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ON THE SOLUTIONS OF THE RECURSIVE SEQUENCE

xn+1 =
axn−(2k+1)

−a+xn−kxn−(2k+1)

Abstract. In this paper we study the solutions of the difference
equation

xn+1 =
axn−(2k+1)

−a+ xn−kxn−(2k+1)
for n = 0, 1, 2, ...

where a, x−(2k+1), x−(2k), x−(2k−1), . . ., x0 are the real numbers
such that x0x−(k+1) 6= a, x−1x−(k+2) 6= a, x−2x−(k+3) 6= a, . . .,
x−kx−(2k+1) 6= a and k is a natural number.
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1. Introduction

Difference equations have played an important role in analysis of mathe-
matical models of biology, physics and engineering. Many researchers have
investigated the behavior of the solution of rational difference equations. For
example see Refs. [1-15].

Aloqeili [12] studied the solutions of the difference equation

xn+1 =
xn−1

a− xn−1xn

and gave the following formula

xn =


x0

n
2∏

i=1

a2i−1(1−a)−(1−a2i−1)x−1x0

a2i(1−a)−(1−a2i)x−1x0
, n even,

x−1

n+1
2∏

i=0

a2i−1(1−a)−(1−a2i)x−1x0

a2i+1(1−a)−(1−a2i+1)x−1x0
, n odd.

Andruch et al. [1] studied the asymtotic behavior of solutions of the
difference equation

xn+1 =
axn−1

b+ cxnxn−1
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and gave the following formula

xn =



x−1

n+1
2 −1∏
i=0

[
p2i+x0x−1

2i−1∑
k=0

pk

]
n+1
2 −1∏
i=0

[
p2i+1+x0x−1

2i∑
k=0

pk
] , n odd,

x0

n
2 −1∏
i=0

[
p2i+1+x0x−1

2i∑
k=0

pk
]

n
2 −1∏
i=0

[
p2i+2+x0x−1

2i+1∑
k=0

pk

] , n even.

Cinar [3] investigated the global asymptotic stability of all positive solu-
tions of the rational difference equation

xn+1 =
axn−1

1 + bxnxn−1
.

Also, Cinar [4] investigated the positive solutions of the rational difference
equation

xn+1 =
axn−1

−1 + bxnxn−1
.

Yalçınkaya [10] investigated the global behaviour of the rational difference
equation

xn+1 = α+
xn−m
xkn

.

El-Owaidy et al. [9] studied the dynamics of the recurcive sequence

xn+1 =
αxn−1

β + γxpn−2
.

Battaloğlu et al. [13] discussed the global asymptotic behavior and peri-
odicity character of the following difference equation

xn+1 =
αxn−k

β + γxpn−(k+1)

by generalizing the results due to El-Owaidy et al.
Hamza et al. [2] studied the asymptotic stability of the nonnegative equi-

librium point of the difference equation

xn+1 =
Axn−1

B + C
k∏
i=l

xn−2i

.

Gibbons et al. [6] investigated the global asymptotic behavior of the dif-
ference equation

xn+1 =
α+ βxn−1
α+ xn

.
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Our aim in this paper is to investigate the solutions of the difference
equation

(1) xn+1 =
axn−(2k+1)

−a+ xn−kxn−(2k+1)
for n = 0, 1, 2, . . .

where

a, x−(2k+1), x−(2k), x−(2k−1), ..., x0 are the real numbers such that(2)

x0x−(k+1) 6= a, x−1x−(k+2) 6= a, x−2x−(k+3) 6= a, ..., x−kx−(2k+1) 6= a

and k is a natural number.
Similar to the references in this paper, we define Eq.(1) with (2) and

investigate the solutions of this difference equation.
Let I be an interval of real numbers and let f : Ik+1 → I be a continuously

differentiable function. Then for every set of initial conditions x−k, x−(k+1),
. . ., x0 ∈ I, the difference equation

(3) xn+1 = f (xn, xn−1, ..., xn−k) , n = 0, 1, . . .

has a unique solution {xn}∞n=−k.

Definition 1 (Periodicity). A sequence {xn}∞n=−k of Eq.(3) is said to be
periodic with period p if xn+p = xn for all n ≥ −k.

2. Main results

Theorem 1. Assume that (2) holds and let {xn}∞n=−(2k+1) be a solution
of Eq.(1). Then for n = 0, 1, . . . all solutions of Eq.(1) are

x2(k+1)n+i =



an+1x−(2k+2−i)

(−a+x−(k+1−i)x−(2k+2−i))
n+1 ,

i = 1, 2, . . . , k + 1,
1

an+1x−(2k+2−i)

×
(
−a+ x−(2k+2−i)x−(3k+3−i)

)n+1
,

i = k + 2, ..., 2k + 2,

(4)

Proof. For n = 0, the result holds. Now suppose that n > 0 and that
our assumption holds for (n− 1). That is

(5) x2(k+1)n−(2k+2−i) =



anx−(2k+2−i)

(−a+x−(k+1−i)x−(2k+2−i))
n ,

i = 1, 2, ..., k + 1
1
anx−(2k+2−i)

×
(
−a+ x−(2k+2−i)x−(3k+3−i)

)n
,

i = k + 2, . . . , 2k + 2
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Now, it follows from Eq.(1) and Eq.(2) that

x2(k+1)n+1 =
ax2(k+1)n−(2k+1)

−a+ x2(k+1)n−kx2(k+1)n−(2k+1)

=
a

anx−(2k+1)

(−a+x−kx−(2k+1))
n

−a+ 1
anx−k(−a+ x−kx−(2k+1))n

anx−(2k+1)

(−a+x−kx−(2k+1))
n

=

an+1x−(2k+1)

(−a+x−kx−(2k+1))
n

−a+ x−kx−(2k+1)
.

Hence, we have

x2(k+1)n+1 =
an+1x−(2k+1)

(−a+ x−kx−(2k+1))n+1
.

Similarly

x2(k+1)n+k+2 =
ax(2k+1)n−k

−a+ x(2k+1)n+1x(2k+1)n−k

=
a 1
anx−k(−a+ x−kx−(2k+1))

n

−a+
an+1x−(2k+1)

(−a+x−kx−(2k+1))
n+1 · 1

anx−k(−a+ x−kx−(2k+1))n

=

ax−k(−a+x−kx−(2k+1))
n

an

−a+
ax−(2k+1)x−k

(−a+x−kx−(2k+1))

=

ax−k(−a+x−kx−(2k+1))
n

an

a2

(−a+x−kx−(2k+1))

.

Hence, we have

x2(k+1)n+k+2 =
1

an+1
x−k(−a+ x−kx−(2k+1))

n+1.

Similarly, the other cases can be obtained. Thus, the proof is com-
pleted. �

Theorem 2. Assume that x0x−(k+1) = x−1x−(k+2) = . . . = x−kx−(2k+1) =
2a. Then every solution of Eq.(1) is periodic with period (2k + 2).

Proof. From assumption and Theorem 1, we have

x2(k+1)n+1 = x−(2k+1),

x2(k+1)n+2 = x−(2k),

...
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x2(k+1)n+k+1 = x−(k+1),

x2(k+1)n+k+2 = x−k,

x2(k+1)n+k+3 = x−(k−1),

...

x2(k+1)n+2(k+1) = x0.

It is obvious that every solution of Eq.(1) is periodic with period (2k +
2). �

Corollary 1. Let {xn}∞n=−(2k+1) be a solution of Eq.(1). Assume that

a, x−(2k+1), x−(2k), x−(2k−1), ..., x0 > 0

and

x0x−(k+1) > a, x−1x−(k+2) > a, ..., x−kx−(2k+1) > a.

Then all solutions of Eq.(1) are positive.

Proof. From the Eq.(2) all solutions of Eq.(1) are positive. �

Corollary 2. Let {xn}∞n=−(2k+1) be a solution of Eq.(1). Assume that

a > 0, x−(2k+1), x−(2k), x−(2k−1), ..., x0 < 0

and

x0x−(k+1) > a, x−1x−(k+2) > a, ..., x−kx−(2k+1) > a.

Then all solutions of Eq.(1) are negative.

Proof. From the Eq.(2) all solutions of Eq.(1) are negative. �

Corollary 3. Let {xn}∞n=−(2k+1) be a solution of Eq.(1). Assume that

a = 1, x−(2k+1), x−(2k), ..., x0 > 0

and

x0x−(k+1) > 2, x−1x−(k+2) > 2, ..., x−kx−(2k+1) > 2.

Then

lim
n→∞

x2(k+1)n+i = 0 (i = 1, 2, ..., k + 1) .

lim
n→∞

x2(k+1)n+i =∞ (i = k + 2, k + 3, ..., 2k + 2) .
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Proof. Let
x−(2k+1), x−(2k), x−(2k−1), ..., x0 > 0

and
x0x−(k+1) > 2, x−1x−(k+2) > 2, ..., x−kx−(2k+1) > 2.

Then

x0x−(k+1) − 1 > 1, x−1x−(k+2) − 1 > 1, ..., x−kx−(2k+1) − 1 > 1.

From the Eq.(2), we have

lim
n→∞

x2(k+1)n+1 = lim
n→∞

x−(2k+1)

(−1 + x−kx−(2k+1))n+1
= 0,

lim
n→∞

x2(k+1)n+2 = lim
n→∞

x−(2k)

(−1 + x−(k−1)x−(2k))n+1
= 0,

. . .

lim
n→∞

x2(k+1)n+k+1 = lim
n→∞

x−(k+1)

(−1 + x0x−(k+1))n+1
= 0,

lim
n→∞

x2(k+1)n+k+2 = lim
n→∞

x−k(−1 + x−kx−(2k+1))
n+1 =∞,

lim
n→∞

x2(k+1)n+k+3 = lim
n→∞

x−(k−1)(−1 + x−(k−1)x−(2k))
n+1 =∞,

. . .

lim
n→∞

x2(k+1)n+2(k+1) = lim
n→∞

x0(−1 + x0x−(k+1))
n+1 =∞

The proof is completed. �

Corollary 4. Let {xn}∞n=−(2k+1) be a solution of Eq.(1). Assume that

a = 1, x−(2k+1), x−(2k), x−(2k−1), ..., x0 < 0

and
x0x−(k+1) > 2, x−1x−(k+2) > 2, ..., x−kx−(2k+1) > 2.

Then

lim
n→∞

x2(k+1)n+i = 0 (i = 1, 2, ..., k + 1) .

lim
n→∞

x2(k+1)n+i = −∞ (i = k + 2, k + 3, ..., 2k + 2) .

Proof. The proof is similar to Corollary 3. �
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3. Numerical results

Example 1. Let xn+1 =
axn−(2k+1)

−a+xn−kxn−(2k+1)
, n = 0, 1, , ..., 7 and k = 1,

a = 1, x−3 = 0.2, x−2 = 1, x−1 = 10, x0 = 2. Then we have the following
results from Theorem 2:

n xn n xn
1 0, 2 5 0, 2
2 1 6 1
3 10 7 10
4 2 8 2

Example 2. Let xn+1 =
axn−(2k+1)

−a+xn−kxn−(2k+1)
, n = 0, 1, ..., 99 and k = 2,

a = 3, x−5 = 5, x−4 = 4, x−3 = 2, x−2 = 3, x−1 = 1, x0 = 2. Then we have
the following results from Corollary 1:

n xn n xn
1 1, 25 50 78732, 00057
2 12 67 2, 980232242.10−7

6 0, 666666666 88 3, 221225448.109

10 47, 99999994 100 5, 153960670.1010

Example 3. Let xn+1 =
axn−(2k+1)

−a+xn−kxn−(2k+1)
, n = 0, 1, ..., 99 and k = 2,

a = 2, x−5 = −1, x−4 = −2.5, x−3 = −1.5, x−2 = −3, x−1 = −1, x0 = −2.
Then we have the following results from Corollary 2:

n xn n xn
1 −2 50 −6, 55360.105

2 −10 51 −768
10 −0, 75 98 −4, 294967234.1010

11 −0, 0625 100 −0, 00002288818376

Example 4. Let xn+1 =
axn−(2k+1)

−a+xn−kxn−(2k+1)
, n = 0, 1, ..., 99 and k = 1,

a = 1, x−3 = 10, x−2 = 11, x−1 = 0.3, x0 = 0.2. Then we have the following
results from Corollary 3:

n xn n xn
1 5 51 2457, 6
13 0, 625 71 78643, 2
25 0, 078125 87 1, 258291210.106

37 0, 009765625 99 1, 006632974.107
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Example 5. Let xn+1 =
axn−(2k+1)

−a+xn−kxn−(2k+1)
, n = 0, 1, ..., 99 and k = 1,

a = 1, x−3 = −15, x−2 = 1− 12, x−1 = −0.4, x0 = −0.3. Then we have the
following results from Corollary 4:

n xn n xn
1 −3 51 −4, 88281250.108

13 −0, 024 71 −1, 525878906.1012

25 −0, 000192 87 −9, 536743160.1014

37 −0, 000001536 99 −1, 192092895.1017
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