F A S C I C U L I M A T H E M A T I C I

Nr 45

İbrahim BÜYÜKyazici

A KOROVKIN TYPE APPROXIMATION THEOREM AND ITS APPLICATION

Abstract

In this paper, we investigate a Korovkin-type approximation theorem for sequences of positive linear operators on the space of all continuous real valued functions defined on $[a, b]$. We also obtain some approximation properties for sequences of positive linear operators constructed by means of the Bernstein operator.

KEY words: positive linear operator, Korovkin-type theorem, Bernstein operator.
AMS Mathematics Subject Classification: 41A10, 41A25, 41A36.

1. Introduction

Let $\left\{L_{n}\right\}$ be a sequence of positive linear operators acting from $C[a, b]$ into $C[a, b]$, which is the space of all continuous real valued functions on $[a, b]$. In this case, Korovkin [8] first noticed necessary and sufficient conditions for the uniform convergence of $L_{n} f$ to a function f by using the test functions $e_{i}(t)$ defined by $e_{i}(t)=t^{i}(i=0,1,2)$. Later many researchers investigate these conditions for various operators defined on different spaces. In the present paper, we obtain following the Korovkin-type theorem and give results for the approximation properties of the generalized Bernstein operators $B_{n, \varphi}$ as an application. Note that throughout the paper, we always assume that $\varphi:[a, b] \rightarrow[a, b]$ be a bijection and a continuous function on $[a, b]$.

Theorem 1 (Korovkin-type theorem). Let $\left\{L_{n}\right\}$ be a sequence of positive linear operators acting from $C[a, b]$ into $C[a, b]$. Then, for all $f, \varphi \in C[a, b]$

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|L_{n}(f)-f \circ \varphi\right\|_{C[a, b]}=0 \tag{1}
\end{equation*}
$$

if and only if

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|L_{n}\left(e_{i}\right)-e_{i} \circ \varphi\right\|_{C[a, b]}=0, \quad(i=0,1,2) \tag{2}
\end{equation*}
$$

Proof. Since each $e_{i} \circ \varphi \in C[a, b],(i=0,1,2)$ the implication (1) \Longrightarrow (2) is obvious. Suppose now that (2) holds. Since $f \circ \varphi$ is bounded on $[a, b]$, we can write

$$
|f(\varphi(x))| \leq M
$$

Also, since f is continuous on $[a, b]$, for all $x \in[a, b]$, we write that for every $\varepsilon>0$, there exists a number $\delta>0$ such that $|t-\varphi(x)| \leq \delta,|f(t)-f(\varphi(x))|$ $<\varepsilon$. Hence, we get

$$
|f(t)-f(\varphi(x))|<\varepsilon+2 M \frac{(t-\varphi(x))^{2}}{\delta^{2}}, \quad \forall t, x \in[a, b]
$$

Since L_{n} is linear and positive, we obtain

$$
\begin{aligned}
\left|L_{n}(f ; x)-f(\varphi(x))\right|= & \mid L_{n}(f(\cdot)-f(\varphi(x)) ; x) \\
& +f(\varphi(x))\left(L_{n}\left(e_{0}(\cdot) ; x\right)-e_{0}(\varphi(x))\right) \mid \\
\leq & L_{n}(|f(\cdot)-f(\varphi(x))| ; x) \\
& +M\left|L_{n}\left(e_{0}(\cdot) ; x\right)-e_{0}(\varphi(x))\right| \\
\leq & L_{n}\left(\varepsilon+2 M \frac{(\cdot-\varphi(x))^{2}}{\delta^{2}} ; x\right) \\
& +M\left|L_{n}\left(e_{0}(\cdot) ; x\right)-e_{0}(\varphi(x))\right| \\
\leq & \left(\varepsilon+M+2 M \frac{k^{2}}{\delta^{2}}\right)\left|L_{n}\left(e_{0}(t) ; x\right)-e_{0}(\varphi(x))\right| \\
& +\frac{4 M}{\delta^{2}}\left|L_{n}\left(e_{1}(t) ; x\right)-e_{1}(\varphi(x))\right| \\
& +\frac{2 M}{\delta^{2}}\left|L_{n}\left(e_{2}(t) ; x\right)-e_{2}(\varphi(x))\right|+\varepsilon
\end{aligned}
$$

where $k=\max _{a \leq x \leq b} \varphi(x)$. Then we get

$$
\begin{aligned}
\left\|L_{n}(f)-f \circ \varphi\right\|_{C[a, b]} \leq \varepsilon & +M^{\prime}\left\{\left\|L_{n}\left(e_{0}(t) ; x\right)-e_{0}(\varphi(x))\right\|_{C[a, b]}\right. \\
& +\left\|L_{n}\left(e_{1}(t) ; x\right)-e_{1}(\varphi(x))\right\|_{C[a, b]} \\
& \left.+\left\|L_{n}\left(e_{2}(t) ; x\right)-e_{2}(\varphi(x))\right\|_{C[a, b]}\right\}
\end{aligned}
$$

from (2), we obtain

$$
\lim _{n \rightarrow \infty}\left\|L_{n}(f)-f \circ \varphi\right\|_{C[a, b]}=0
$$

The proof is complete.
Remark 1. If we take $\varphi(x)=x$ in Theorem 1 , then we immediately get the classical result which was introduced by Korovkin [8].

Remark 2. The multivariate analogue of Theorem 1 is proved different method by Guessab and Schmeisser (See [5]).

2. Application of Korovkin-type theorem

Since several concrete operators on $C[a, b]$ are positive and linear, Korovkin's theorem plays fundamental role in his theory of approximation for example, the Bernstein operator

$$
\begin{equation*}
B_{n}(f ; x)=\sum_{k=0}^{n} f\left(\frac{k}{n}\right)\binom{n}{k} x^{k}(1-x)^{n-k}, \quad 0 \leq x \leq 1 \tag{3}
\end{equation*}
$$

is linear and positive on $[0,1]$ for every $n>0$. Here, inspired by the Bernstein operators, we introduce the following sequence of generalized Bernstein operator:

$$
\begin{equation*}
B_{n, \varphi}(f ; x)=\sum_{k=0}^{n} f\left(\frac{k}{n}\right)\binom{n}{k} \varphi^{k}(x)(1-\varphi(x))^{n-k}, \quad 0 \leq \varphi(x) \leq 1 \tag{4}
\end{equation*}
$$

where φ is a bijection and a continuous function on $[0,1]$. We get the classical Bernstein operator, given in (3), by putting $\varphi(x)=x$ in (4).

Definition 1. Let $W^{2}=\left\{g \in C[0,1]: g^{\prime}, g^{\prime \prime} \in C[0,1]\right\}$. For $f \in C[0,1]$ and $\delta>0$, the Peetre-K Functional is defined by

$$
\begin{equation*}
K_{f}^{2}(\delta)=\inf _{g \in W^{2}}\left\{\|f-g\|_{C[0,1]}+\delta\left\|g^{\prime \prime}\right\|_{C[0,1]}\right\} \tag{5}
\end{equation*}
$$

where $\|g\|_{C[0,1]}=\sup _{0 \leq x \leq 1}|g(x)|$.
Definition 2. For $f \in C[0,1]$ and δ is a positive number. The continuity modulus of a function f is

$$
\begin{equation*}
\omega_{f}(\delta)=\sup _{0<h \leq \delta} \sup _{x, x+h \in[0,1]}\{|f(x+h)-f(x)|\} \tag{6}
\end{equation*}
$$

and the second order modulus of smoothness of a function f is

$$
\omega_{f}^{2}(\delta)=\sup _{0<h \leq \delta} \sup _{x, x+2 h \in[0,1]}\{|f(x+2 h)-2 f(x+h)+f(x)|\}
$$

From [3, p. 177, Theorem 2.4], we have

$$
\begin{equation*}
K_{f}^{2}(\delta) \leq C \omega_{f}^{2}(\sqrt{\delta}) \tag{7}
\end{equation*}
$$

where C is an absolute positive constant.

Theorem 2. Let $\varphi \in C[0,1]$ be bijection function. For any $f \in C[0,1]$, the polynomials $B_{n, \varphi} f$ converge uniformly to $f \circ \varphi$ on $[0,1]$ as $n \rightarrow \infty$.

Proof. Since $\sum_{k=0}^{n}\binom{n}{k} \varphi^{k}(x)(1-\varphi(x))^{n-k}=1$, from definition (4) of $B_{n, \varphi}(f ; x)$, we have

$$
\begin{equation*}
B_{n, \varphi}\left(e_{0}(\cdot) ; x\right)=1 \tag{8}
\end{equation*}
$$

Now, consider the case where f is the identity function $f=e_{1}: t \rightarrow t$; thus,

$$
\begin{align*}
B_{n, \varphi}\left(e_{1}(.) ; x\right) & =\sum_{k=0}^{n} \frac{k}{n}\binom{n}{k} \varphi^{k}(x)(1-\varphi(x))^{n-k} \tag{9}\\
& =\sum_{k=1}^{n} \frac{(n-1)!}{(k-1)!(n-k)!} \varphi^{k}(x)(1-\varphi(x))^{n-k} \\
& =\varphi(x) \sum_{k=0}^{n-1}\binom{n-1}{k} \varphi^{k}(x)(1-\varphi(x))^{n-k-1}
\end{align*}
$$

so we obtain

$$
\begin{equation*}
B_{n, \varphi}\left(e_{1}(\cdot) ; x\right)=\varphi(x) \tag{10}
\end{equation*}
$$

Next, take $f=e_{2}: t \rightarrow t^{2}$ and from (9) find

$$
\begin{aligned}
B_{n, \varphi}\left(e_{2}(\cdot) ; x\right)= & \varphi(x) \sum_{k=0}^{n-1} \frac{k+1}{n}\binom{n-1}{k} \varphi^{k}(x)(1-\varphi(x))^{n-k-1} \\
= & \frac{\varphi(x)}{n} \sum_{k=0}^{n-1}\binom{n-1}{k} \varphi^{k}(x)(1-\varphi(x))^{n-k-1} \\
& +\varphi(x) \sum_{k=0}^{n-1} \frac{k}{n}\binom{n-1}{k} \varphi^{k}(x)(1-\varphi(x))^{n-k-1} \\
= & \frac{\varphi(x)}{n}+\left(1-\frac{1}{n}\right) \varphi(x) \sum_{k=1}^{n-1} \frac{(n-2)!}{(k-1)!(n-1-k)!} \\
= & \frac{\varphi(x)}{n}+\left(1-\frac{1}{n}\right) \varphi^{2}(x) \sum_{k=0}^{n-2}\binom{n-2}{k} \varphi^{k}(x)(1-\varphi(x))^{n-k-1}(1-\varphi(x))^{n-k-2} \\
= & \frac{\varphi(x)}{n}+\left(1-\frac{1}{n}\right) \varphi^{2}(x)
\end{aligned}
$$

so we obtain

$$
\begin{equation*}
B_{n, \varphi}\left(e_{2}(\cdot) ; x\right)=\varphi^{2}(x)+\frac{\varphi(x)-\varphi^{2}(x)}{n} \tag{11}
\end{equation*}
$$

The proof of uniform convergence is then completed by applying the Korovkintype Theorem 1.

Example 1. For $n=10,25,50,100$ and $\varphi(x)=\sqrt{x}$, the convergence of $B_{n, \varphi}(f ; x)$ (dot line) to $f(\varphi(x))=\cos (4 \pi \sqrt{x})$ (solid line) will be illustrated in the following Figure 1.

Figure 1. Convergence of $B_{n, \varphi}(f ; x)$ to $f(\varphi(x))$.
Example 2. For $n=10,25,50,100$ and $\varphi(x)=x^{5}$, the convergence of $B_{n}(f \circ \varphi ; x)$ (dash dot line) and $B_{n, \varphi}(f ; x)$ (dot line) to $f(\varphi(x))=$ $\sin \left(2 \pi x^{5}\right)$ (solid line) will be illustrated in the following Figure 2.

Figure 2. Comparation of Bernstein and generalized Bernstein operators for $n=10,25,50,100$.

From figure 2, we can see that the generalized Bernstein operator approximation is better than the classical Bernstein operator.

Theorem 3. Let $\varphi \in C[0,1]$ be bijection function. For any $f \in C[0,1]$,

$$
\left|B_{n, \varphi}(f ; x)-f(\varphi(x))\right| \leq\left(\sqrt{C_{\varphi}}+1\right) \omega_{f}\left(\frac{1}{\sqrt{n}}\right)
$$

where $C_{\varphi}=\max _{0 \leq x \leq 1}\left\{\varphi(x)-\varphi^{2}(x)\right\}$ and $\omega_{f}(\cdot)$ is the modulus of continuity as given in (6).

Proof. Using the relation $\sum_{k=0}^{n}\binom{n}{k} \varphi^{k}(x)(1-\varphi(x))^{n-k}=1$ we can express the difference between $B_{n, \varphi}(f ; x)$ and $f(\varphi(x))$ as follow:

$$
B_{n, \varphi}(f ; x)-f(\varphi(x))=\sum_{k=0}^{n}\left\{f\left(\frac{k}{n}\right)-f(\varphi(x))\right\}\binom{n}{k} \varphi^{k}(x)(1-\varphi(x))^{n-k}
$$

and so

$$
\left|B_{n, \varphi}(f ; x)-f(\varphi(x))\right| \leq \sum_{k=0}^{n}\left|f\left(\frac{k}{n}\right)-f(\varphi(x))\right|\binom{n}{k} \varphi^{k}(x)(1-\varphi(x))^{n-k}
$$

Letting $y=\frac{k}{n}$ and $|y-\varphi(x)|=\mu \delta$, we have $|f(y)-f(\varphi(x))| \leq \omega_{f}(\mu \delta) \leq$ $(1+\mu) \omega_{f}(\delta)$. Thus,

$$
\left|f\left(\frac{k}{n}\right)-f(\varphi(x))\right| \leq\left(1+\frac{\left|\frac{k}{n}-\varphi(x)\right|}{\delta}\right) \omega_{f}(\delta)
$$

and hence

$$
\begin{aligned}
\left|B_{n, \varphi}(f ; x)-f(\varphi(x))\right| \leq \omega_{f}(\delta) \sum_{k=0}^{n}(1 & \left.+\frac{\left|\frac{k}{n}-\varphi(x)\right|}{\delta}\right) \\
& \times\binom{ n}{k} \varphi^{k}(x)(1-\varphi(x))^{n-k} \\
\leq & \omega_{f}(\delta)\left\{1+\frac{1}{\delta}\left[\sum_{k=0}^{n}\left(\frac{k}{n}-\varphi(x)\right)^{2}\binom{n}{k} \varphi^{k}(x)(1-\varphi(x))^{n-k}\right]^{1 / 2}\right\}
\end{aligned}
$$

where we have invoked the Cauchy-Schwartz inequality. Expanding the squared term and making use of (8), (10) and (11), we obtain

$$
\begin{array}{r}
\left|B_{n, \varphi}(f ; x)-f(\varphi(x))\right| \leq \omega_{f}(\delta)\left\{1+\frac{1}{\delta}\left[\frac{\varphi(x)-\varphi^{2}(x)}{n}\right]^{1 / 2}\right\} \tag{12}\\
\quad \leq \omega_{f}(\delta)\left\{1+\frac{1}{\delta}\left(\frac{\max _{0 \leq x \leq 1}\left\{\varphi(x)-\varphi^{2}(x)\right\}}{n}\right)^{1 / 2}\right\}
\end{array}
$$

Therefore, by choosing $\delta=\frac{1}{\sqrt{n}}$ in (12), we get the desired result.
Remark 3. It is observed that from above theorem that if $\varphi \in C^{1}[0,1]$ and $\varphi^{\prime}(x) \neq 0$ for $x \in(0,1)$, we get $C_{\varphi}=\frac{1}{4}$. For example, If we take $\varphi(x)=x$, we obtain the rate of convergence for the classical Bernstein polynomials.

Theorem 4. Let $f \in C[0,1]$, then we have

$$
\left|B_{n, \varphi}(f ; x)-f(\varphi(x))\right| \leq 2 C \omega_{f}^{2}\left(\frac{1}{2} \sqrt{\frac{\varphi(x)-\varphi^{2}(x)}{n}}\right)
$$

where C is an absolute positive constant.

Proof. Let $g \in W^{2}$. From Taylor's expansion we write

$$
g(t)=g(\varphi(x))+g^{\prime}(\varphi(x))(t-\varphi(x))+\int_{\varphi(x)}^{t}(t-u) g^{\prime \prime}(u) d u
$$

we get

$$
\begin{aligned}
B_{n, \varphi}(g ; x)= & g(\varphi(x))+g^{\prime}(\varphi(x)) B_{n, \varphi}(\cdot-\varphi(x) ; x) \\
& +B_{n, \varphi}\left(\int_{0}^{t-\varphi(x)}(\cdot-\varphi(x)-u) g^{\prime \prime}(u) d u ; x\right)
\end{aligned}
$$

and from (10) we obtain

$$
\begin{equation*}
\left|B_{n, \varphi}(g ; x)-g(\varphi(x))\right| \leq \frac{1}{2}\left\|g^{\prime \prime}\right\|_{C[0,1]} B_{n, \varphi}\left((.-\varphi(x))^{2} ; x\right) \tag{13}
\end{equation*}
$$

On the other hand, from (8), (10) and (11) we have

$$
B_{n, \varphi}\left((\cdot-\varphi(x))^{2} ; x\right)=\frac{\varphi(x)-\varphi^{2}(x)}{n}
$$

Then, by (13), we get

$$
\left|B_{n, \varphi}(g ; x)-g(\varphi(x))\right| \leq \frac{1}{2} \frac{\varphi(x)-\varphi^{2}(x)}{n}\left\|g^{\prime \prime}\right\|_{C[0,1]}
$$

On the other hand, from definition (4) and (8) we have

$$
\begin{equation*}
\left|B_{n, \varphi}(f ; x)\right| \leq\|f\|_{C[0,1]} B_{n, \varphi}(1 ; x)=\|f\|_{C[0,1]} \tag{14}
\end{equation*}
$$

Now (13) and (14) imply

$$
\begin{aligned}
\left|B_{n, \varphi}(f ; x)-f(\varphi(x))\right| \leq & \left|B_{n, \varphi}(f-g ; x)-(f-g)(\varphi(x))\right| \\
& +\left|B_{n, \varphi}(g ; x)-g(\varphi(x))\right| \\
\leq & 2\left[\|f-g\|_{C[0,1]}+\frac{1}{4} \frac{\varphi(x)-\varphi^{2}(x)}{n}\left\|g^{\prime \prime}\right\|_{C[0,1]}\right] .
\end{aligned}
$$

Hence taking infimum on the right hand side over all $g \in W^{2}$ we get

$$
\left|B_{n, \varphi}(f ; x)-f(\varphi(x))\right| \leq 2 K_{f}^{2}\left(\frac{1}{4} \frac{\varphi(x)-\varphi^{2}(x)}{n}\right)
$$

and by (7), we get

$$
\left|B_{n, \varphi}(f ; x)-f(\varphi(x))\right| \leq 2 C \omega_{f}^{2}\left(\frac{1}{2} \sqrt{\frac{\varphi(x)-\varphi^{2}(x)}{n}}\right)
$$

This completes the proof of the theorem.

The following inverse theorem can be proved for the generalized Bernstein operator (4). As in the previous theorems, $\varphi(x)$ is a bijection function on $[0,1]$.

Lemma 1 (from [2] p.696). With $h, \delta \in(0,1]$, if $\omega_{f}(h) \leq K_{1}\left\{\delta^{\gamma}+(h / \delta)\right.$ $\left.\times \omega_{f}(\delta)\right\}$ for some $K_{1}>0$ and $0<\gamma<1$, then there exists a constant $K_{2}>0$ such that $\omega_{f}(h) \leq K_{2} h^{\gamma}$.

Theorem 5. For $f, \varphi^{\prime} \in C[0,1]$ and $\omega_{f}(\delta) \leq \omega_{f \circ \varphi}(\delta)$,

$$
\begin{equation*}
\left|B_{n, \varphi}(f ; x)-f(\varphi(x))\right|=O\left(n^{-\gamma}\right), \quad 0<\gamma<1 \tag{15}
\end{equation*}
$$

implies the composite function $f \circ \varphi \in \operatorname{Lip}(\gamma, C[0,1])$.
Proof. For $0<x<1$, taking the derivative of (4) with respect to x :

$$
\begin{aligned}
B_{n, \varphi}^{\prime}(f ; x) & =\sum_{k=0}^{n} f\left(\frac{k}{n}\right)\binom{n}{k} \frac{d}{d x}\left[\varphi^{k}(x)(1-\varphi(x))^{n-k}\right] \\
& =\sum_{k=0}^{n} f\left(\frac{k}{n}\right)\binom{n}{k}\left[k \varphi^{k-1}(x) \varphi^{\prime}(x)-(n-k) \varphi^{\prime}(x)(1-\varphi(x))^{n-k-1}\right] \\
& =\varphi^{\prime}(x) \sum_{k=0}^{n} f\left(\frac{k}{n}\right)\binom{n}{k}\left[k \varphi^{k-1}(x)-(n-k)(1-\varphi(x))^{n-k-1}\right] .
\end{aligned}
$$

Using properties of binomial coefficients, we write

$$
\begin{aligned}
B_{n, \varphi}^{\prime}(f ; x)= & n \varphi^{\prime}(x)\left\{\sum_{k=1}^{n} f\left(\frac{k}{n}\right)\binom{n-1}{k-1} \varphi^{k-1}(x)(1-\varphi(x))^{n-k}\right. \\
& \left.-\sum_{k=0}^{n-1} f\left(\frac{k}{n}\right)\binom{n-1}{k} \varphi^{k}(x)(1-\varphi(x))^{n-k-1}\right\} \\
= & n \varphi^{\prime}(x) \sum_{k=0}^{n-1}\left\{f\left(\frac{k+1}{n}\right)-f\left(\frac{k}{n}\right)\right\}\binom{n-1}{k} \varphi^{k}(x)(1-\varphi(x))^{n-k-1} .
\end{aligned}
$$

Upon taking absolute values of both sides and using the modulus of continuity, we obtain

$$
\begin{aligned}
&\left|B_{n, \varphi}^{\prime}(f ; x)\right| \leq n\left|\varphi^{\prime}(x)\right| \sum_{k=0}^{n-1}\left|f\left(\frac{k+1}{n}\right)-f\left(\frac{k}{n}\right)\right|\binom{n-1}{k} \\
& \times \varphi^{k}(x)(1-\varphi(x))^{n-k-1} \\
& \leq n\left|\varphi^{\prime}(x)\right| \sum_{k=0}^{n-1} \omega_{f}\left(\frac{1}{n}\right)\binom{n-1}{k} \varphi^{k}(x)(1-\varphi(x))^{n-k-1}
\end{aligned}
$$

$$
\begin{aligned}
& \leq n\left|\varphi^{\prime}(x)\right| \sum_{k=0}^{n-1}\left\{1+\frac{1}{\delta} \frac{1}{n}\right\} \omega_{f}(\delta)\binom{n-1}{k} \varphi^{k}(x)(1-\varphi(x))^{n-k-1} \\
& \leq\left|\varphi^{\prime}(x)\right| \omega_{f}(\delta)\left\{n+\frac{1}{\delta}\right\}
\end{aligned}
$$

Since $\varphi^{\prime} \in C[0,1]$, we have $\lambda=\max _{0 \leq x \leq 1}\left|\varphi^{\prime}(x)\right|$. For any fixed pair of points x, y in $[0,1]$, one obtains

$$
\begin{align*}
\left|\int_{y}^{x}\right| B_{n, \varphi}^{\prime}(f ; u)|d u| & \leq \omega_{f}(\delta)\left\{n+\frac{1}{\delta}\right\}\left|\int_{y}^{x}\right| \varphi^{\prime}(u)|d u| \tag{16}\\
& \leq \lambda \omega_{f}(\delta)\left\{n+\frac{1}{\delta}\right\}\left|\int_{y}^{x} d u\right| \\
& =\lambda\left\{n+\frac{1}{\delta}\right\} \omega_{f}(\delta)|x-y|
\end{align*}
$$

Additionally, we have the following equality

$$
\int_{y}^{x} B_{n, \varphi}^{\prime}(f ; u) d u=B_{n, \varphi}(f ; x)-B_{n, \varphi}(f ; y)
$$

therefore, any fixed pair of points x, y in $[0,1]$, using (15) and (16), we have

$$
\begin{aligned}
|f(\varphi(x))-f(\varphi(y))|= & \mid f(\varphi(x))-f(\varphi(y))-B_{n, \varphi}(f ; x)+B_{n, \varphi}(f ; y) \\
& +\int_{y}^{x} B_{n, \varphi}^{\prime}(f ; u) d u \mid \\
\leq & \left|f(\varphi(x))-B_{n, \varphi}(f ; x)\right|+\left|B_{n, \varphi}(f ; y)-f(\varphi(y))\right| \\
& +\left|\int_{y}^{x}\right| B_{n, \varphi}^{\prime}(f ; u)|d u| \\
\leq & 2 K\left[\frac{1}{n}\right]^{\gamma}+\lambda\left\{n+\frac{1}{\delta}\right\} \omega_{f}(\delta)|x-y| .
\end{aligned}
$$

or, introducing $\delta_{n}=\frac{1}{n}$,

$$
|f(\varphi(x))-f(\varphi(y))| \leq 2 K \delta_{n}^{\gamma}+\lambda\left\{\frac{1}{\delta_{n}}+\frac{1}{\delta}\right\} \omega_{f}(\delta)|x-y|
$$

The sequence δ_{n} decreases to zero as $n \rightarrow \infty$. For a fixed n, pick $\delta \in(0,1]$ such that $\delta_{n} \leq \delta<\delta_{n-1} \leq 2 \delta_{n}$, consequently we have

$$
\begin{aligned}
|f(\varphi(x))-f(\varphi(y))| & \leq 2 K \delta^{\gamma}+3 \lambda \frac{|x-y|}{\delta} \omega_{f}(\delta) \\
& \leq K_{1}\left\{\delta^{\gamma}+\frac{|x-y|}{\delta} \omega_{f \circ \varphi}(\delta)\right\}
\end{aligned}
$$

where $K_{1}=\max \{2 K, 3 \lambda\}$. Taking the maximum over all arbitrary pairs x, y in $[0,1]$ with $|x-y|=h \leq 1$, the last inequality gives

$$
\omega_{f \circ \varphi}(h) \leq K_{1}\left\{\delta^{\gamma}+\frac{h}{\delta} \omega_{f \circ \varphi}(\delta)\right\}
$$

where $0<h, \delta \leq 1$. Lemma 12 then tells us that $\omega_{f \circ \varphi}(h) \leq K_{2} h^{\gamma}$ for some constant K_{2}. This completes the proof.

Acknowledgement. The author would like to thank the referee for valuable suggestions leading to a better presentation of this paper.

References

[1] Altomare F., Campiti M., Korovkin Type Approximation Theory and its Applications, Walter de Gryter Publ., Berlin, 1994.
[2] Berens H., Lorentz G.G., Inverse theorems for Bernstein polynomials, Indiana Univ. Math. J., 21(8)(1972), 693-708.
[3] Devore R.A., Lorentz G.G., Constructive Approximation, Springer, Berlin, 1993.
[4] Dirik F., Demirci K., Korovkin type approximation theorems in B-statistical sense, Mathematical and Computer Modelling, 49(2009), 2037-2044.
[5] Guessab A., Schmeisser G., Two Korovkin-type theorems in multivariate approximation, Banach J. Math. Anal., 2(2)(2008), 121-128.
[6] Gupta V., Agrawal P.N., Inverse theorem in simultaneous approximation by Szasz-Durrmeyer operators, J. Indian Math. Soc., 63(1-4)(1997), 99-113.
[7] Heping W., Korovkin-type theorem and application, Journal of Approximation Theory, 132(2005), 258-264.
[8] Korovkin P.P., Linear Operators and Approximation Theory, Hindustan Publ. Co., Delhi, 1960.
[9] Mahmudov N.I., Korovkin-type theorems and applications, Cent. Eur. J. Math., 7(2)(2009), 348-356.
[10] Finta Z., Gupta V., Approximation by q-Durrmeyer operators, J. Appl. Math. Comput., 29(2009), 401-415.

İBrahim BüYÜKYaZICI
Department of Mathematics
Gazi University Çubuk- Ankara, Turkey
e-mail: bibrahim@gazi.edu.tr

Received on 23.10.2009 and, in revised form, on 14.04.2010.

