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1. Introduction

The concept of generalized closed (briefly g-closed) sets in topological
spaces was introduced by Levine [15]. These sets also considered by Dun-
ham [10] and Dunham and Levine [11]. In 1981, Munshi and Bassan [20]
introduced the notion of generalized continuous (briefly g-continuous) func-
tions. The notion of g-continuity is also studied in [5], [6], [7], [8] and other
papers. The notions of sg∗-closed sets, pg∗-closed sets, αg∗-closed sets, and
βg∗-closed sets are introduced and studied in [21] by using semi-open sets,
preopen sets, α-open sets, and β-open sets, respectively. The notion of
sg∗-closed sets is called ω-closed [34], ĝ-closed [35], or semi-star general-
ized closed [30]. The notion of ω-continuous (or ĝ-continuous) functions is
introduced and studied in [35], [29], [33], and [34].

In [25] and [26], the present authors introduced and studied the notions
of m-structures, m-spaces and m-continuity. In [23], the present authors
introduced the notion of mg∗-closed sets in order to establish the unified
theory of the notions: sg∗-closed sets, pg∗-closed sets, αg∗-closed sets, and
βg∗-closed sets and obtain the basic properties, characterizations and pre-
serving properties.

In this paper, by using mg∗-closed sets and m-continuity, we introduce
the notion of mg∗-continuous functions as a generalization of ω-continuity or
ĝ-continuity. We obtain some characterizations and properties of mg∗-conti-
nuity. In the last section, we introduce new generalizations of ω-continuous
functions.
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2. Preliminaries

Let (X, τ) be a topological space and A a subset of X. The closure of
A and the interior of A are denoted by Cl(A) and Int(A), respectively. We
recall some generalized open sets in topological spaces.

Definition 1. Let (X, τ) be a topological space. A subset A of X is said
to be

(1) α-open [22] if A ⊂ Int(Cl(Int(A))),
(2) semi-open [14] if A ⊂ Cl(Int(A)),
(3) preopen [17] if A ⊂ Int(Cl(A)),
(4) β-open [1] or semi-preopen [3] if A ⊂ Cl(Int(Cl(A))).

The family of all α-open (resp. semi-open, preopen, β-open) sets in (X, τ)
is denoted by α(X) (resp. SO(X), PO(X), β(X)).

Definition 2. Let (X, τ) be a topological space. A subset A of X is said
to be α-closed [18] (resp. semi-closed [9], preclosed [17], β-closed [1]) if the
complement of A is α-open (resp. semi-open, preopen, β-open).

Definition 3. Let (X, τ) be a topological space and A a subset of X. The
intersection of all α-closed (resp. semi-closed, preclosed, β-closed) sets of X
containing A is called the α-closure [18] (resp. semi-closure [9], preclosure
[12], β-closure [2]) of A and is denoted by αCl(A) (resp. sCl(A), pCl(A),

βCl(A)).

Definition 4. Let (X, τ) be a topological space and A a subset of X. The
union of all α-open (resp. semi-open, preopen, β-open) sets of X contained
in A is called the α-interior [18] (resp. semi-interior [9], preinterior [12],
β-interior [2]) of A and is denoted by αInt(A) (resp. sInt(A), pInt(A),

βInt(A)).

3. Minimal structures and m-continuity

Definition 5. Let X be a nonempty set and P(X) the power set of X.
A subfamily mX of P(X) is called a minimal structure (briefly m-structure)
on X [25], [26] if ∅ ∈ mX and X ∈ mX .

By (X,mX), we denote a nonempty set X with an m-structure mX on
X and call it an m-space. Each member of mX is said to be mX-open and
the complement of an mX -open set is said to be mX-closed.

Remark 1. Let (X, τ) be a topological space. Then the family α(X) is
a topology which is finer than τ . The families SO(X), PO(X), and β(X)
are all m-structures on X.
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Definition 6. Let X be a nonempty set and mX an m-structure on X.
For a subset A of X, the mX -closure of A and the mX -interior of A are
defined in [16] as follows:

(1) mCl(A) = ∩{F : A ⊂ F,X − F ∈ mX},
(2) mInt(A) = ∪{U : U ⊂ A,U ∈ mX}.

Remark 2. Let (X, τ) be a topological space and A a subset of X. If
mX = τ (resp. SO(X), PO(X), α(X), β(X)), then we have

(1) mCl(A) = Cl(A) (resp. sCl(A), pCl(A), αCl(A), βCl(A)),
(2) mInt(A) = Int(A) (resp. sInt(A), pInt(A), αInt(A), βInt(A)) .

Lemma 1 (Maki et al. [16]). Let X be a nonempty set and mX a minimal
structure on X. For subsets A and B of X, the following properties hold:

(1) mCl(X −A) = X −mInt(A) and mInt(X −A) = X −mCl(A),
(2) If (X −A) ∈ mX , then mCl(A) = A and if A ∈ mX , then

mInt(A) = A,
(3) mCl(∅) = ∅, mCl(X) = X, mInt(∅) = ∅ and mInt(X) = X,
(4) If A ⊂ B, then mCl(A) ⊂ mCl(B) and mInt(A) ⊂ mInt(B),
(5) A ⊂ mCl(A) and mInt(A) ⊂ A,
(6) mCl(mCl(A)) = mCl(A) and mInt(mInt(A)) = mInt(A).

Lemma 2 (Popa and Noiri [25]). Let X be a nonempty set with a minimal
structure mX and A a subset of X. Then x ∈ mCl(A) if and only if U∩A 6= ∅
for every U ∈ mX containing x.

Definition 7. A minimal structure mX on a nonempty set X is said
to have property B [16] if the union of any family of subsets belong to mX

belongs to mX .

Remark 3. If (X, τ) is a topological space, then SO(X), PO(X), α(X),
and β(X) have property B.

Lemma 3 (Popa and Noiri [28]). Let X be a nonempty set and mX an
m-structure on X satisfying property B. For a subset A of X, the following
properties hold:

(1) A ∈ mX if and only if mInt(A) = A,
(2) A is mX-closed if and only if mCl(A) = A,
(3) mInt(A) ∈ mX and mCl(A) is mX-closed.

Definition 8. A function f : (X,mX)→ (Y, σ) is said to be m-continuous
[26] if for each x ∈ X and each open set V containing f(x), there exists
U ∈ mX containing x such that f(U) ⊂ V .

Theorem 1 (Popa and Noiri [26]). For a function f : (X,mX)→ (Y, σ),
the following properties are equivalent:

(1) f is m-continuous;
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(2) f−1(V ) = mInt(f−1(V )) for every open set V of Y;
(3) f−1(F ) = mCl(f−1(F )) for every closed set F of Y;
(4) mCl(f−1(B)) ⊂ f−1(Cl(B)) for every subset B of Y;
(5) f(mCl(A)) ⊂ Cl(f(A)) for every subset A of X;
(6) f−1(Int(B)) ⊂ mInt(f−1(B)) for every subset B of Y.

Corollary 1 (Popa and Noiri [26]). For a function f : (X,mX)→ (Y, σ),
where mX has property B, the following properties are equivalent:

(1) f is m-continuous;
(2) f−1(V ) is mX-open in X for every open set V of Y;
(3) f−1(F ) is mX-closed in X for every closed set F of Y.

Definition 9. A function f : (X,mX)→ (Y, σ) is said to be m∗-continuous
[19] if f−1(V ) is mX-open in X for each open set V of Y .

Remark 4. (1) If f : (X,mX) → (Y, σ) is m∗-continuous, then it is
m-continuous. By Example 3.4 of [19], an m-continuous function may not
be m∗-continuous.

(2) Let mX have property B, then it follows from Corollary 1 that f is
m-continuous if and only if f is m∗-continuous.

4. m-continuity and mg∗-continuity

Definition 10. Let (X, τ) be a topological space. A subset A of X is said
to be g-closed [15] (resp. sg∗-closed, pg∗-closed, αg∗-closed, βg∗-closed [21])
if Cl(A) ⊂ U whenever A ⊂ U and U is open (resp. semi-open, preopen,
α-open, β-open) in X.

Remark 5. (1) An sg∗-closed set is called ω-closed [34], ĝ-closed [35],
or semi-star generalized closed [30].

(2) By the definitions, we obtain the following diagram:

DIAGRAM I

g-closed ⇐ αg∗-closed ⇐ pg∗-closed
⇑ ⇑

sg∗-closed ⇐ βg∗-closed ⇐ closed

Definition 11. A subset A of a topological space (X, τ) is said to be
g-open (resp. sg∗-open or ω-open, pg∗-open, αg∗-open, βg∗-open [21]) if
X −A is g-closed (resp. sg∗-closed, pg∗-closed, αg∗-closed, βg∗-closed).

The family of all g-open (resp. sg∗-open, pg∗-open, αg∗-open, βg∗-open)
sets of X is denoted by GO(X) (resp. SG∗O(X) or ω(X), PG∗O(X),
αG∗O(X), βG∗O(X)).
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Definition 12. Let (X, τ) be a topological space and A a subset of X.
The intersection of all g-closed (resp. sg∗-closed, pg∗-closed, αg∗-closed,
βg∗-closed) sets of X containing A is called the g-closure [10] (resp. sg∗-clo-
sure or ω-closure [33], pg∗-closure, αg∗-closure, βg∗-closure) of A and is de-
noted by gCl(A) (resp. sg∗Cl(A) or ωCl(A), pg∗Cl(A), αg∗Cl(A), βg∗Cl(A)).

Definition 13. Let (X, τ) be a topological space and A a subset of X. The
union of all g-open (resp. sg∗-open, pg∗-open, αg∗-open, βg∗-open) sets of
X contained in A is called the g-interior [8] (resp. sg∗-interior, pg∗-interior,
αg∗-interior, βg∗-interior) of A and is denoted by gInt(A) (resp. sg∗Int(A),
pg∗Int(A), αg∗Int(A), βg∗Int(A)).

Remark 6. Let (X, τ) be a topological space and A a subset of X.
(1) Then, GO(X), SG∗O(X), PG∗O(X), αG∗O(X) and βG∗O(X) are

all m-structures on X. Hence, if we put mX = GO(X) (resp. SG∗O(X),
PG∗O(X), αG∗O(X), βG∗O(X)), then we have

(i) mCl(A) = gCl(A) (resp. sg∗Cl(A), pg∗Cl(A), αg∗Cl(A), βg∗Cl(A)),
(ii) mInt(A) = gInt(A) (resp. sg∗Int(A)), pg∗Int(A), αg∗Int(A),

βg∗Int(A)).
(2) If mX = GO(X), then by Lemma 1 we obtain Theorem 2.1 (5) and

Theorem 2.8 (2), (3), (5), (6), (7) established in [8]. By Lemma 2, we obtain
Theorem 2.1 (4) in [8].

(3) If mX = SG∗O(X), then by Lemma 2 we obtain Proposition 3.16 of
[33].

(4) The m-structures GO(X), PG∗O(X), αG∗O(X), βG∗O(X) do not
have property B, in general. However, it is known in [32] that SG∗O(X) is
a topology for X.

Definition 14. Let (X, τ) be a topological space and mX an m-structure
on X. A subset A of X is said to be mg∗-closed [23] if Cl(A) ⊂ U whenever
A ⊂ U and U ∈ mX .

Remark 7. Let (X, τ) be a topological space and mX an m-structure
on X. We put mX = τ (resp. SO(X), PO(X), α(X), β(X)). Then,
an mg∗-closed set is a g-closed (resp. sg∗-closed, pg∗-closed, αg∗-closed,
βg∗-closed ) set.

Lemma 4 (Noiri and Popa [23]). Let (X, τ) be a topological space and
mX an m-structure on X. Let τ ⊂ mX . Then the following implications
hold: closed ⇒ mg∗-closed ⇒ g-closed.

Remark 8. Let (X, τ) be a topological space and mX an m-structure
on X. Let τ ⊂ mX .

(1) By Lemma 4, we obtain Propositions 2.4 and 2.5 in [33], Theorem
1.33 (a) and (c) in [30], and Theorem 3.01 in [35].
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(2) The implications in Lemma 4 are strict as seen from Examples 3.01
and 3.02 in [35] or Examples 1.3.5 and 1.3.6 in [30].

The complement of an mg∗-closed set is said to be mg∗-open. The family
of all mg∗-open sets is denoted by mG∗O(X). Obviously, mG∗O(X) is an
m-structure on X and is called an mg∗-structure on X. If mX = τ (resp.
SO(X), PO(X), α(X), β(X)), then mG∗O(X) = GO(X) (resp. SG∗O(X),
PG∗O(X), αG∗O(X), βG∗O(X)).

Definition 15. A function f : (X, τ)→ (Y, σ) is said to be ω-continuous
[32] or ĝ-continuous [35] if f−1(K) is ω-closed in X for every closed set K
of Y .

Remark 9. (1) Let (X, τ) be a topological space and mX = SG∗O(X) =
ω(X), then f : (X, τ)→ (Y, σ) is ω-continuous if and only if f : (X,ω(X))→
(Y, σ) is m∗-continuous.

(2) By Lemma 4, we have the following implications: continuity ⇒
ω-continuity ⇒ g-continuity. The implications are strict as seen from Ex-
amples 3.8 and 3.9 of [33].

Definition 16. Let (X, τ) be a topological space and mG∗O(X) an
mg∗-structure on X. A function f : (X, τ)→ (Y, σ) is said to be

(1) mg∗-continuous if f : (X,mG∗O(X)) → (Y, σ) is m-continuous,
equivalently if for each x ∈ X and each open set V containing f(x) there
exists an mg∗-open set U containing x such that f(U) ⊂ V ,

(2) m∗g∗-continuous if f : (X,mG∗O(X)) → (Y, σ) is m∗-continuous,
equivalently if f−1(K) is mg∗-closed in X for each closed set K of Y .

By DIAGRAM I and Definition 16, we obtain the following diagram:

DIAGRAM II

g-continuity ⇐ αg∗-continuity ⇐ pg∗-continuity
⇑ ⇑

sg∗-continuity ⇐ βg∗-continuity ⇐ continuity

Definition 17. Let X be a nonempty set and mG∗O(X) an mg∗-structure
on X. For a subset A of X, the mg∗-closure of A and the mg∗-interior of
A are defined as follows:

(1) mg∗Cl(A) = ∩{F : A ⊂ F,X − F ∈ mG∗O(X)},
(2) mg∗Int(A) = ∪{U : U ⊂ A,U ∈ mG∗O(X)}.

By Theorem 1, we obtain the following theorem and corollary.

Theorem 2. Let (X, τ) be a topological space and mG∗O(X) an mg∗-struc-
ture on X. For a function f : (X, τ) → (Y, σ), the following properties are
equivalent:
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(1) f is mg∗-continuous;
(2) f−1(V ) = mg∗Int(f−1(V )) for every open set V of Y;
(3) f−1(F ) = mg∗Cl(f−1(F )) for every closed set F of Y;
(4) mg∗Cl(f−1(B)) ⊂ f−1(Cl(B)) for every subset B of Y;
(5) f(mg∗Cl(A)) ⊂ Cl(f(A)) for every subset A of X;
(6) f−1(Int(B)) ⊂ mg∗Int(f−1(B)) for every subset B of Y.

Corollary 2. Let (X, τ) be a topological space and mG∗O(X) an mg∗-struc-
ture with property B on X. Then, for a function f : (X, τ) → (Y, σ), the
following properties are equivalent:

(1) f is m∗g∗-continuous;
(2) f−1(V ) is mg∗-open in X for every open set V of Y;
(3) f−1(F ) is mg∗-closed in X for every closed set F of Y.

Remark 10. If mG∗O(X) = SG∗O(X), then by Theorem 2 and Corol-
lary 2 we obtain the result established in Theorem 3.17 of [33].

Let (X, τ) be a topological space and A a subset of X. A point x ∈ X
is called a θ-cluster point of A if Cl(V ) ∩ A 6= ∅ for every open set V
containing x. The set of all θ-cluster points of A is called the θ-closure of A
and is denoted by Clθ(A) [36]. If A = Clθ(A), then A is said to be θ-closed.
The complement of a θ-closed set is said to be θ-open.

Theorem 3. Let (Y, σ) be a regular space. For a function f : (X,mX)→
(Y, σ), the following properties are equivalent:

(1) f is m-continuous;
(2) f−1(Clθ(B)) = mCl(f−1(Clθ(B))) for every subset B of Y;
(3) f−1(K) = mCl(f−1(K)) for every θ-closed set K of Y;
(4) f−1(V ) = mInt(f−1(V )) for every θ-open set V of Y.

Proof. It is known in [36] that Clθ(B) is closed in Y for every subset B
of Y . Since (Y, σ) is regular, every open (resp. closed) set of Y is θ-open
(resp. θ-closed). Therefore, the proof follows easily from Theorem 1. �

Corollary 3. Let (Y, σ) be a regular space and mX an m-structure with
property B. For a function f : (X,mX) → (Y, σ), the following properties
are equivalent:

(1) f is m-continuous;
(2) f−1(Clθ(B)) is m-closed for every subset B of Y ;
(3) f−1(K) is m-closed in X for every θ-closed set K of Y ;
(4) f−1(V ) is m-open in X for every θ-open set V of Y .

Proof. The proof follows from Lemma 3 and Theorem 3. �
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Theorem 4. Let (Y, σ) be a regular space and mG∗O(X) an mg∗-structu-
re on X. For a function f : (X, τ) → (Y, σ), the following properties are
equivalent:

(1) f is mg∗-continuous;
(2) f−1(Clθ(B)) = mg∗Cl(f−1(Clθ(B))) for every subset B of Y;
(3) f−1(K) = mg∗Cl(f−1(K)) for every θ-closed set K of Y ;
(4) f−1(V ) = mg∗mInt(f−1(V )) for every θ-open set V of Y .

Proof. The proof follows from Definition 16 and Theorem 3. �

Corollary 4. Let (Y, σ) be a regular space and mG∗O(X) an mg∗-structure
with property B on X. For a function f : (X, τ) → (Y, σ), the following
properties are equivalent:

(1) f is mg∗-continuous;
(2) f−1(Clθ(B)) is mg∗-closed in X for every subset B of Y ;
(3) f−1(K) is mg∗-closed in X for every θ-closed set K of Y ;
(4) f−1(V ) is mg∗-open in X for every θ-open set V of Y .

Proof. The proof follows from Theorem 4 and Lemma 3. �

Corollary 5. Let (Y, σ) be a regular space. For a function f : (X, τ)→
(Y, σ), the following properties are equivalent:

(1) f is ω-continuous;
(2) f−1(Clθ(B)) is ω-closed in X for every subset B of Y ;
(3) f−1(K) is ω-closed in X for every θ-closed set K of Y ;
(4) f−1(V ) is ω-open in X for every θ-open set V of Y .

Proof. The proof follows from Corollary 4 because the family of ω-open
sets is a topology for X and hence it has property B. �

5. Some properties of mg∗-continuity

In this section, we investigate the relationships between mg∗-continuity
and mg∗-compactness, mg∗-connectedness and strongly mg∗-closed graphs.

Definition 18. An m-space (X,mX) is said to be m-T2 [26] if for any
distinct points x, y of X, there exist U, V ∈ mX such that x ∈ U, y ∈ V , and
U ∩ V = ∅.

Remark 11. (1) Let (X, τ) be a topological space and mG∗O(X) an
mg∗-structure on X, then (X, τ) is said to be mg∗-T2 if the m-space (X,mG∗

O(X)) is m-T2.
(2) If mG∗O(X) = SG∗O(X) = ω(X), then (X, τ) is said to be ω-T2 [29].
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Lemma 5 (Popa and Noiri [26]). If f : (X,mX)→ (Y, σ) is an m-continu-
ous injection and (Y, σ) is a T2-space, then (X,mX) is m-T2.

Theorem 5. If f : (X, τ)→ (Y, σ) is an m∗g∗-continuous injection and
(Y, σ) is a T2-space, then (X, τ) is mg∗-T2.

Proof. The proof follows from Remark 4 and Lemma 5. �

Corollary 6. If f : (X, τ) → (Y, σ) is an ω-continuous injection and
(Y, σ) is a T2-space, then (X, τ) is ω-T2.

Definition 19. An m-space (X,mX) is said to be m-compact [26] if
every cover of X by sets of mX has a finite subcover.

A subset K of an m-space (X,mX) is said to be m-compact [26] if every
cover of K by subsets of mX has a finite subcover.

Remark 12. Let (X, τ) be a topological space and mG∗O(X)) an
mg∗-structure on X.

(1) (X, τ) is said to be mg∗-compact if (X,mG∗O(X)) is m-compact.
(2) If mG∗O(X) = SG∗O(X) = ω(X), then (X, τ) is said to be ω-compact.

Lemma 6 (Popa and Noiri [26]). If a function f : (X,mX)→ (Y, σ) is
m-continuous and K is an m-compact set of X, then f(K) is compact.

Theorem 6. If f : (X, τ)→ (Y, σ) is an m∗g∗-continuous function and
K is an mg∗-compact set of X, then f(K) is compact.

Proof. The proof follows from Definition 19, Remark 4 and Lemma 6. �

Corollary 7. If f : (X, τ)→ (Y, σ) is an ω-continuous function and K
is an ω-compact set of X, then f(K) is compact.

Definition 20. An m-space (X,mX) is said to be m-connected [26] if
X cannot be written as the union of two nonempty disjoint m-open sets.

Remark 13. Let (X, τ) be a topological space and mG∗O(X) anmg∗-struc-
ture on X.

(1) (X, τ) is said to be mg∗-connected if (X,mG∗O(X)) is m-connected.
(2) If mG∗O(X) = SG∗O(X) = ω(X), then (X, τ) is said to be ω-connected

[32].

Lemma 7. If f : (X,mX)→ (Y, σ) is an m∗-continuous surjection and
(X,mX) is m-connected, then (Y, σ) is connected.

Proof. Assume that (Y, σ) is not connected. Then there exist nonempty
open sets V1 and V2 such that V1 ∩ V2 = ∅ and V1 ∪ V2 = Y . Hence we
have f−1(V1) ∩ f−1(V2) = ∅ and f−1(V1) ∪ f−1(V2) = X. Since f is an
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m∗-continuous surjection, f−1(V1) and f−1(V2) are nonempty m-open sets.
Therefore, (X,mX) is not m-connected. This is a contradiction and hence
Y is connected. �

Theorem 7. Let (X, τ) be a topological space and mG∗O(X) an mg∗-struc-
ture on X. If f : (X, τ) → (Y, σ) is an m∗g∗-continuous surjection and
(X, τ) is mg∗-connected, then (Y, σ) is connected.

Proof. The proof follows from Definition 20, Remark 13 and Lemma 7. �

Corollary 8. If f : (X, τ) → (Y, σ) is an ω-continuous surjection and
(X, τ) is ω-connected, then (Y, σ) is connected.

Definition 21. A function f : (X,mX) → (Y, σ) is said to have a
strongly m-closed graph (resp. m-closed graph) [26] if for each (x, y) ∈
(X × Y )−G(f), there exist U ∈ mX containing x and an open set V of Y
containing y such that [U × Cl(V )] ∩G(f) = ∅ (resp. [U × V ] ∩G(f) = ∅).

Remark 14. Let (X, τ) be a topological space and mG∗O(X) anmg∗-stru-
cture on X.

(1) A function f : (X, τ) → (Y, σ) is said to have a strongly mg∗-closed
graph (resp. mg∗-closed graph) if for each (x, y) ∈ (X × Y ) − G(f), there
exist U ∈ mG∗O(X) containing x and an open set V of Y containing y such
that [U × Cl(V )] ∩G(f) = ∅ (resp. [U × V ] ∩G(f) = ∅).

(2) If mG∗O(X) = GO(X) (resp. SG∗O(X), PG∗O(X), αG∗O(X),
βG∗O(X)) and f has a strongly mg∗-closed graph, then f has a strongly
g-closed graph (resp. strongly sg∗-closed graph or strongly ω-closed graph,
strongly pg∗-closed graph, strongly αg∗-closed graph, strongly βg∗-closed
graph). For mg∗-closed graphs, we define similarly.

Lemma 8 (Popa and Noiri [26]). A function f : (X,mX) → (Y, σ) is
m-continuous and (Y, σ) is a Hausdorff space, then f has a strongly m-closed
graph.

Theorem 8. Let (X, τ) be a topological space and mG∗O(X) an mg∗-stru-
cture on X. If a function f : (X, τ) → (Y, σ) is mg∗-continuous and (Y, σ)
is a Hausdorff space, then f has a strongly mg∗-closed graph.

Proof. The proof follows from Definition 21, Remark 14 and Lemma 8. �

Corollary 9. If a function f : (X, τ) → (Y, σ) is an ω-continuous
function and (Y, σ) is a Hausdorff space, then f has a strongly ω-closed
graph.
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Lemma 9 (Popa and Noiri [26]). Let (X,mX) be an m-space and (Y, σ)
a topological space. If f : (X,mX) → (Y, σ) is a surjective function with a
strongly m-closed graph, then Y is Hausdorff.

Theorem 9. Let (X, τ) be a topological space and mG∗O(X) an mg∗-struc-
ture on X. If f : (X, τ) → (Y, σ) is a surjective function with a strongly
mg∗-closed graph, then Y is Hausdorff.

Proof. The proof follows from Definition 21 and Lemma 9. �

Corollary 10. If f : (X, τ) → (Y, σ) is a surjective function with a
strongly ω-closed graph, then Y is Hausdorff.

Lemma 10 (Popa and Noiri [26]). Let (X,mX) be an m-space, where
mX has property B. If f : (X,mX) → (Y, σ) is an m-continuous injection
with an m-closed graph, then X is m-T2.

Theorem 10. Let (X, τ) be a topological space and mG∗O(X) an mg∗-struc-
ture satisfying property B. If f : (X, τ) → (Y, σ) is an mg∗-continuous
injection with an mg∗-closed graph, then X is mg∗-T2.

Proof. The proof follows from Definition 21, Remark 14 and Lemma 10. �

Corollary 11. If f : (X, τ)→ (Y, σ) is an injective ω-continuous func-
tion with an ω-closed graph, then Y is ω-T2.

Definition 22. Let (X,mX) be an m-space and A a subset of X. The
mX -frontier of A, mFr(A), [26] is defined by mFr(A) = mCl(A) ∩ mCl(X−
A) = mCl(A)−mInt(A).

If (X, τ) is a topological space and mG∗O(X) is an mg∗-structure, then
mg∗Fr(A) = mg∗Cl(A) ∩ mg∗Cl(X − A) = mg∗Cl(A) − mg∗Int(A). If
mG∗O(X) = GO(X), then we obtain the g-frontier in Definition 4 of [8].

Theorem 11. The set of all points of X at which a function f : (X,mX)→
(Y, σ) is not m-continuous is identical with the union of the m-frontiers of
the inverse images of open sets containing f(x).

Proof. Suppose that f is not m-continuous at x ∈ X. There exists an
open set V of Y containing f(x) such that U ∩ (X − f−1(V )) 6= ∅ for every
m-open set U containing x. By Lemma 2, we have x ∈ mCl(X − f−1(V )).
On the other hand, we have x ∈ f−1(V ) and hence x ∈ mFr(f−1(V )).

Conversely, suppose that f is m-continuous at x ∈ X. Then, for any open
set V of Y containing f(x), there exists U ∈ mX containing x such that
f(U) ⊂ V ; hence U ⊂ f−1(V ). Therefore, we have x ∈ U ⊂ mInt(f−1(V )).
This contradicts to the fact that x ∈ mFr(f−1(V )). �
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Theorem 12. Let (X, τ) is a topological space and mG∗O(X) an mg∗-struc-
ture. Then, the set of all points of X at which a function f : (X, τ)→ (Y, σ)
is not mg∗-continuous is identical with the union of the mg∗-frontiers of the
inverse images of open sets containing f(x).

Proof. The proof follows from Definition 22 and Theorem 11. �

Corollary 12. The set of all points at x ∈ X which a function f :
(X, τ)→ (Y, σ) is not ω-continuous is identical with the union of the ω-front-
iers of the inverse images of open sets containing f(x).

Proof. Since ω(X) is a topology for X, m-continuity coincides with
m∗-continuity and hence the result follows from Theorem 12. �

For a function f : (X,mX)→ (Y, σ), we define Dm(f) as follows:

Dm(f) = {x ∈ X : f is not m-continuous at x}.

Lemma 11 (Popa and Noiri [27]). For a function f : (X,mX)→ (Y, σ),
the following properties hold:
Dm(f) =

⋃
G∈σ{f−1(G)−mInt(f−1(G))}

=
⋃
B∈ P (Y ) {f−1(Int(B))−mInt(f−1(B))}

=
⋃
B∈ P (Y ) {mCl(f−1(B))− f−1(Cl(B))}

=
⋃
A∈ P (X) {mCl(A)− f−1(Cl(f(A)))}

=
⋃
F∈ F {mCl(f−1(F ))− f−1(F )},

where F is the family of closed sets of (Y, σ).

Let (X, τ) be a topological space and mG∗O(X) an mg∗-structure on X.
For a function f : (X, τ) → (Y, σ), we denote by Dmg∗(f) the set of all
points of X at which the function f is not mg∗-continuous.

Theorem 13. Let (X, τ) be a topological space and mG∗O(X) an mg∗-struc-
ture on X. For a function f : (X, τ)→ (Y, σ), the following properties hold:
Dmg∗(f) =

⋃
G∈σ{f−1(G)−mg∗Int(f−1(G))}

=
⋃
B∈ P (Y ) {f−1(Int(B))−mg∗Int(f−1(B))}

=
⋃
B∈ P (Y ) {mg∗Cl(f−1(B))− f−1(Cl(B))}

=
⋃
A∈ P (X) {mg∗Cl(A)− f−1(Cl(f(A)))}

=
⋃
F∈ F {mg∗Cl(f−1(F ))− f−1(F )},

where F is the family of closed sets of (Y, σ).

Proof. The proof follows from Lemma 11. �

Let f : (X, τ) → (Y, σ) be a function. By Dω(f), we denote the set of
all points x ∈ X at which f is not ω-continuous. Then by Theorem 13 we
obtain the following corollary.
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Corollary 13. For a function f : (X, τ)→ (Y, σ), the following proper-
ties hold:
Dω(f) =

⋃
G∈σ{f−1(G)− ωInt(f−1(G))}

=
⋃
B∈ P (Y ) {f−1(Int(B))− ωInt(f−1(B))}

=
⋃
B∈ P (Y ) {ωCl(f−1(B))− f−1(Cl(B))}

=
⋃
A∈ P (X) {ωCl(A)− f−1(Cl(f(A)))}

=
⋃
F∈ F {ωCl(f−1(F ))− f−1(F )},

where F is the family of closed sets of (Y, σ).

6. Other generalizations of ω-continuity

First, we recall the δ-closure of a subset in a topological space. Let
(X, τ) be a topological space and A a subset of X. A point x ∈ X is called
a δ-cluster point of A if Int(Cl(V )) ∩A 6= ∅ for every open set V containing
x. The set of all δ-cluster points of A is called the δ-closure of A and is
denoted by Clδ(A) [36].

Definition 23. A subset of a topological space (X, τ) is said to be
(1) δ-preopen [31] (resp. θ-preopen [24]) if A ⊂ Int(Clδ(A))

(resp. A ⊂ Int(Clθ(A))),
(2) δ-β-open [13] (resp. θ-β-open [24]) if A ⊂ Cl(Int(Clδ(A)))

(resp. A ⊂ Cl(Int(Clθ(A)))),
(3) b-open [4] if A ⊂ Int(Cl(A)) ∪ Cl(Int(A)).

By δPO(X) (resp. δβ(X), θPO(X), θβ(X), BO(X)), we denote the
collection of all δ-preopen (resp. δ-β-open, θ-preopen, θ-β-open, b-open)
sets of a topological space (X, τ). These five collections are m-structures
with property B. In [24], the following diagram is known:

DIAGRAM III

α-open ⇒ preopen ⇒ δ-preopen ⇒ θ-preopen
⇓ ⇓ ⇓ ⇓

semi-open ⇒ β-open ⇒ δ-β-open ⇒ θ-β-open

For the new collections of subsets of a topological space (X, τ), we can
define many new variations of g-closed sets. For example, in case mX =
δPO(X), δβ(X), θPO(X), θβ(X), or BO(X) we can define new types of
g-closed sets as follows:

Definition 24. A subset A of a topological space (X, τ) is said to
be δpg∗-closed (resp. θpg∗-closed, δβg∗-closed, θβg∗-closed, bg∗-closed) if
Cl(A) ⊂ U whenever A ⊂ U and U is δ-preopen (resp. θ-preopen, δ-β-open,
θ-β-open, b-open) in (X, τ).
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By DIAGRAM I and Definition 24, we have the following diagram:

DIAGRAM IV

g-closed ⇐ αg∗-closed ⇐ pg∗-closed ⇐ δpg∗-closed ⇐ θpg∗-closed
⇑ ⇑ ⇑ ⇑

sg∗-closed ⇐ βg∗-closed ⇐ δβg∗-closed ⇐ θβg∗-closed ⇐ closed

Definition 25. A function f : (X, τ)→ (Y, σ) is said to be δpg∗-continu-
ous (resp. θpg∗-continuous, δβg∗-continuous, θβg∗-continuous, bg∗-continu-
ous) if f−1(K) is δpg∗-closed (resp. θpg∗-closed, δβg∗-closed, θβg∗-closed,
bg∗-closed) in X for each closed set K of Y .

Finally, we have to state the following remark:

Remark 15. The families δPO(X), δβ(X), θPO(X), θβ(X), and BO(X)
have property B and we can apply the results established in Sections 4 and
5 to the functions in Definition 25.
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[36] Veličko N.V., H-closed topological spaces, Amer. Math. Soc. Transl. (2),
78(1968), 103-118.

Takashi Noiri
2949-1 Shiokita-Cho, Hinagu

Yatsushiro-Shi, Kumamoto-Ken,
869-5142, Japan

e-mail: t.noiri@nifty.com

Valeriu Popa
Department of Mathematics

Univ. Vasile Alecsandri of Bacǎu
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