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Abstract. In this paper we deal with the solutions of the system
of the difference equations

xn+1 =
1

yn−k
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1. Introduction

In this paper we deal with the solutions of the system of the difference
equations

(1) xn+1 =
1

yn−k
, yn+1 =

yn−k
xnyn

,

with a nonzero real numbers initial conditions.
Difference equations appear naturally as discrete analogues and as nu-

merical solutions of differential and delay differential equations having ap-
plications in biology, ecology, economy, physics, and so on. So, recently
there has been an increasing interest in the study of qualitative analysis of
rational difference equations and systems of difference equations. Although
difference equations are very simple in form, it is extremely difficult to un-
derstand thoroughly the behaviors of their solutions. See [1]–[29] and the
references cited therein.

Cinar [1] has obtained the positive solution of the difference equation
system

xn+1 =
1

yn
, yn+1 =

yn
xn−1yn−1

.
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Also, Cinar et al. [4] has obtained the positive solution of the difference
equation system

xn+1 =
m

yn
, yn+1 =

pyn
xn−1yn−1

.

Elabbasy et al. [6] has obtained the solution of particular cases of the
following general system of difference equations

xn+1 =
a1 + a2yn

a3zn + a4xn−1zn
, yn+1 =

b1zn−1 + b2zn
b3xnyn + b4xnyn−1

,

zn+1 =
c1zn−1 + c2zn

c3xn−1yn−1 + c4xn−1yn + c5xnyn
.

Özban [9] has investigated the solutions of the following system

xn+1 =
a

yn−3
, yn+1 =

byn−3
xn−qyn−q

.

Other related work see [1]-[14].

Definition 1 (Periodicity). A sequence {xn}∞n=−k is said to be periodic
with period p if xn+p = xn for all n ≥ −k.

2. Main results

2.1. When k-even. In this section we deal with the solutions of the
system of the difference equations

(2) xn+1 =
1

yn−2r
, yn+1 =

yn−2r
xnyn

,

with a nonzero real numbers initial conditions

Theorem 1. Suppose that {xn, yn} are solutions of system (2). Also,
assume that x0, y−2r, y−2r+1, . . ., y0 are arbitrary nonzero real numbers.
Then all solutions of equation system (2) are periodic with period (4r + 2).

Proof. From Eq.(2), we see that

xn+1 =
1

yn−2r
, yn+1 =

yn−2r
xnyn

,

xn+2 =
1

yn−2r+1
, yn+2 =

yn−2r+1

xn+1yn+1
= xnynyn−2r+1,

xn+3 =
1

yn−2r+2
, yn+3 =

yn−2r+2

xn+2yn+2
=
yn−2r+2

xnyn
,

xn+4 =
1

yn−2r+3
, yn+1 =

yn−2r+3

xn+3yn+3
= xnynyn−2r+3,
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...

xn+2r−1 =
1

yn−2
, yn+2r−1 =

yn−2
xn+2r−2yn+2r−2

=
yn−2
xnyn

,

xn+2r =
1

yn−1
, yn+2r =

yn−1
xn+2r−1yn+2r−1

= xnynyn−1,

xn+2r+1 =
1

yn
, yn+2r+1 =

yn
xn+2ryn+2r

=
yn
xnyn

=
1

xn
,

xn+2r+2 =
1

yn+1
=

xnyn
yn−2r

,

yn+2r+2 =
yn+1

xn+2r+1yn+2r+1
=

yn−2r

xnyn
1

yn

1

xn

= yn−2r,

xn+2r+3 =
1

yn+2
=

1

xnynyn−2r+1
,

yn+2r+3 =
yn+2

xn+2r+2yn+2r+2
=
xnynyn−2r+1
xnyn
yn−2r

yn−2r
= yn−2r+1,

...

xn+4r =
1

yn+2r−1
=
xnyn
yn−2

,

yn+4r =
yn+2r−1

xn+4r−1yn+4r−1
=

yn−2

xnyn
1

xnyn

= yn−2,

xn+4r+1 =
1

yn+2r
=

1

xnynyn−1
,

yn+4r+1 =
yn+2r

xn+4ryn+4r
=
xnynyn−1
xnyn
yn−2

yn−2
= yn−1,

xn+4r+2 =
1

yn+2r+1
= xn,

yn+4r+2 =
yn+2r+1

xn+4r+1yn+4r+1
=

1

xn
1

xnynyn−1
yn−1

= yn.

Hence, the proof is completed. �

Proposition 1. It is easy to see that the system

xn+1 =
1

yn−2r
, yn+1 =

yn−2r
xn−pyn−p
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is periodic with period (2p+2)(2r+1) when 2p 6= r, and periodic with period
(4r + 2) when 2p = r.

2.2. When k-odd. In this section we deal with the solutions of the
system of the difference equations

(3) xn+1 =
1

yn−2r−1
, yn+1 =

yn−2r−1
xnyn

,

with a nonzero real numbers initial conditions.

Theorem 2. Suppose that {xn, yn} are solutions of system (3). Also,
assume that x0, y−2r−1, y−2r, . . ., y0, are arbitrary nonzero real numbers
and A = x0y0. Then

(i) If A = 1, the solutions of equation system (3) are periodic with period
(2r + 2).

(ii) If A 6= 1, the solutions are unbounded and given by

x(2r+2)n+s =


An

y−2r−2+s
, s− odd,

1

Any−2r−2+s
, s− even,

s = 1, 2, ..., (2r + 2),

and

y(2r+2)n+s =

{ ys
An

, s− odd,
Anys, s− even,

s = −2r − 1,−2r,−2r + 1, ..., 2, 1, 0,

where n = 0, 1, 2, ... .

Proof. (i) If A = 1, from Eq.(3), we see that

x1 =
1

y−2r−1
, y1 =

y−2r−1
x0y0

= y−2r−1,

x2 =
1

y−2r
, y2 =

y−2r
x1y1

= y−2r,

x3 =
1

y−2r+1
, y3 =

y−2r+1

x2y2
= y−2r+1,

...

x2r+1 =
1

y−1
, y2r+1 =

y−1
x2ry2r

= y−1,

x2r+2 =
1

y0
, y2r+2 =

y0
x2r+1y2r+1

= y0,

x2r+3 =
1

y1
=

1

y−2r−1
= x1, y2r+3 =

y1
x2r+2y2r+2

= y1.
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(ii) If A 6= 1. For n = 0 the result holds. Now suppose that n > 0 and
that our assumption holds for n− 1. That is;

x(2r+2)n−2r−1 =
An−1

y−2r−1
, x(2r+2)n−2r =

1

An−1y−2r
,

x(2r+2)n−2r+1 =
An−1

y−2r+1
,

...

x(2r+2)n−2 =
1

An−1y−2
, x(2r+2)n−1 =

An−1

y−1
,

x(2r+2)n =
1

An−1y0
,

and

y(2r+2)n−4r−3 =
y−2r−1
An−1 , y(2r+2)n−4r−2 = An−1y−2r,

y(2r+2)n−4r−1 =
y−2r+1

An−1 ,

...

y(2r+2)n−2r−4 = An−1y−2, y(2r+2)n−2r−3 =
y−1
An−1 ,

y(2r+2)n−2r−2 = An−1y0,

it follows from Eq.(3) that

y(2r+2)n−2r−1 =
y(2r+2)n−4r−3

x(2r+2)n−2r−2y(2r+2)n−2r−2
=

y−2r−1

An−1 1

An−2y0
An−1y0

=
y−2r−1
An

,

x(2r+2)n+1 =
1

y(2r+2)n−2r−1
=

An

y−2r−1
,

y(2r+2)n−2r =
y(2r+2)n−4r−2

x(2r+2)n−2r−1y(2r+2)n−2r−1
=

An−1y−2r

An−1

y−2r−1

y−2r−1
An

= Any−2r,

x(2r+2)n+2 =
1

y(2r+2)n−2r
=

1

Any−2r
,
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y(2r+2)n−2r+1 =
y(2r+2)n−4r−1

x(2r+2)n−2ry(2r+2)n−2r
=

y−2r+1

An−1 1

An−1y−2r
Any−2r

=
y−2r+1

An
,

x(2r+2)n+3 =
1

y(2r+2)n−2r+1
=

An

y−2r+1
,

...

x(2r+2)n+2r =
1

y(2r+2)n−2
=

1

Any−2
,

y(2r+2)n−2 =
y(2r+2)n−2r−4

x(2r+2)n−3y(2r+2)n−3
=

An−1y−2

An−1

y−3

y−3
An

= Any−2,

x(2r+2)n+2r+1 =
1

y(2r+2)n−1
=
An

y−1
,

y(2r+2)n−1 =
y(2r+2)n−2r−3

x(2r+2)n−2y(2r+2)n−2
=

y−1

An−1 1

An−1y−2
Any−2

=
y−1
An

,

x(2r+2)n+2r+2 =
1

y(2r+2)n
=

1

Any0
,

y(2r+2)n =
y(2r+2)n−2r−2

x(2r+2)n−1y(2r+2)n−1
=

An−1y0

An−1

y−1

y−1
An

= Any0.

Hence, the proof is completed. �

Proposition 2. It is easy to see that for the following system

xn+1 =
1

yn−2r−1
, yn+1 =

yn−2r−1
xn−1yn−1

.

(i) If A = B = 1, the solutions are periodic with period (2r + 2).
(ii) If A or B 6= 1, the solutions are unbounded and given by

x(2r+2)n+s =


Bn sin( sπ

2
)

y−2r−2+s
, s− odd,

An cos(
(s+2)π

2
)

y−2r−2+s
, s− even,

s = 1, 2, ..., (2r + 2),
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and

y(2r+2)n+s =


ys

Bn sin( sπ
2
)
, s− odd,

ys

An cos(
(s+2)π

2
)
, s− even,

s = −2r−1,−2r,−2r+1, ..., 2, 1, 0,

where n = 0, 1, 2, ... and A = x0y0, B = x−1y−1.

3. Numerical examples

In order to illustrate the results of the previous sections and to support
our theoretical discussions, we consider several interesting numerical exam-
ples in this section. These examples represent different types of qualitative
behavior of solutions to nonlinear difference equations.

Example 1. Consider the following difference system equation:

xn+1 =
1

yn−2
, yn+1 =

yn−2
xnyn

,

with the initial conditions y−2 = 0.8, y−1 = 4.2, y0 = 9, x0 = 0.7. This solu-
tion is a period six solution and will be {xn} = {0.7, 1.25, 0.238, 0.111, 7.875,
0.037, 0.7, 1.25, ...}, {yn} = {0.8, 4.2, 9, 0.127, 26.46, 1.428, 0.8, 4.2, ...}. (See
Fig. 1).

Figure 1.

Example 2. Consider the following difference system equation:

xn+1 =
1

yn−2
, yn+1 =

yn−2
xn−1yn−1

,

with the initial conditions y−2 = 8, y−1 = 0.19, y0 = 5, x−1 = 3, x0 = 6.
Also, this solution is periodic with period twelve and takes the form {xn} =



32 Elsayed M. Elsayed

{3, 6, 0.125, 5.26, 0.2, 0.07, 157.9, 0.35, 0.0023, 90, 10.5, 4.16E−3, 3, 6, ...}, {yn}
= {8, 0.19, 5, 14, 6.33E − 3, 2.85, 421, 1.11E − 2, 9.5E − 02, 240, 0.33, 0.16, 8,
0.19, 5, ...}. (See Fig. 2).

Figure 2.

Example 3. Consider the difference system equation

xn+1 =
1

yn−4
, yn+1 =

yn−4
xn−1yn−1

,

with the initial conditions y−4 = 2.7, y−3 = 0.3, y−2 = 0.5, y−1 = 6, y0 = 5,
x−1 = 0.8, x0 = 0.2. The solution is periodic with period ten. (See Fig. 3).

Figure 3.

Example 4. Consider the following difference system equation:

xn+1 =
1

yn−3
, yn+1 =

yn−3
xnyn

,
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with the initial conditions y−3 = 0.6, y−2 = 0.7, y−1 = 4.3, y0 = 2.5,
x0 = 0.4. We see that this solution is periodic with period four. (See
Fig. 4).

Figure 4.

Example 5. Consider the following difference system equation:

xn+1 =
1

yn−3
, yn+1 =

yn−3
xnyn

,

with the initial conditions y−3 = 7, y−2 = 1.1, y−1 = 0.2, y0 = 4, x0 = 0.4.
Unbounded solution in this case. (See Fig. 5).

Figure 5.

Example 6. Consider the following difference system equation:

xn+1 =
1

yn−3
, yn+1 =

yn−3
xn−1yn−1

,

with the initial conditions y−3 = 7, y−2 = 1.1, y−1 = 0.2, y0 = 4, x−1 = 8,
x0 = 0.4. Also, this is unbounded solution. (See Fig. 6).
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Figure 6.

Example 7. Consider the following difference system equation:

xn+1 =
1

yn−3
, yn+1 =

yn−3
xn−1yn−1

,

with the initial conditions y−3 = 7, y−2 = 1.1, y−1 = 0.2, y0 = 4, x−1 =
5, x0 = 0.25. This solution is periodic with period four. (See Fig. 7).

Figure 7.
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