$\frac{F A S C I C U L I M A T H E M A T I C I}{Nr 45}$

FATHI H. KHEDR AND KHALAF M. ABDELHAKIEM

OPERATIONS ON BITOPOLOGICAL SPACES

ABSTRACT. In 1979, Kasahara [8], introduced the concept of operations on topological spaces. Further investigations of this concept are given in [7,15]. Operations on bitopological spaces were discussed in some manner in [1,10]. In this paper we use a different technique of that in [1,10] to study the concepts of operations on bitopological spaces by generalizing the results obtained in [8,15] to such spaces.

KEY WORDS: bitopological spaces, operation, filterbase, compact and (γ, β) -continuous.

AMS Mathematics Subject Classification: 54C05, 54C08, 54C55, 54D10, 54D20.

1. Introduction

The aim of this paper is to study the concept of operations on bitopological spaces. In Section 2, we introduce the concept of a family $\tau_{i\gamma}$ of all γ_i -open sets by using the operation γ on a bitopological space (X, τ_1, τ_2) . Also we introduce the concepts of γ_i -closure and $\tau_{i\gamma}$ -closure and discuss the relation between them. In Section 3, we introduce the notion of pairwise $\gamma - T_{\frac{1}{2}}$ -spaces and we characterize them by the notion of γ_i -closed or γ_i -open sets. Section 4 is devoted to the study of $(\gamma, \beta)_i$ -continuity of mappings. The concepts of γ_i -convergence and γ_i -accumulation of filters are discussed in Section 5. Finally, in section 6, we study γ_i -compactness of bitopological spaces

Throughout the paper, (X, τ_1, τ_2) and (Y, σ_1, σ_2) (or briefly, X and Y) always mean bitopological spaces on which no separation axioms are assumed unless explicitly stated. Let A be a subset of X, by *i*-int(A) and *i*-cl(A) we denote respectively the interior and the closure of A with respect to τ_i (or σ_i) for i = 1, 2. By *id* we mean the identity and nbd is the abbreviation of neighborhood. Also $X \setminus A = A^c$, is the complement of A in X.

2. Operations

Definition 1. Let (X, τ_1, τ_2) be a bitopological space. An operation γ on $\tau_1 \cup \tau_2$ is a mapping $\gamma : \tau_1 \cup \tau_2 \to P(X)$ such that $V \subset V^{\gamma}$ for each $V \in \tau_1 \cup \tau_2$, where V^{γ} denotes the value of γ at V. The operators $\gamma(V) = V$, $\gamma(V) = j - cl(V)$ and $\gamma(V) = i - int(j - cl(V))$ for $V \in \tau_i$ are operations on $\tau_1 \cup \tau_2$.

Definition 2. A subset A of a bitopological space (X, τ_1, τ_2) will be called a γ_i -open set if for each $x \in A$ there exists a τ_i -open set U such that $x \in U$ and $U^{\gamma} \subset A$. $\tau_{i\gamma}$ will denote the set of all γ_i -open sets. Clearly we have $\tau_{i\gamma} \subset \tau_i$. A subset B of X is said to be γ_i -closed if $X \setminus B$ is γ_i -open in X.

If $\gamma(U) = U$ (resp. j - cl(U) and j - cl(i - int(U)) for each $U \in \tau_i$ then, the concept of γ_i -open sets coincides with the concept of τ_i -open (resp. $ij - \theta$ -open [2] and $ij - \delta$ -open [2]) sets.

Definition 3. An operation γ on $\tau_1 \cup \tau_2$ in (X, τ_1, τ_2) is said to be i-regular if for every pair U, V of τ_i -open nbds of each point $x \in X$, there exists a τ_i -open nbd W of x such that $W^{\gamma} \subset U^{\gamma} \subset V^{\gamma}$.

Definition 4. Let γ, μ be two operations on $\tau_1 \cup \tau_2$ in (X, τ_1, τ_2) . Then (X, τ_1, τ_2) is called $(\gamma, \mu)_i$ -regular if for each $x \in X$ and each τ_i -open nbd V of x there exists τ_i -open set U containing x such that $U^{\gamma} \subset V^{\mu}$. If $\mu = id$ then the $(\gamma, \mu)_i$ -regular space is called γ_i -regular. If (X, τ_1, τ_2) is $(\gamma, \mu)_1$ -regular and $(\gamma, \mu)_2$ -regular then it is called pairwise (γ, μ) -regular.

If $(\gamma, \mu) = (j - cl, id)$ (resp. $(i - int^o j - cl, id)$ and $(j - cl, i - int^o j - cl)$) then pairwise (γ, μ) -regularity is coincide with pairwise regularity [9] (resp. pairwise semi regularity [18] and pairwise almost regularity [19]) (where $(i - int^o j - cl)(V) = i - int(j - cl)V)$). In the rest of this paper, instead of " γ operation on $\tau_1 \cup \tau_2$ in (X, τ_1, τ_2) " we shall say γ operation on (X, τ_1, τ_2) ".

Proposition 1. Let γ be an operation on a bitopological space (X, τ_1, τ_2) . Then (X, τ_1, τ_2) is a γ_i -regular space if and only if $\tau_i = \tau_{i\gamma}$ holds.

Example 1. Let $X = \{a, b, c, d\}, \tau_1 = P(X), \tau_2 = \{X, \{a\}, \{b\}, \{d\}, \{a, b\}, \{b, d\}, \{a, d\}, \{a, b, d\}\}$ and let γ be an operation on (X, τ_1, τ_2) defined by $\gamma(A) = j - cl(A)$ for $A \in \tau_i$. Then $\tau_{1\gamma} = \{X, \varphi, \{c\}, \{a, c\}, \{b, c\}, \{c, d\}, \{a, b, c\}, \{a, c, d\}, \{b, c, d\}\}$. Clearly, $\tau_{1\gamma} \subsetneqq \tau_1$ We can see that (X, τ_1, τ_2) is not γ_1 -regular.

Example 2. Let $X = \{a, b, c, d\}$, $\tau_1 = \{X, \phi, \{b\}, \{c, d\}, \{b, c, d\}\}$, $\tau_2 = \{X, \phi\{a\}, \{b\}, \{a, b\}, \{a, c, d\}\}$ and let γ be an operation on (X, τ_1, τ_2) defined by $\gamma(A) = j - cl(A)$ for $A \in \tau_i$. Then $\tau_1 = \tau_{1\gamma}$. We can see that (X, τ_1, τ_2) is γ_1 -regular.

Definition 5. An operation γ on (X, τ_1, τ_2) is said to be *i*-open if for every τ_i -open nbd U of each $x \in X$, there exists a γ_i -open set S such that $x \in S$ and $S \subset U^{\gamma}$.

By [15 Example 2.7] there is an operation γ on a bitopological space (X, τ_1, τ_2) which is *i*-regular but not *i*-open and an operation δ which is *i*-regular and *i*-open. Also, by [16 Example 2.8] there is an operation γ which is *i*-open but not *i*-regular.

Proposition 2. Let γ be an *i*-regular operation on a bitopological space (X, τ_1, τ_2)

(i) If A and B are γ_i -open sets of X, then $A \cap B$ is γ_i -open.

(ii) $\tau_{i\gamma}$ is a topology on X.

Remark 1. If γ is not *i*-regular, then the above proposition is not true in general. By [15 Example 2.8] there is an operation γ on a bitopological space (X, τ_1, τ_2) which is not *i*-regular and $\tau_{i\gamma}$ is not a topology on X.

Definition 6. Let γ be an operation on a bitopological space (X, τ_1, τ_2) . A point $x \in X$ is in the γ_i -closure of a set $A \subset X$ if $U^{\gamma} \cap A \neq \phi$ for each τ_i -open nbd U of x. The γ_i -closure of the set A is denoted by $cl_{i\gamma}$. A subset A of X is said to be γ_i -closed (in the sense $ofcl_{i\gamma}(A)$) if $cl_{i\gamma}(A) \subset A$.

If $\gamma = id(\text{resp. } j - cl \text{ and } i - int^{o}j - cl)$ then the γ_i -closure coincide with the *i*-closure (resp. $ij - \theta$ -closure and $ij - \delta$ -closure [5]).

Definition 7. Let $A \subset (X, \tau_1, \tau_2)$. For the family $\tau_{i\gamma}$, we define a set $\tau_{i\gamma} - cl(A)$ as follows:

$$\tau_{i\gamma} - cl(A) = \cap \{F : A \subset F, X \setminus F \in \tau_{i\gamma}\}$$

Proposition 3. For a point $x \in X$, $x \in \tau_{i\gamma} - cl(A)$ iff $V \cap A \neq \phi$ for any $V \in \tau_{i\gamma}$ such that $x \in V$.

Remark 2. It is easily shown that for any subset A of $(X, \tau_1, \tau_2) A \subset \tau_i - cl(A) \subset cl_{i\gamma}(A) \subset \tau_{i\gamma} - cl(A)$.

Remark 3. Generally $\tau_{i\gamma} - cl(A) \not\subseteq cl_{i\gamma}(A)$ (see [15 Remark 3.5]).

Theorem 1. Let γ be an operation on a bitopological space (X, τ_1, τ_2) , then

- (i) $cl_{i\gamma}(A)$ is τ_i -closed in (X, τ_1, τ_2) .
- (ii) If (X, τ_1, τ_2) is γ_i -regular, then $cl_{i\gamma}(A) = \tau_i cl(A)$ holds.
- (iii) If γ is i-open, then $cl_{i\gamma}(A) = \tau_{i\gamma} cl(A)$ and $cl_{i\gamma}(cl_{i\gamma}(A)) = cl_{i\gamma}(A)$ hold and $cl_{i\gamma}(A)$ is γ_i -closed (in the sense of Definition 6).

Theorem 2. Let γ be an operation on a bitopological space (X, τ_1, τ_2) and $A \subset X$, the following are equivalent

(a) A is γ_i -open in (X, τ_1, τ_2) .

(b) $cl_{i\gamma}(X \setminus A) = X \setminus A$ (i.e., $X \setminus A$ is γ_i -closed in the sense of Definition 6). (c) $\tau_{i\gamma} - cl(X \setminus A) = X \setminus A$.

(d) X\A is γ_i -closed (in the sense of Definition 7) in (X, τ_1, τ_2)

Remark 4. By [15 Remark 3.9] there exists an operation γ which is not *i*-open such that $cl_{i\gamma}(cl_{i\gamma}(A)) \neq cl_{i\gamma}(A)$.

Lemma 1. If γ is an *i*-regular operation on (X, τ_1, τ_2) , then $cl_{i\gamma}(A \cup B) = cl_{i\gamma}(A) \cup cl_{i\gamma}(B)$, for any subsets A and B of X.

Proof. It is straight forward.

Corollary 1. If γ is an i-regular and i-open operation on (X, τ_1, τ_2) , then $cl_{i\gamma}$ satisfies the Kuratowski closure axioms.

3. Pairwise $\gamma - T_{\frac{1}{2}}$ spaces

Let γ be an operation on (X, τ_1, τ_2) .

Definition 8. A subset A of (X, τ_1, τ_2) is said to be $ij - \gamma - g$ -closed if $cl_{j\gamma}(A) \subset U$ whenever $A \subset U$ and U is γ_i -opene in (X, τ_1, τ_2) .

Clearly, it follows from definition and Theorem 2, that every γ_i -closed set is $ij - \gamma - g$ -closed. If $\gamma = id$, then the concept of $ij - \gamma - g$ -closed coincide with the concept of ij - g-closed [6]. In case $\gamma(V) = j - cl(V)$ (resp. $\gamma(V) = i - int(j - cl(V))$) an $ij - \gamma - g$ -closed set is called $ij - \theta - g - closed$ (resp. $ij - \delta - g$ -closed).

Definition 9. A bitopological space (X, τ_1, τ_2) is called an $ij - \gamma - T_{\frac{1}{2}}$ space if every $ij - \gamma - g$ -closed set in X is γ_j -closed. In case $\gamma(V) = V$, the concept of $ij - \gamma - T_{\frac{1}{2}}$ coincide with the concept of $ij - T_{\frac{1}{2}}$ [6]. In case $\gamma(V) = j - cl(V)$ (resp. $\gamma(V) = i - int(j - cl(V))$) the concept of $ij - \gamma - T_{\frac{1}{2}}$ is called $ij - \theta - T_{\frac{1}{2}}$ (resp. $ij - \delta - T_{\frac{1}{2}}$).

Proposition 4. Let γ be an operation on a bitopological space (X, τ_1, τ_2) and $A \subset X$, then

- (i) If $\tau_{i\gamma} cl(\{x\}) \cap A \neq \phi$ for every $x \in cl_{j\gamma}(A)$, then A is $ij \gamma g$ -closed in (X, τ_1, τ_2) .
- (ii) If γ is i-regular, then the converse of (i) is true.

If $\gamma = id$ in Proposition 4, then we have the following

Corollary 2 (6, Proposition 2.13(*ii*)). A is ij - g-closed if and only if $\tau_i - cl\{x\} \cap A \neq \phi$ holds for each $x \in cl_i(A)$.

Proposition 5. If $\tau_{i\gamma} - cl(\{x\}) \cap A \neq \phi$ for every $x \in cl_{j\gamma}(A)$, then $cl_{j\gamma}(A) - A$ does not contain nonempty γ_i -closed subsets.

Remark 5. Let γ be an *i*-regular operation. If A is $ij - \gamma - g$ -closed set then $cl_{j\gamma}(A) - A$ does not contain nonempty γ_i -closed subsets. In fact this is obtained by Propositions 4(ii) and 5.

Corollary 3 (6, Proposition 2.13(*i*)). If A is ij - g-closed then $\tau_j - cl(A) - A$ contains no non-empty τ_i -closed set.

Corollary 4. If A is $ij - \theta - g$ -closed then $ji - cl_{\theta}(A) - A$ contains no nonempty $ij - \theta$ -closed set.

Corollary 5. If A is $ij - \delta - g$ -closed then $ji - cl_{\delta}(A) - A$ contains no nonempty $ij - \delta$ -closed set.

Proposition 6. Let γ be an operation on a bitopological space (X, τ_1, τ_2) . For each $x \in X$, $\{x\}$ is γ_i -closed or $\{x\}^c$ is $ij - \gamma - g$ -closed in (X, τ_1, τ_2) .

Corollary 6. In a bitopological space (X, τ_1, τ_2) , for each $x \in X$, $\{x\}$ is τ_i -closed or $\{x\}^c$ is ij - g-closed.

Corollary 7. In a bitopological space (X, τ_1, τ_2) , for each $x \in X$, $\{x\}$ is $ij - \theta$ -closed or $\{x\}^c$ is $ij - \theta - g$ -closed.

Corollary 8. In a bitopological space (X, τ_1, τ_2) , for each $x \in X$, $\{x\}$ is $ij - \delta$ -closed or $\{x\}^c$ is $ij - \delta - g$ -closed.

For a *i*-regular operation γ , we give a necessary and sufficient condition for a space to be $ij - \gamma - T_{\frac{1}{2}}$.

Proposition 7. Let γ be an operation on a bitopological space (X, τ_1, τ_2)

- (i) If (X, τ_1, τ_2) is $ij \gamma T_{\frac{1}{2}}$, then for each $x \in X$, $\{x\}$ is γ_i -closed or γ_j -open.
- (ii) If γ is i-regular then the converse of (i) is true.

Corollary 9 (6, Theorem 2.15). A bitopological space (X, τ_1, τ_2) is $ij-T_{\frac{1}{2}}$ if and only if $\{x\}$ is τ_i -closed or τ_j -open for each $x \in X$.

Corollary 10. A bitopological space (X, τ_1, τ_2) is $ij - \theta - T_{\frac{1}{2}}$ if and only if $\{x\}$ is $ij - \theta$ -closed or $ji - \theta$ -open for each $x \in X$.

Corollary 11. A bitopological space (X, τ_1, τ_2) is $ij - \delta - T_{\frac{1}{2}}$ if and only if $\{x\}$ is $ij - \delta$ -closed or $ji - \delta$ -open for each $x \in X$.

4. Pairwise (γ, β) -continuous mappings

Throughout this section let (X, τ_1, τ_2) and (Y, σ_1, σ_2) be two bitopological spaces and let γ and β be operations on (X, τ_1, τ_2) and (Y, σ_1, σ_2) , respectively.

Definition 10. A mapping $f : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is said to be $(\gamma, \beta)_i$ -continuous if for each point x of X and each σ_i -open set V containing f(x), there exists a τ_i -open set U such that $x \in U$ and $f(U^{\gamma}) \subset V^{\beta}$. If f is $(\gamma, \beta)_i$ -continuous for i = 1, 2, then it is called pairwise (γ, β) -continuous.

If $(\gamma, \beta) = (id, id)$ (resp. (id, j - cl), (j - cl, id), (j - cl, j - cl), $(id, i - int^o j - cl)$, $(i - int^o j - cl, id)$, $(i - int^o j - cl, j - cl)$, $(j - cl, i - int^o j - cl)$ and $(i - int^o j - cl, i - int^o j - cl)$ then pairwise (γ, β) -continuity coincides with pairwise continuity [9] (resp. pairwise weak continuity [4], pairwise strong θ -continuity [2], pairwise θ -continuity [3], pairwise almost continuity [4], pairwise super continuity [12], pairwise weak θ -continuity [11], pairwise almost strong θ -continuity [2] and pairwise δ -continuity [2]).

Remark 6. When $\gamma = id$, $(\gamma, \beta)_i$ -continuity of f may be written β_i -continuity.

Proposition 8. Let $f : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ be a $(\gamma, \beta)_i$ -continuous mapping, then

(i) $f(cl_{i\gamma}(A)) \subset cl_{i\beta}(f(A))$ for every $A \subset X$.

(ii) for any β_i -closed set B of Y, $f^{-1}(B)$ is γ_i -closed in X, i.e., for any $U \in \sigma_{i\beta}, f^{-1}(U) \in \tau_{i\gamma}$.

Remark 7. In Proposition 8, if (Y, σ_1, σ_2) is β_i -regular, then $(\gamma, \beta)_i$ -continuity of f, (i) and (ii) are equivalent.

Remark 8. In Proposition 8, if β is an *i*-open operation, then (*i*) and (*ii*) are equivalent.

Proposition 9. Let $f : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ be an *i*-continuous mapping of a γ_i -regular space X into Y, then f is $(\gamma, id)_i$ -continuous $(f : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is *i*-continuous if $f : (X, \tau_i) \to (Y, \sigma_i)$ is continuous).

Definition 11. A mapping $f : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is said to be $(\gamma, \beta)_i$ -closed if for any γ_i -closed set A of (X, τ_1, τ_2) , f(A) is a β_i -closed set in (Y, σ_1, σ_2) .

If f is $(id, \beta)_i$ -closed, then f(F) is a β_i -closed set for any τ_i -closed set F of (X, τ_1, τ_2) . Clearly if f is bijective and $f^{-1} : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is $(\beta, id)_i$ -continuous, then f is $(id, \beta)_i$ -closed.

Proposition 10. Let $f : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ be $(\gamma, \beta)_i$ -continuous and $(id, \beta)_i$ -closed mapping, then for an $ij - \gamma - g$ -closed set A of X, f(A) is $ij - \beta - g$ -closed in Y.

Theorem 3. Suppose that $f : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is a pairwise (γ, β) -continuous and $(id, \beta)_i$ -closed injection. If Y is $ij - \beta - T\frac{1}{2}$, then X is $ij - \gamma - T\frac{1}{2}$.

Proposition 11. If γ is an i-regular operation on (X, τ_1, τ_2) , then (X, τ_1, τ_2) is $ij - \gamma - T\frac{1}{2}$ if and only if $(X, \tau_{1\gamma}, \tau_{2\gamma})$ is $ij - T\frac{1}{2}$.

Corollary 12. A bitopological space (X, τ_1, τ_2) is $ij - \theta - T\frac{1}{2}$ if and only if $(X, \tau_{1\theta}, \tau_{2\theta})$ is $ij - T\frac{1}{2}$, where $\tau_{i\theta}$ is the topology on X has the $ij - \theta$ -open sets as a base.

Corollary 13. A bitopological space (X, τ_1, τ_2) is $ij - \delta - T\frac{1}{2}$ if and only if $(X, \tau_{1\delta}, \tau_{2\delta})$ is $ij - T\frac{1}{2}$, where $\tau_{i\delta}$ is the topology on X has the $ij - \delta$ -open sets as a base.

5. γ_i -convergence and γ_i -accumulation

Definition 12. Let γ be an operation on a bitopological space (X, τ_1, τ_2) . A filterbase Φ in X is said to be γ_i -converges to a point $x \in X$, if for every τ_i -open nbd V of x, there exists an $F \in \Phi$ such that $F \subset V^{\gamma}$. Further, we say that a filterbase Φ in X γ_i -accumulates to $x \in X$ if $F \cap V^{\gamma} \neq \phi$ for every $F \in \Phi$ and for every τ_i -open nbd V of x.

The convergence and the accumulation in the usual sense are identical with the γ_i -convergence and γ_i -accumulation for the identity operation, respectively. If $\gamma = j - cl$ (resp. $i - int^o j - cl$) for $U \in \tau_i$, then γ_i -convergence and γ_i -accumulation coincide with $ij - \theta$ -convergence and $ij - \theta$ -accumulation [17] (resp. $ij - \delta$ -convergence and $ij - \delta$ -accumulation [14]. It is easy to see that $f: X \to Y$ is γ_i -continuous if and only if for every $x \in X$ and every filterbase Φ in X *i*-converging to x, the filterbase $f(\Phi) \gamma_i$ -converges to f(x).

Proposition 12. Let γ be an operation on a bitopological space (X, τ_1, τ_2) , the following statements hold:

- (1) If a filterbase Φ in X is γ_i -converges to $x \in X$, then $\Phi \gamma_i$ -accumulates to x.
- (2) If a filterbase Φ in X is contained in a filterbase which γ_i -accumulates to $x \in X$, then $\Phi \gamma_i$ -accumulates to x.
- (3) If a maximal filterbase in X γ_i -accumulates to $x \in X$ then it is γ_i -converges to x.

Proposition 13. Let γ be an *i*-regular operation on a bitopological space (X, τ_1, τ_2) . If a filterbase Φ in X γ_i -accumulates to $x \in X$, then there exists a filterbase Ψ in X such that $\Phi \subset \Psi$ and $\Psi \gamma_i$ -converges to x.

Proposition 14. Let (X, τ_1, τ_2) and (Y, σ_1, σ_2) be two bitopological spaces and γ an operation on Y. If $f: X \to Y$ is γ_i -continuous, then $G \in \sigma_i$ and $G^{\gamma} = G$ imply $f^{-1}(G) \in \tau_i$. The converse is true if $G^{\gamma\gamma} = G^{\gamma} \in \sigma_i$ for all $G \in \sigma_i$.

Definition 13. Let (X, τ_1, τ_2) and (Y, σ_1, σ_2) be two bitopological spaces and γ an operation on Y. We say that the graph G(f) of $f: X \to Y$ is γ_i -closed if for each $(x, y) \in (X \times Y) \setminus G(f)$, there exist τ_i -open and σ_i -open sets U and V containing x and y, respectively, such that $(U \times V^{\gamma}) \cap G(f) = \phi$. Obviously, a mapping $f: (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ has a γ_i -closed graph if and only if for each $(x, y) \in (X \times Y) \setminus G(f)$, there exist τ_i -open and σ_i -open sets U and V containing x and y, respectively, such that $(U) \cap V^{\gamma} = \phi$.

If $\gamma = id$ (resp. j-cl and $i-int^{o}j-cl$) in the definition of a γ_i -closed graph of a function then we obtain the definition of τ_i -closed (resp. $ij - \theta$ -closed and $ij - \delta$ -closed) graph of the function.

Theorem 4. Let $f : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ be a mapping and γ an operation on Y. Then for the following statements (1)-(3), we have (1) \Rightarrow (2) and (2) \Rightarrow (3). If γ is i-regular then (1) - (3) are equivalent.

- (1) f has a γ_i -closed graph.
- (2) If there exists a filterbase Φ in X i-converging to $x \in X$ such that $f(\Phi) \gamma_i$ -accumulates to $y \in Y$, then f(x) = y.
- (3) If there exists a filterbase Φ in X i-converging to $x \in X$ such that $f(\Phi) \gamma_i$ -converges to $y \in Y$, then f(x) = y.

Definition 14. Let $f : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ be a mapping and γ an operation on Y. Then f is called γ_i -subcontinuous if for every *i*-convergent filterbase Φ in X (*i.e.* Φ *i*-converges to a point in X), the filterbase $f(\Phi)$ γ_i -accumulates to some point in Y.

By (1) of Proposition 13, a γ_i -continuous mapping is γ_i -subcontinuous. Conversely we have the following

Proposition 15. Let $f : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ be a γ_i -subcontinuous mapping, where γ is an operation on Y. If f has a γ_i -closed graph, then f is γ_i -continuous.

6. γ_i -compactness

Definition 15. Let γ be an operation on a bitopological space (X, τ_1, τ_2) . A subset $K \subset X$ is said to be γ_i -compact if for every τ_i -open cover C of K there exists a finite subfamily $\{G_1, G_1, ..., G_n\}$ of C such that $K \subset \bigcup_{r=1}^n G_r^{\gamma}$. If $\gamma = id$ (resp. j - cl and $i - int^o j - cl$) then γ_i -compactness is coincides with τ_i -compactness (resp. ij-almost-compactness [13] and ij-near-compactness [2]).

Theorem 5. Let γ be an operation on a bitopological space (X, τ_1, τ_2) . A subset $K \subset X$ is γ_i -compact if and only if K is γ_i^* -compact in $(K, \tau_1/K, \tau_2/K)$, where $\tau_i/K = \{G \cap K : G \in \tau_i \text{ and } \gamma^* \text{ is defined by } (G \cap K)^{\gamma^*} = G^{\gamma} \cap K \text{ for all } G \in \tau_i$.

Proposition 16. If (X, τ_i) is compact, then (X, τ_1, τ_2) is γ_i -compact for every operation γ on X. If (X, τ_1, τ_2) is γ_i -compact for some operation γ on X such that (X, τ_1, τ_2) is γ_i -regular, then (X, τ_i) is compact.

Proof. It will suffices to prove the second assertion. Let C be a τ_i -open cover of X. Since (X, τ_1, τ_2) is γ_i -regular, the set D of all $V \in \tau_i$ such that $V^{\gamma} \subset G$ for some $G \subset C$ is a τ_i -open cover of X. Hence $X = \bigcup_r^n V_r^{\gamma}$ for some $V_1, V_2, ..., V_n \in D$. For $r \in \{1, 2, ..., n\}$, there exists $G_r \in C$ such that $V_r^{\gamma} \subset G$. Therefore we have $X = \bigcup_r^n G_r^{\gamma}$ as desired.

Corollary 14. If (X, τ_1, τ_2) is an ij-semi regular space, then (X, τ_1, τ_2) is ij-nearly compact if and only if (X, τ_i) is compact.

Theorem 6. Let γ be an operation on a bitopological space (X, τ_1, τ_2) . If X is γ_i -compact, then every cover of X by γ_i -open sets has a finite subcover. If γ is *i*-open then the converse is true.

Proposition 17. Let γ be an *i*-open operation on a bitopological space (X, τ_1, τ_2) . If X is γ_i -compact, then every γ_i -closed set of X is γ_i -compact

Proposition 18. Let γ be an i-open operation on a bitopological space (X, τ_1, τ_2) . Then X is γ_i -compact if and only if every family of γ_i -closed subsets of X having the finite intersection property, has a non empty intersection.

Theorem 7. Let γ be an operation on a bitopological space (X, τ_1, τ_2) , the following statements are equivalent:

- (1) (X, τ_1, τ_2) is γ_i -compact
- (2) Each filterbase in X γ_i -accumulates to some point of X.
- (3) Each maximal filterbase in X γ_i -converges to some point of X.

Corollary 15. For a bitopological space (X, τ_1, τ_2) , the following are equivalent

- (1) (X, τ_1, τ_2) is ij-almost compact.
- (2) Each filterbase in X $ij \theta$ -accumulates to some point of X.
- (3) Each maximal filterbase in X $ij \theta$ -converges to some point of X.

Corollary 16. For a bitopological space (X, τ_1, τ_2) , the following are equivalent

- (1) (X, τ_1, τ_2) is ij-nearly compact.
- (2) Each filterbase in X ij $-\delta$ -accumulates to some point of X.
- (3) Each maximal filterbase in X ij $-\delta$ -converges to some point of X.

Theorem 8. Let $f : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ be a mapping and γ an operation on (Y, σ_1, σ_2) . If (X, τ_i) is compact and f is γ_i -continuous, then f(X) is γ_i -compact in (Y, σ_1, σ_2) .

Theorem 9. If a bitopological space (Y, σ_1, σ_2) is γ_i -compact for some operation γ on Y, then every mapping f of any bitopological space (X, τ_1, τ_2) into Y is γ_i -subcontinuous.

Proof. Let Φ be an *i*-convergent filterbase in X. Then by Theorem 6, the filterbase $f(\Phi)$ γ_i -accumulates to some point of Y. Thus f is γ_i -subcontinuous.

Theorem 10. Let $f : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ be a mapping with γ_i -closed graph for some operation γ on (Y, σ_1, σ_2) . If (Y, σ_1, σ_2) is γ_i -compact, then f is γ_i -continuous.

Corollary 17. Let $f : (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ be a mapping with $ij - \theta$ -closed graph. If (Y, σ_1, σ_2) is ij-almost compact, then f is ij-weakly continuous.

Corollary 18. Let $f : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ be a mapping with $ij - \delta$ -closed graph. If (Y, σ_1, σ_2) is ij-nearly compact, then f is ij-almost continuous.

References

- ABD EL-MONSEF M.E., KOZAE A.M., TAHER B.M., Compactification in bitopological spaces, Arab J. for Sci. Engin., 22(1A)(1997), 99-105.
- BANERJEE G.K., On pairwise almost strongly θ-continuous mappings, Bull. Calcutta Math. Soc., 79(1987), 314-320.
- [3] BOSE S., SINHA D., Almost open, almost closed, θ-continuous and almost quasi compact mappings in bitopological spaces, Bull. Calcutta Math. Soc., 73(1981) 345-356.
- [4] BOSE S., SINHA D., Pairwise almost continuous map and weakly continuous map in bitopological spaces, Bull. Calcutta Math. Soc., 74(1982), 195-205.
- [5] FLETCHER P., HOYLE H.B., PATTY C.W., The comparison of topologies, Duke Math. J., 36(2)(1969), 325-331.
- [6] FUKUTAKE T., On generalized closed sets in bitopological spaces, Bull. Fukuoka Univ. of Educ., 35(III)(1985), 19-28.
- [7] JANKOVIC D.S., On functions with α -closed graphs, *Glasnik Math.*, 18(38) (1983), 141-148.

- [8] KASAHARA S., Operation-compact spaces, Math. Japonica, 24(1)(1979), 97-105.
- [9] KELLY J.C., Bitopological spaces, Proc. London Math. Soc., 3(13)(1963), 71-89.
- [10] KHEDR F.H., Operation on bitopologies, *Delta J. Sci.*, 8(1)(1984), 309-320.
- [11] KHEDR F.H., AL-SHIBANI A.M., On weakly θ-continuous mappings in bitopological spaces, Bull. Fac. Sci. , Assiut Univ., 23(1-C)(1994), 105-118.
- [12] KHEDR F.H., AL-SHIBANI A.M., On pairwise super continuous mappings in bitopological spaces, *Internat. J. Math. Math. Sci.*, 4(14)(1991), 715-722.
- [13] MUKHERJEE M.N., On pairwise almost compactness and pairwise H-closedness in a bitopological space, Ann. Soc. Sci. Bruxelles, 96(2)(1982), 98-106.
- [14] NANDI J.N., Nearly compact bitopological spaces, Bull. Calcuta Math. Soc., 85(1993), 337-344.
- [15] OGATA H., Operations on topological spaces and associated topology, Math. Japonica, 36(1)(1991), 175-184.
- [16] REILLY I.L., On bitopological separation properties, Nanta Math., 5(2)(1972), 14-25.
- [17] SEN S.K., MUKHERJEE M.N., On extension of certain map from a topological space to a bitopological space, *Indian J. Pure Appl. Math.*, 25(5)(1994), 507-511.
- [18] SINGAL A.R., ARYA S.P., On pairwise almost regular spaces, *Glasnik Math.*, 26(1971), 335-343.
- [19] SINGAL M.K., SINGAL A.R., Some more separation axioms in bitopological spaces, Ann. Soc. Sci. Bruxelles, 84(1970), 207-230.

FATHI H. KHEDR FACULTY OF SCIENCE ASSIUT UNIVERSITY ASSIUT, EGYPT *e-mail:* khedrfathi@gmal.com *or* khedrf@aun.edu.eg

> KHALAF M. ABDELHAKIEM FACULTY OF SCIENCE ASSIUT UNIVERSITY ASSIUT, EGYPT *e-mail:* kalafm@hotmail.com

Received on 02.07.2009 and, in revised form, on 04.11.2009.