, we consider the set $O_{T}\left(x_{0}, n\right):=\left\{T^{j} x_{0}\right.$: $0 \leq j \leq n\}$. We observe that

$$
\operatorname{diam}\left(O_{T}\left(x_{0}\right)\right)=\sup \left\{\operatorname{diam}\left(O_{T}\left(x_{0}, n\right)\right): n \geq 0\right\}
$$

where for any subset A of X, we denote diam (A) to mean the diameter of A.
By (i) of Lemma 2, we know that

$$
\begin{equation*}
\operatorname{diam}\left(O_{T}\left(T^{m} x_{0}, n\right)\right) \leq \phi^{m}\left(\operatorname{diam}\left(O_{T}\left(x_{0}, n+m\right)\right)\right) \tag{7}
\end{equation*}
$$

holds true for any positive integers n and m.
Let $n \geq 1$. For all integers i, j such that $1 \leq i, j \leq n$, by (6), we have
(8) $\quad d\left(T^{i} x, T^{j} x\right)=d\left(T\left(T^{i-1} x\right), T\left(T^{j-1} x\right)\right)$

$$
\begin{aligned}
& \leq \phi\left(\operatorname { m a x } \left\{d\left(T^{i-1} x, T^{j-1} x\right), d\left(T^{i-1} x, T^{i} x\right)\right.\right. \\
& \left.\left.\quad d\left(T^{j-1} x, T^{j} x\right), d\left(T^{i} x, T^{j-1} x\right), d\left(T^{j} x, T^{i-1} x\right)\right\}\right) \\
& \leq \phi\left(\operatorname{diam}\left(O_{T}\left(x_{0}, n\right)\right)\right)
\end{aligned}
$$

From (8), we deduce that there exists k such that $1 \leq k \leq n$ and

$$
\operatorname{diam}\left(O_{T}\left(x_{0}, n\right)\right)=d\left(x_{0}, T^{k} x_{0}\right)
$$

Then

$$
\begin{aligned}
\operatorname{diam}\left(O_{T}\left(x_{0}, n\right)\right) & =d\left(x_{0}, T^{k} x_{0}\right) \leq d\left(x_{0}, T x_{0}\right)+d\left(T x_{0}, T^{k} x_{0}\right) \\
& \leq d\left(x_{0}, T x_{0}\right)+\operatorname{diam}\left(O_{T}\left(T x_{0}, n-1\right)\right)
\end{aligned}
$$

Taking into account the inequality (i) of Lemma 2, we obtain that

$$
\operatorname{diam}\left(O_{T}\left(x_{0}, n\right)\right) \leq d\left(x_{0}, T x_{0}\right)+\phi\left(\operatorname{diam}\left(O_{T}\left(x_{0}, n\right)\right)\right)
$$

By virtue of the properties (a) and (b) of the assumption (A4), the previous inequality implies that

$$
\begin{equation*}
\operatorname{diam}\left(O_{T}\left(x_{0}, n\right)\right) \leq \psi\left(d\left(x_{0}, T x_{0}\right)\right), \quad \forall n \geq 1 \tag{9}
\end{equation*}
$$

From (9), we deduce that diam $\left(O_{T}\left(x_{0}\right)\right)$ is finite and that

$$
\operatorname{diam}\left(O_{T}\left(x_{0}\right)\right) \leq \psi\left(d\left(x_{0}, T x_{0}\right)\right)
$$

By using (ii) of Lemma 2, we obtain that

$$
\begin{equation*}
\operatorname{diam}\left(O_{T}\left(T^{m} x_{0}\right)\right) \leq \phi^{m}\left(\psi\left(d\left(x_{0}, T x_{0}\right)\right)\right) \tag{10}
\end{equation*}
$$

holds true for all positive integer m. In particular, (10) implies

$$
\begin{equation*}
d\left(T^{p} x_{0}, T^{p} x_{0}\right) \leq \phi^{m}\left(\psi\left(d\left(x_{0}, T x_{0}\right)\right)\right), \quad \text { for all integers } p, q \geq m \tag{11}
\end{equation*}
$$

By Lemma 1, we have

$$
\lim _{m \rightarrow \infty} \phi^{m}(s)=0, \quad \forall s \in[0, \infty)
$$

We conclude from (11), that the Picard sequence $\left\{T^{n} x_{0}\right\}$ is a Cauchy sequence. Since (X, d) is a T-orbitally complete metric space, there is some z in X such that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} x_{n}=z \tag{12}
\end{equation*}
$$

Now we show that z is a fixed point of T. By using (6), we have

$$
\begin{align*}
d\left(T z, x_{n+1}\right)= & d\left(T z, T x_{n}\right) \tag{13}\\
\leq & \phi\left(\operatorname { m a x } \left\{d\left(z, x_{n}\right), d(T z, z), d\left(x_{n+1}, x_{n}\right)\right.\right. \\
& \left.\left.d\left(T z, x_{n}\right), d\left(x_{n+1}, z\right)\right\}\right)
\end{align*}
$$

By making $n \rightarrow \infty$ and using right upper-semi-continuity of the function ϕ, we obtain from (13) that

$$
\begin{aligned}
d(T z, z) & \leq \phi(\max \{0, d(T z, z), 0, d(T z, z), 0\}) \\
& =\phi(d(T z, z))
\end{aligned}
$$

from which, with the help of the assumption (A3), we deduce that $d(T z, z)=$ 0 , or equivalently, that z is a fixed point of T.

To complete the proof of the assertion (i), we need to prove the uniqueness of z. Let us suppose that u and v are two different fixed points of T. From (6), we have

$$
\begin{aligned}
d(u, v) & =d(T u, T v) \\
& \leq \phi(\max \{d(u, v), d(T u, u), d(T v, v), d(T u, v), d(T v, u)\}) \\
& =\phi(d(u, v))
\end{aligned}
$$

from which, with the help of the assumption $(A 3)$, we deduce that that $d(u, v)=0$, or equivalently, that $u=v$, which is a contradiction. We conclude that z is the unique fixed point of T. Thus we have proved the assertion (i).
(ii) We show the well-posedness. Let $\left\{y_{n}\right\}$ be any arbitrary sequence of points in X such that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} d\left(T y_{n}, y_{n}\right)=0 \tag{14}
\end{equation*}
$$

We have to prove that the sequence $\left\{y_{n}\right\}$ converges to the unique fixed point z of T.

By using (6), for every nonnegative integer n, we have

$$
\begin{align*}
d\left(y_{n}, z\right) \leq & d\left(y_{n}, T y_{n}\right)+d\left(T y_{n}, T z\right) \tag{15}\\
\leq & d\left(y_{n}, T y_{n}\right)+\phi\left(\operatorname { m a x } \left\{d\left(y_{n}, z\right), d\left(T y_{n}, y_{n}\right)\right.\right. \\
& \left.\left.\quad d(T z, z), d\left(T y_{n}, z\right), d\left(T z, y_{n}\right)\right\}\right) \\
\leq & d\left(y_{n}, T y_{n}\right)+\phi\left(\operatorname { m a x } \left\{d\left(y_{n}, z\right), d\left(T y_{n}, y_{n}\right), 0\right.\right. \\
& \left.\left.\quad d\left(T y_{n}, y_{n}\right)+d\left(y_{n}, z\right), d\left(z, y_{n}\right)\right\}\right) \\
= & d\left(y_{n}, T y_{n}\right)+\phi\left(\left(d\left(T y_{n}, y_{n}\right)+d\left(y_{n}, z\right)\right)\right)
\end{align*}
$$

From (15), we get

$$
\begin{equation*}
d\left(y_{n}, z\right)+d\left(y_{n}, T y_{n}\right) \leq 2 d\left(y_{n}, T y_{n}\right)+\phi\left(\left(d\left(T y_{n}, y_{n}\right)+d\left(y_{n}, z\right)\right)\right) \tag{16}
\end{equation*}
$$

By using the conditions (a) and (b) of the assumption (A4), we deduce that

$$
d\left(y_{n}, z\right)+d\left(y_{n}, T y_{n}\right) \leq \psi\left(2\left(d\left(T y_{n}, y_{n}\right)\right)\right)
$$

which implies that $\lim _{n \rightarrow \infty} d\left(y_{n}, z\right)=0$. This proves that the fixed point problem of T is well-posed. Thus we have established the assertion (ii).
(iii) It remains to show that T is continuous at z. To this end, let $\left\{w_{n}\right\}$ be any arbitrary sequence in X such that $w_{n} \rightarrow z=T z$ (i.e., $\left\{w_{n}\right\}$ converges to z). Then from (6), we have

$$
\begin{align*}
d\left(T w_{n}, z\right)= & d\left(T w_{n}, T z\right) \tag{17}\\
\leq & \phi\left(\operatorname { m a x } \left\{d\left(w_{n}, z\right), d\left(T w_{n}, w_{n}\right), d(T z, z)\right.\right. \\
& \left.\left.d\left(T w_{n}, z\right), d\left(T z, w_{n}\right)\right\}\right) \\
\leq & \phi\left(\operatorname { m a x } \left\{d\left(w_{n}, z\right), d\left(T w_{n}, z\right)+d\left(z, w_{n}\right), 0\right.\right. \\
& \left.\left.\left(T w_{n}, z\right), d\left(z, w_{n}\right)\right\}\right) \\
= & \phi\left(d\left(T w_{n}, z\right)+d\left(z, w_{n}\right)\right)
\end{align*}
$$

From (17), we obtain that

$$
\begin{equation*}
d\left(T w_{n}, z\right)+d\left(z, w_{n}\right) \leq d\left(z, w_{n}\right)+\phi\left(d\left(T w_{n}, z\right)+d\left(z, w_{n}\right)\right) \tag{18}
\end{equation*}
$$

From (18) and the assumption (b) of (A4), we deduce that

$$
\begin{equation*}
d\left(T w_{n}, z\right)+d\left(z, w_{n}\right) \leq \psi\left(d\left(z, w_{n}\right)\right) \longrightarrow 0 \quad \text { as } \quad n \longrightarrow \infty \tag{19}
\end{equation*}
$$

From (19) we deduce that the sequence $\left\{T\left(w_{n}\right)\right\}$ converges to $z=T z$. Hence, T is continuous at its unique fixed point z. Thus the assertion (iii) is proved and this ends the proof.

Acknowledgement. I thank very much the anonymous referee for his (or her) helpful comments.

References

[1] De Blasi F.S., Myjak J., Sur la porosité des contractions sans point fixe, C. R. Acad. Sci. Paris, 308(1989), 51-54.
[2] Boyd D.W., Wong J.S., On nonlinear contractions, Proc. Amer. Math. Soc., 20(1969), 458-469.
[3] Ćririć Lu.B., On some maps with non-unique fixed points, Publ. Inst. Math. (Beograd), 13(31)(1974), 52-58.
[4] Ćirıć Lj.B., A generalization of Banach's contraction principle, Proc. Amer. Math. Soc., 45(1974), 267-273.
[5] Ćirić LJ.B., Fixed points of asymptotically regular mappings, Math. Communications, 10(2005), 111-114.
[6] Daneš J., Two fixed point theorems in topological and metric spaces, Bull. Austral. Math. Soc., 14(1976), 259-265.
[7] Daneš J., Some fixed point theorems in metric and Banach spaces, Comment. Math. Univ. Carolinae, 12(1971), 37-51.
[8] Lahiri B.K., Das P., Well-posednes and porosity of certain classes of operators, Demonstratio Math., 38(1)(2005), 169-176.
[9] Massa S., Generalized contractions in metric spaces, Boll. Un. Mat. Ital., 10(1974), 689-694.
[10] Popa V., Well-Posedness of Fixed Point Problem in Orbitally Complete Metric Spaces, Stud. Cerc. St. Ser. Mat. Univ. Bacău, 16(2006), Supplement, 209-214.
[11] Popa V., Well-Posedness of Fixed Point Problem in Compact Metric Spaces, Bul. Univ. Petrol-Gaze, Ploiesti, Ser. Matem. Inform. Fiz. LX, 1(2008), 1-4.
[12] Reich S., Zaslavski A.J., Well-posednes of fixed point problems, Far East J. Math. Sci., Special volume 2001, Part III, (2001), 393-401.
[13] Sharma P.L., Yuel A.K., Fixed point theorems under asymptotic regularity at a point, Math. Sem. Notes, 35(1982), 181-190.
[14] Turkoglu D., Ozer O., Fisher B., Fixed point theorems for T-orbitally complete spaces, Stud. Cerc. St. Ser. Mat., Univ. Bacău, 9(1999), 211-218.
[15] Sehgal V.M., On fixed and periodic point for a class of mappings, J. London Math. Soc., 2(5)(1972), 571-576.

Mohamed Akkouchi
Université Cadi Ayyad
Faculté des Sciences-Semlalia
Département de Mathématiques
Av. Prince My Abdellah, BP. 2390
Marrakech, Maroc (Morocco)
e-mail: akkouchimo@yahoo.fr

Received on 06.10.2009 and, in revised form, on 13.05.2010.

