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PROBLEM FOR φ-MAX-CONTRACTIONS

Abstract. We study the well-posedness of the fixed point pro-
blem for self-mappings of a metric space which are φ-max-contra-
ctions (see [6]).
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1. Introduction

In 1974, Ćirić ([3]) has first introduced orbitally continuous mappings
and orbitally complete metric spaces.

Definition 1. Let T be a self-mapping on a metric space (X, d). If for
any x ∈ X, every Cauchy sequence of the orbit OT (x) := {x, Tx, T 2x, . . .} is
convergent in X, then the metric space is said to be T−orbitally complete.

Remark 1. Every complete metric space is T−orbitally complete for
any T . An orbitally complete space may not be complete metric space (see
[8], Example and [14], Example 1).

In [6], to generalize some results of Boyd and Wong [2], Ćirić [4], Massa
[9], Sehgal [15] and Daneš [7], J. Daneš [6] introduced the notion of φ-max-
contractions.

Let (X, d) be a metric space, T : X → X a self-mapping of X. For
any arbitrary point x in X, the orbit of x under T is defined as the set
OT (x) := {x, Tx, T 2x, . . .}.

Let D be the set of functions φ : [0,∞)→ [0,∞) satisfying the following
conditions:

(D1) : φ is right continuous on [0,∞).
(D2) : φ is non-decreasing on [0,∞).
(D3) : φ(t) < t for all t ∈ (0,∞).

We recall the following definition from [6].
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Definition 2. ([6]) Let (X, d) be a metric space and T : X → X a
mapping. For x, y ∈ X, we denote

(1) M(x, y) := max{d(x, y), d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)}

Let φ ∈ D. The mapping T is called a φ-max-contraction if the following
inequality

(2) d(Tx, Ty) ≤ φ(M(x, y))

holds true for all x, y ∈ X.

Using this concept J. Daneš has proved some fixed point theorems in [6].
The aim of this paper is to study the well-posedness (see Definition 3

below) of the fixed point problem for the φ-max-contractions of orbitally
complete metric spaces. More precisely we provide natural conditions on
the functions φ which ensure the well-posedness of the fixed point problem
for the associated φ-max-contractions.

The notion of well-posednes of a fixed point problem has evoked much
interest to a several mathematicians, for examples, F.S. De Blasi and J. My-
jak (see [1]), S. Reich and A. J. Zaslavski (see [12]), B.K. Lahiri and P. Das
(see [8]) and V. Popa (see [10] and [11]).

Definition 3. Let (X, d) be a metric space and T : (X, d) → (X, d) a
mapping. The fixed point problem of T is said to be well posed if:

(a) T has a unique fixed point z in X;
(b) for any sequence {xn} of points in X such that lim

n→∞
d(Txn, xn) = 0,

we have lim
n→∞

d(xn, z) = 0.

2. Main result

For any arbitrary function φ : [0,∞)→ [0,∞) and for each real number
t ∈ [0,∞), we set

(3) Jφ(t) := {s ∈ [0,∞) : s− φ(s) ≤ t}.

In fact, for each non-negative number t, we have Jφ(t) = (Id− φ)−1([0, t]).
We introduce the following definition.

Definition 4. We denote A the set of functions φ : [0,∞) → [0,∞)
satisfying the following conditions:

(A1) : φ is right upper semi-continuous on [0,∞).
(A2) : φ is non-decreasing on [0,∞).
(A3) : φ(t) < t for all t ∈ (0,∞).
(A4) : (a) For each t ∈ [0,∞), the set Jφ(t) is bounded, and we have

(b) lim
t→0

sup{s : s ∈ Jφ(t)} = 0.
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To simplify notations, if φ ∈ A, we set

ψ(t) := sup{s : s ∈ Jφ(t)},

for every t ≥ 0.

We give examples of elements of the class A.

Examples.
(1) φ(t) = qt, for all t ∈ [0,∞), where 0 ≤ q < 1.
(2) φ(t) = t

1+t , for all t ∈ [0,∞).

We recall the following elementary and classical result.

Lemma 1. Let f : [0,∞)→ [0,∞) be a function satisfying the conditions
(A1), (A2) and (A3), then f satisfies

lim
n→∞

fn(t) = 0 ∀t ≥ 0,

where fn : f ◦ f . . . ◦ f n-times. (By definition f0 = Id).

Before giving the main result, we need to recall the following lemma of [6].
Let (X, d) be a metric space and T : X → X a mapping. For x in X and

n and integer, let
OT (x, n) := {x, Tx, . . . , Tnx}.

Then we have
OT (x) = ∪n≥1OT (x, n).

Lemma 2 ([6]). Let (X, d) be a metric space. Let φ : [0,∞) → [0,∞)
be a function satisfying the condition (D2). Suppose that T : X → X is a
φ-max-contraction. i.e., T satisfies the inequality

d(Tx, Ty) ≤ φ(max{d(x, y), d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)})

for all x, y ∈ X.
Let x be an arbitrary x ∈ X. Then
(i) for any non-negative integers n and m, we have

(4) diam (OT (Tmx, n)) ≤ φm(diam (OT (x, n+m))).

(ii) For any non-negative integer m, we have

(5) diam (OT (Tmx)) ≤ φm(diam (OT (x))),

provided that diam (OT (x)) is finite.

The main result of this paper reads as follows.
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Theorem 1. Let (X, d) be a metric space and T : X → X be a
self-mapping satisfying the inequality

(6) d(Tx, Ty) ≤ φ (max{d(x, y), d(Tx, x), d(Ty, y), d(Tx, y), d(Ty, x)})

for all x, y ∈ X, where φ is a given element in A.
Suppose that (X, d) is T−orbitally complete. Then, we have:

(i) T has a unique fixed point z in X.
(ii) The fixed point problem of T is well-posed.

(iii) T is continuous at its unique fixed point.

Proof. (i) Let x0 be an arbitrary point in X. We consider the Picard
sequence associated to x0. That is the sequence {xn} defined by xn+1 :=
Tnx0 = T (x0), for every non negative integer n.

We start by showing that the Picard sequence {xn} is a Cauchy sequence.
For each non negative integer n, we consider the set OT (x0, n) := {T jx0 :
0 ≤ j ≤ n}. We observe that

diam (OT (x0)) = sup{diam (OT (x0, n)) : n ≥ 0},

where for any subset A of X, we denote diam (A) to mean the diameter of A.
By (i) of Lemma 2, we know that

(7) diam (OT (Tmx0, n)) ≤ φm (diam (OT (x0, n+m)))

holds true for any positive integers n and m.
Let n ≥ 1. For all integers i, j such that 1 ≤ i, j ≤ n, by (6), we have

d(T ix, T jx) = d(T (T i−1x), T (T j−1x))(8)

≤ φ
(
max{d(T i−1x, T j−1x), d(T i−1x, T ix),

d(T j−1x, T jx), d(T ix, T j−1x), d(T jx, T i−1x)}
)

≤ φ (diam (OT (x0, n))) .

From (8), we deduce that there exists k such that 1 ≤ k ≤ n and

diam (OT (x0, n)) = d(x0, T
kx0).

Then

diam (OT (x0, n)) = d(x0, T
kx0) ≤ d(x0, Tx0) + d(Tx0, T

kx0)

≤ d(x0, Tx0) + diam (OT (Tx0, n− 1)).

Taking into account the inequality (i) of Lemma 2, we obtain that

diam (OT (x0, n)) ≤ d(x0, Tx0) + φ (diam (OT (x0, n))) .
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By virtue of the properties (a) and (b) of the assumption (A4), the previous
inequality implies that

(9) diam (OT (x0, n)) ≤ ψ (d(x0, Tx0)) , ∀n ≥ 1.

From (9), we deduce that diam (OT (x0)) is finite and that

diam (OT (x0)) ≤ ψ (d(x0, Tx0)) .

By using (ii) of Lemma 2, we obtain that

(10) diam (OT (Tmx0)) ≤ φm (ψ (d(x0, Tx0)))

holds true for all positive integer m. In particular, (10) implies

(11) d(T px0, T
px0) ≤ φm (ψ (d(x0, Tx0))) , for all integers p, q ≥ m.

By Lemma 1, we have

lim
m→∞

φm(s) = 0, ∀s ∈ [0,∞).

We conclude from (11), that the Picard sequence {Tnx0} is a Cauchy se-
quence. Since (X, d) is a T−orbitally complete metric space, there is some
z in X such that

(12) lim
n→∞

xn = z.

Now we show that z is a fixed point of T . By using (6), we have

d(Tz, xn+1) = d(Tz, Txn)(13)

≤ φ (max{d(z, xn), d(Tz, z), d(xn+1, xn),

d(Tz, xn), d(xn+1, z)}) .

By making n→∞ and using right upper-semi-continuity of the function φ,
we obtain from (13) that

d(Tz, z) ≤ φ (max{0, d(Tz, z), 0, d(Tz, z), 0})
= φ (d(Tz, z)) ,

from which, with the help of the assumption (A3), we deduce that d(Tz, z) =
0, or equivalently, that z is a fixed point of T .

To complete the proof of the assertion (i), we need to prove the uniqueness
of z. Let us suppose that u and v are two different fixed points of T . From
(6), we have

d(u, v) = d(Tu, Tv)

≤ φ (max{d(u, v), d(Tu, u), d(Tv, v), d(Tu, v), d(Tv, u)})
= φ(d(u, v)),
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from which, with the help of the assumption (A3), we deduce that that
d(u, v) = 0, or equivalently, that u = v, which is a contradiction. We
conclude that z is the unique fixed point of T. Thus we have proved the
assertion (i).

(ii) We show the well-posedness. Let {yn} be any arbitrary sequence of
points in X such that

(14) lim
n→∞

d(Tyn, yn) = 0.

We have to prove that the sequence {yn} converges to the unique fixed point
z of T .

By using (6), for every nonnegative integer n, we have

d(yn, z) ≤ d(yn, T yn) + d(Tyn, T z)(15)

≤ d(yn, T yn) + φ (max{d(yn, z), d(Tyn, yn),

d(Tz, z), d(Tyn, z), d(Tz, yn)})
≤ d(yn, T yn) + φ (max{d(yn, z), d(Tyn, yn), 0,

d(Tyn, yn) + d(yn, z), d(z, yn)})
= d(yn, T yn) + φ ((d(Tyn, yn) + d(yn, z))) .

From (15), we get

(16) d(yn, z) + d(yn, T yn) ≤ 2d(yn, T yn) + φ ((d(Tyn, yn) + d(yn, z))) .

By using the conditions (a) and (b) of the assumption (A4), we deduce that

d(yn, z) + d(yn, T yn) ≤ ψ (2(d(Tyn, yn))) ,

which implies that limn→∞ d(yn, z) = 0. This proves that the fixed point
problem of T is well-posed. Thus we have established the assertion (ii).

(iii) It remains to show that T is continuous at z. To this end, let {wn}
be any arbitrary sequence in X such that wn → z = Tz (i.e., {wn} converges
to z). Then from (6), we have

d(Twn, z) = d(Twn, T z)(17)

≤ φ (max{d(wn, z), d(Twn, wn), d(Tz, z),

d(Twn, z), d(Tz,wn)})
≤ φ (max{d(wn, z), d(Twn, z) + d(z, wn), 0,

(Twn, z), d(z, wn)})
= φ (d(Twn, z) + d(z, wn))

From (17), we obtain that

(18) d(Twn, z) + d(z, wn) ≤ d(z, wn) + φ (d(Twn, z) + d(z, wn)) .
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From (18) and the assumption (b) of (A4), we deduce that

(19) d(Twn, z) + d(z, wn) ≤ ψ (d(z, wn)) −→ 0 as n −→∞.

From (19) we deduce that the sequence {T (wn)} converges to z = Tz.
Hence, T is continuous at its unique fixed point z. Thus the assertion (iii)
is proved and this ends the proof. �
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[5] Ćirić Lj.B., Fixed points of asymptotically regular mappings, Math. Com-
munications, 10(2005), 111-114.
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209-214.

[11] Popa V., Well-Posedness of Fixed Point Problem in Compact Metric Spaces,
Bul. Univ. Petrol-Gaze, Ploiesti, Ser. Matem. Inform. Fiz. LX, 1(2008), 1-4.

[12] Reich S., Zaslavski A.J., Well-posednes of fixed point problems, Far East
J. Math. Sci., Special volume 2001, Part III, (2001), 393-401.

[13] Sharma P.L., Yuel A.K., Fixed point theorems under asymptotic regularity
at a point, Math. Sem. Notes, 35(1982), 181-190.

[14] Turkoglu D., Ozer O., Fisher B., Fixed point theorems for T -orbitally
complete spaces, Stud. Cerc. St. Ser. Mat., Univ. Bacǎu, 9(1999), 211-218.
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