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ABSTRACT. In this paper, we investigate a Korovkin-type ap-
proximation theorem for sequences of positive linear operators on
the space of all continuous real valued functions defined on [a, b].
We also obtain some approximation properties for sequences of
positive linear operators constructed by means of the Bernstein
operator.
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1. Introduction

Let {L,,} be a sequence of positive linear operators acting from C|a, b] into
C'a, b], which is the space of all continuous real valued functions on [a, b]. In
this case, Korovkin [8] first noticed necessary and sufficient conditions for the
uniform convergence of L, f to a function f by using the test functions e;(t)
defined by e;(t) = ' (i = 0,1,2). Later many researchers investigate these
conditions for various operators defined on different spaces. In the present
paper, we obtain following the Korovkin-type theorem and give results for
the approximation properties of the generalized Bernstein operators B,
as an application. Note that throughout the paper, we always assume that
¢ : [a,b] — [a,b] be a bijection and a continuous function on [a, b].

Theorem 1 (Korovkin-type theorem). Let {L,} be a sequence of positive
linear operators acting from C'[a,b] into C'[a,b]. Then, for all f,p € C [a,b]

(1) nh_g)lo | Ln(f) = fo ‘PHC[a,b] =0
if and only if

(2) lim [|Lo(e:) — e 0 @llopy =0, (i =0,1,2).

n—o0
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Proof. Since each e; 0 9 € C'a,b], (i = 0,1,2) the implication (1) =
(2) is obvious. Suppose now that (2) holds. Since f o is bounded on [a, ],
we can write

[f(p(x)] < M.

Also, since f is continuous on [a, b], for all = € [a, b], we write that for every
e > 0, there exists a number § > 0 such that |t — p(z)| <0, |f(t) — f(e(x))]
< €. Hence, we get

()2
lf(t) — fo(x))]| < €+2MW, Vt,z € [a,b).

Since L, is linear and positive, we obtain

[Ln(f52) = fle(@))] = [Ln(f() = f(o(2)); 2)
+ f(e(@)(Lnleo(-); ) — eolp(2)))|
< L([f() = fle(2))] 5 2)
+ M |Ln(eo(-); ) — eolep(x))]

< Lo(e + o) ?2(56))2 )

+ M [Ln(eo(-); 2) — eo(p(x))]
2
< (e + M+ 2M 55) |La(en(t);2) — eolp(z)

I %4 |Ln(e1(t); ) — e1(p(x)))|
N 257]‘24 |La(ea(t); ) — ealip(x))] +

here k = . Th t
where argjicbw(x) en we ge

1En(F) = o @llcray < €+ M {ILaleo(t):2) = col@(@)llcpa
+ [|Ln(ex(t); ) — ex(e(@)) |l ooy
+ 1 Enea(®);2) — e2(0(@) g
from (2), we obtain
i ([ Za(f) = f 0 @l = 0.

The proof is complete. |

Remark 1. If we take ¢(z) = x in Theorem 1, then we immediately get
the classical result which was introduced by Korovkin [8].



A KOROVKIN TYPE APPROXIMATION THEOREM . . . 15

Remark 2. The multivariate analogue of Theorem 1 is proved different
method by Guessab and Schmeisser (See [5]).

2. Application of Korovkin-type theorem

Since several concrete operators on Cfa,b| are positive and linear, Ko-
rovkin’s theorem plays fundamental role in his theory of approximation for
example, the Bernstein operator

(3) Zf <> (1-z)" % o0<z<1

is linear and positive on [0, 1] for every n > 0. Here, inspired by the Bern-
stein operators, we introduce the following sequence of generalized Bernstein
operator:

@ Buelfin =21 () (@)1~ p(@)"™*, 0< (@) <1
=0

where ¢ is a bijection and a continuous function on [0, 1]. We get the classical
Bernstein operator, given in (3), by putting ¢(z) = z in (4).

Definition 1. Let W2 = {g € C[0,1]: ¢, ¢" € C[0,1]}. For f € C[0,1]
and 6 > 0, the Peetre-K Functional is defined by

(5) K37(8) = gie%f/z {Hf —9llcpa +9 Hg”HC[O,l]}
where [|gllcr,1) = oiugl |9(x)].

Definition 2. For f € C[0,1] and § is a positive number. The continuity
modulus of a function f is

(6) wf(0) = sup  sup A{[f(z+h)— f(x)[}

0<h<é z,z+h€e(0,1]

and the second order modulus of smoothness of a function f is

WiE) = sup  sup  {|f(z+2h) — 2f(x +h) + f(2)]}.
0<h<d z,242h€[0,1]

From [3, p. 177, Theorem 2.4], we have
(7) K3(6) < Cw}(V0)

where C' is an absolute positive constant.
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Theorem 2. Let p € C [0, 1] be bijection function. For any f € C'[0,1],
the polynomials By, f converge uniformly to f o ¢ on [0,1] as n — oco.

Proof. Since Y (})¢*(z)(1 — ¢(z))" % = 1, from definition (4) of
k=0
By, ,(f;x), we have

(8) Bng(eo(-);z) = 1.

Now, consider the case where f is the identity function f =e; : t — t;
thus,

(9) B (ei(.);z) = Z % <Z> (pk(;c)(l — go(;c))nfk
k=0

=2 (k DL k@)1 - )

— — l(n —k)!
n—1
_ T n—1 k T — oz n—k—1
= o2 (")t - et
so we obtain
(10) Bn(e1(-);z) = o(z).

Next, take f = ep : t — t? and from (9) find

n—1
Buglea(ia) = w(0) Y (M) )@ - gt
k=0
7@71_1 =1\ RV (1 — o))k
- & kzo( 2 )@ - ew)

k=0
_ o) LS (n=2)
= T el 2 Ge—Di(n—1- )l
< () (1 — pla))
n—2
= - e X (M) )P - et
k=0
= 284 (1= D)



A KOROVKIN TYPE APPROXIMATION THEOREM . . . 17

so we obtain

(11) Bng(ea();2) = ¢*(x) +

The proof of uniform convergence is then completed by applying the Korovkin-
type Theorem 1. [ |

Example 1. For n = 10,25,50,100 and ¢(x) = \/x, the convergence of
By o(f;x)(dot line) to f(p(x)) = cos(4my/z)(solid line) will be illustrated
in the following Figure 1.

n = 50 n = 100

Figure 1. Convergence of By o(f;x) to f(¢(z)).

Example 2. For n = 10,25,50,100 and ¢(z) = 2°, the convergence
of By(f o ¢;z)(dash dot line) and By ,(f;x)(dot line) to f(e(z)) =
sin(27z®)(solid line) will be illustrated in the following Figure 2.
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0.5

0.5+

n =50 n = 100

Figure 2. Comparation of Bernstein and generalized
Bernstein operators for n = 10,25, 50, 100.

From figure 2, we can see that the generalized Bernstein operator ap-
proximation is better than the classical Bernstein operator.

Theorem 3. Let p € C[0,1] be bijection function. For any f € C0,1],
Bug(Fi) — @] < (VO +1) wr(—)
n,p ) — 2 \/ﬁ

where C, = maxo<z<1 {¢(x) — ¢*(z)} and wy(:) is the modulus of conti-
nuity as given in (6).

n
Proof. Using the relation > (7)¢*(2)(1 — ¢(x))" % = 1 we can express
k=0
the difference between B, ,(f;2) and f(¢(z)) as follow:

Bt~ o) = 3 { 15 = steten } (7)ot — ot

k=0
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and so
S k N\ & n—k
Buolfi) = (el < 32| 1(5) = et (1) )1 - plo)
k=0
Letting y = £ and |y - o(x)] = pd. we have | £(y) ~ £(p(@))] < wy(u0) <

(14 p)wys(6). Thus,

L n o(z)
15 = seton)] < |14+ P w0
and hence
N

()¢ = et
> (5 o) (7)o so(x))"—’f] 1/2}

where we have invoked the Cauchy-Schwartz inequality. Expanding the
squared term and making use of (8), (10) and (11), we obtain

< wy(0) {1+(15

) — 2 (x 1/2
(12)  [Buy(fiz) — flp(@))] < wf<5>{1+1 [W] }

)
1/2
1 x - 2
o) {1 L1 (maXog < {ol) — ¢ <w>}> } |
) n
Therefore, by choosing § = \/177 in (12), we get the desired result. [ |

Remark 3. It is observed that from above theorem that if ¢ € C1[0,1]
and ¢'(z) # 0 for z € (0,1), we get C, = %. For example, If we take
o(xr) = x, we obtain the rate of convergence for the classical Bernstein
polynomials.

Theorem 4. Let f € C[0,1], then we have

|Bno(f32) — f(p())] < 20w} (; M)

where C' is an absolute positive constant.



20 IBRAHIM BUYUKYAZICI

Proof. Let ¢ € W2. From Taylor’s expansion we write

9(t) = g(e(x)) + ¢ (p(@))(t — p(x)) + / (t — u)g" (w)du
o(z)

we get

Bno(g;2) = g(o(x)) + g'(0(2)) B (- — o(x); z)

t—p(x)
I RO R
0
and from (10) we obtain
(13)  Buple:a) — (0] < 5 9" |ogoy Bl — 0(a))% ).

On the other hand, from (8), (10) and (11) we have

Bl - pla)i ) = 2L =),

n
Then, by (13), we get

xr) — 2 x
|Bug(g:2) — gip())] < ;@Unw
)

On the other hand, from definition (4
(14) | Bn,o(f; )| < Hch*[o,l} By o(l;2) = Hf”c[o,l} :
Now (13) and (14) imply
[ Bro(fi2) = f(o(@)] < |Bno(f —g:2) = (f = 9)(p(2))]
|

+ |Bnp(g;7) — g(o(2))

1 ? "
<2 [”f Illcpa + 4W g Hcm,u] :

Hence taking infimum on the right hand side over all g € W2 we get

xXr) — 2 T
Bup(f:2) — flpl@)] < 23 2D =D

Hg”HC[O,l} :

and (8) we have

and by (7), we get

Busp(f52) — (@) <2003 <; s0<w>—e02<w>> |

This completes the proof of the theorem.
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The following inverse theorem can be proved for the generalized Bernstein

operator (4). As in the previous theorems, ¢(z) is a bijection function on
[0,1].

Lemma 1 (from [2] p.696). With h,6 € (0,1], if wy(h) < K1{67 + (h/9)
xwys(0)} for some K1 > 0 and 0 < v < 1, then there exists a constant
Ky > 0 such that wg(h) < Koh™.

Theorem 5. For f,¢' € C[0,1] and wy(0) < wfop(6),

(15) |Bnp(fi2) — flp(@))| =0 (n77), 0<y<1
implies the composite function f o € Lip(y, C[0,1]).
Proof. For 0 < z < 1, taking the derivative of (4) with respect to z:

Brofie) = 3 10)(}) 5 [0 - o))

Using properties of binomial coefficients, we write

B, (f:2) = ng/(a) {Z 1 (32t - et
k=1
n—1
- (" R 1) (@)1 - w(w))"“}
k=0

n—1

=) X {1 - b (M) e - et

n n
k=0

Upon taking absolute values of both sides and using the modulus of conti-
nuity, we obtain
n—1
k

X F () (1 = p(a))"

k:+1 (ﬁ)

n

| /\

B, (f;2)]

ol
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Since ¢’ € C[0,1], we have A = maxo<z<1|¢'(z)]. For any fixed pair of
0,1

points x,y in [0, 1], one obtains
1 x
< wys(0) {n+ 5} / ¢ ()] du
y

/ "Bl (0] du
Mo (8) {n + (15} /y du

= a{nt g bl -

Additionally, we have the following equality

/ B, (f;u) du = Buy(fi2) — Buy(f:)

Y

(16)

IN

therefore, any fixed pair of points x,y in [0, 1] , using (15) and (16), we have

|f(p(x)) = fle(y)| = ‘f(so(x)) — f(e(y)) = Bnyo(f;2) + Bnyo(f;y)

+ /93 B,'“P(f;u) du
y

< [fle(x)) = Bno(fi2)| + [Bno(f3y) — fle(y))]

+ / |B;W(f;u)‘ du

1]7

<2 |
n

—I—)\{n—i— ;}Wf(é)’fl? —yl.

1
or, introducing 6, = —,
n

tote) - St < 28574 AL £+ s la -l

The sequence 4, decreases to zero as n — oo. For a fixed n, pick § € (0,1]
such that ¢, < < d,_1 < 26, consequently we have

Fe@) — Few)] < 258" + 32 7 Weos 9

< K {57 + @ ; y‘wfo@((s)}
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where K1 = max {2K, 3\}. Taking the maximum over all arbitrary pairs
x,y in [0, 1] with |z — y| = h < 1, the last inequality gives

h
Wrop(h) < K1 {5” + 5“1”0@(5)}

where 0 < h, § < 1. Lemma 12 then tells us that w.,(h) < Kok for some
constant Ks. This completes the proof. |
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