$\frac{F A S C I C U L I M A T H E M A T I C I}{Nr 45}$ 2010

TAKASHI NOIRI AND VALERIU POPA

A GENERALIZATION OF ω -CONTINUITY

ABSTRACT. In this paper, by using mg^* -closed sets [23], we define and investigate the notion of mg^* -continuity which is a generalization of ω -continuity [32] or \hat{g} -continuity [35].

KEY WORDS: *m*-structure, *g*-closed, ω -closed, mg^* -closed, ω -continuous, mg^* -continuous.

AMS Mathematics Subject Classification: 54A05, 54C10.

1. Introduction

The concept of generalized closed (briefly g-closed) sets in topological spaces was introduced by Levine [15]. These sets also considered by Dunham [10] and Dunham and Levine [11]. In 1981, Munshi and Bassan [20] introduced the notion of generalized continuous (briefly g-continuous) functions. The notion of g-continuity is also studied in [5], [6], [7], [8] and other papers. The notions of sg^* -closed sets, pg^* -closed sets, αg^* -closed sets, and βg^* -closed sets are introduced and studied in [21] by using semi-open sets, preopen sets, α -open sets, and β -open sets, respectively. The notion of sg^* -closed sets is called ω -closed [34], \hat{g} -closed [35], or semi-star generalized closed [30]. The notion of ω -continuous (or \hat{g} -continuous) functions is introduced and studied in [35], [29], [33], and [34].

In [25] and [26], the present authors introduced and studied the notions of *m*-structures, *m*-spaces and *m*-continuity. In [23], the present authors introduced the notion of mg^* -closed sets in order to establish the unified theory of the notions: sg^* -closed sets, pg^* -closed sets, αg^* -closed sets, and βg^* -closed sets and obtain the basic properties, characterizations and preserving properties.

In this paper, by using mg^* -closed sets and m-continuity, we introduce the notion of mg^* -continuous functions as a generalization of ω -continuity or \hat{g} -continuity. We obtain some characterizations and properties of mg^* -continuity. In the last section, we introduce new generalizations of ω -continuous functions.

2. Preliminaries

Let (X, τ) be a topological space and A a subset of X. The closure of A and the interior of A are denoted by Cl(A) and Int(A), respectively. We recall some generalized open sets in topological spaces.

Definition 1. Let (X, τ) be a topological space. A subset A of X is said to be

(1) α -open [22] if $A \subset Int(Cl(Int(A)))$,

(2) semi-open [14] if $A \subset Cl(Int(A))$,

(3) preopen [17] if $A \subset Int(Cl(A))$,

(4) β -open [1] or semi-preopen [3] if $A \subset Cl(Int(Cl(A)))$.

The family of all α -open (resp. semi-open, preopen, β -open) sets in (X, τ) is denoted by $\alpha(X)$ (resp. SO(X), PO(X), $\beta(X)$).

Definition 2. Let (X, τ) be a topological space. A subset A of X is said to be α -closed [18] (resp. semi-closed [9], preclosed [17], β -closed [1]) if the complement of A is α -open (resp. semi-open, preopen, β -open).

Definition 3. Let (X, τ) be a topological space and A a subset of X. The intersection of all α -closed (resp. semi-closed, preclosed, β -closed) sets of X containing A is called the α -closure [18] (resp. semi-closure [9], preclosure [12], β -closure [2]) of A and is denoted by α Cl(A) (resp. sCl(A), pCl(A), β Cl(A)).

Definition 4. Let (X, τ) be a topological space and A a subset of X. The union of all α -open (resp. semi-open, preopen, β -open) sets of X contained in A is called the α -interior [18] (resp. semi-interior [9], preinterior [12], β -interior [2]) of A and is denoted by α Int(A) (resp. sInt(A), pInt(A), β Int(A)).

3. Minimal structures and *m*-continuity

Definition 5. Let X be a nonempty set and $\mathcal{P}(X)$ the power set of X. A subfamily m_X of $\mathcal{P}(X)$ is called a minimal structure (briefly m-structure) on X [25], [26] if $\emptyset \in m_X$ and $X \in m_X$.

By (X, m_X) , we denote a nonempty set X with an *m*-structure m_X on X and call it an *m*-space. Each member of m_X is said to be m_X -open and the complement of an m_X -open set is said to be m_X -closed.

Remark 1. Let (X, τ) be a topological space. Then the family $\alpha(X)$ is a topology which is finer than τ . The families SO(X), PO(X), and $\beta(X)$ are all *m*-structures on X.

Definition 6. Let X be a nonempty set and m_X an m-structure on X. For a subset A of X, the m_X -closure of A and the m_X -interior of A are defined in [16] as follows:

- (1) $\operatorname{mCl}(A) = \cap \{F : A \subset F, X F \in m_X\},\$
- (2) $\operatorname{mInt}(A) = \bigcup \{ U : U \subset A, U \in m_X \}.$

Remark 2. Let (X, τ) be a topological space and A a subset of X. If $m_X = \tau$ (resp. SO(X), PO(X), $\alpha(X)$, $\beta(X)$), then we have

- (1) $\mathrm{mCl}(A) = \mathrm{Cl}(A)$ (resp. $\mathrm{sCl}(A)$, $\mathrm{pCl}(A)$, $\alpha \mathrm{Cl}(A)$, $\beta \mathrm{Cl}(A)$),
- (2) $\operatorname{mInt}(A) = \operatorname{Int}(A)$ (resp. $\operatorname{sInt}(A)$, $\operatorname{pInt}(A)$, $\alpha \operatorname{Int}(A)$, $\beta \operatorname{Int}(A)$).

Lemma 1 (Maki et al. [16]). Let X be a nonempty set and m_X a minimal structure on X. For subsets A and B of X, the following properties hold:

- (1) $\operatorname{mCl}(X A) = X \operatorname{mInt}(A)$ and $\operatorname{mInt}(X A) = X \operatorname{mCl}(A)$,
- (2) If $(X A) \in m_X$, then mCl(A) = A and if $A \in m_X$, then mInt(A) = A,
- (3) $\mathrm{mCl}(\emptyset) = \emptyset$, $\mathrm{mCl}(X) = X$, $\mathrm{mInt}(\emptyset) = \emptyset$ and $\mathrm{mInt}(X) = X$,
- (4) If $A \subset B$, then $\operatorname{mCl}(A) \subset \operatorname{mCl}(B)$ and $\operatorname{mInt}(A) \subset \operatorname{mInt}(B)$,
- (5) $A \subset \mathrm{mCl}(A)$ and $\mathrm{mInt}(A) \subset A$,
- (6) $\operatorname{mCl}(\operatorname{mCl}(A)) = \operatorname{mCl}(A)$ and $\operatorname{mInt}(\operatorname{mInt}(A)) = \operatorname{mInt}(A)$.

Lemma 2 (Popa and Noiri [25]). Let X be a nonempty set with a minimal structure m_X and A a subset of X. Then $x \in \mathrm{mCl}(A)$ if and only if $U \cap A \neq \emptyset$ for every $U \in m_X$ containing x.

Definition 7. A minimal structure m_X on a nonempty set X is said to have property \mathcal{B} [16] if the union of any family of subsets belong to m_X belongs to m_X .

Remark 3. If (X, τ) is a topological space, then SO(X), PO(X), $\alpha(X)$, and $\beta(X)$ have property \mathcal{B} .

Lemma 3 (Popa and Noiri [28]). Let X be a nonempty set and m_X an *m*-structure on X satisfying property \mathcal{B} . For a subset A of X, the following properties hold:

- (1) $A \in m_X$ if and only if mInt(A) = A,
- (2) A is m_X -closed if and only if mCl(A) = A,
- (3) $\operatorname{mInt}(A) \in m_X$ and $\operatorname{mCl}(A)$ is m_X -closed.

Definition 8. A function $f : (X, m_X) \to (Y, \sigma)$ is said to be *m*-continuous [26] if for each $x \in X$ and each open set V containing f(x), there exists $U \in m_X$ containing x such that $f(U) \subset V$.

Theorem 1 (Popa and Noiri [26]). For a function $f : (X, m_X) \to (Y, \sigma)$, the following properties are equivalent:

(1) f is m-continuous;

- (2) $f^{-1}(V) = \operatorname{mInt}(f^{-1}(V))$ for every open set V of Y;
- (3) $f^{-1}(F) = \mathrm{mCl}(f^{-1}(F))$ for every closed set F of Y;
- (4) $\operatorname{mCl}(f^{-1}(B)) \subset f^{-1}(\operatorname{Cl}(B))$ for every subset B of Y;
- (5) $f(\mathrm{mCl}(A)) \subset \mathrm{Cl}(f(A))$ for every subset A of X;
- (6) $f^{-1}(\operatorname{Int}(B)) \subset \operatorname{mInt}(f^{-1}(B))$ for every subset B of Y.

Corollary 1 (Popa and Noiri [26]). For a function $f : (X, m_X) \to (Y, \sigma)$, where m_X has property \mathcal{B} , the following properties are equivalent:

(1) f is m-continuous;

(2) $f^{-1}(V)$ is m_X -open in X for every open set V of Y;

(3) $f^{-1}(F)$ is m_X -closed in X for every closed set F of Y.

Definition 9. A function $f : (X, m_X) \to (Y, \sigma)$ is said to be m^* -continuous [19] if $f^{-1}(V)$ is m_X -open in X for each open set V of Y.

Remark 4. (1) If $f : (X, m_X) \to (Y, \sigma)$ is m^* -continuous, then it is *m*-continuous. By Example 3.4 of [19], an *m*-continuous function may not be m^* -continuous.

(2) Let m_X have property \mathcal{B} , then it follows from Corollary 1 that f is m-continuous if and only if f is m^* -continuous.

4. *m*-continuity and mg^* -continuity

Definition 10. Let (X, τ) be a topological space. A subset A of X is said to be g-closed [15] (resp. sg^* -closed, pg^* -closed, αg^* -closed, βg^* -closed [21]) if $Cl(A) \subset U$ whenever $A \subset U$ and U is open (resp. semi-open, preopen, α -open, β -open) in X.

Remark 5. (1) An sg^{*}-closed set is called ω -closed [34], \hat{g} -closed [35], or semi-star generalized closed [30].

(2) By the definitions, we obtain the following diagram:

DIAGRAM I

$$\begin{array}{c} g\text{-closed} \Leftarrow \alpha g^*\text{-closed} \Leftarrow pg^*\text{-closed} \\ & \uparrow & \uparrow \\ & sg^*\text{-closed} \Leftarrow \beta g^*\text{-closed} \Leftarrow \text{closed} \end{array}$$

Definition 11. A subset A of a topological space (X, τ) is said to be g-open (resp. sg^{*}-open or ω -open, pg^{*}-open, α g^{*}-open, β g^{*}-open [21]) if X - A is g-closed (resp. sg^{*}-closed, pg^{*}-closed, α g^{*}-closed, β g^{*}-closed).

The family of all g-open (resp. sg^* -open, pg^* -open, αg^* -open, βg^* -open) sets of X is denoted by GO(X) (resp. $SG^*O(X)$ or $\omega(X)$, $PG^*O(X)$, $\alpha G^*O(X)$, $\beta G^*O(X)$). **Definition 12.** Let (X, τ) be a topological space and A a subset of X. The intersection of all g-closed (resp. sg^* -closed, pg^* -closed, αg^* -closed, βg^* -closed) sets of X containing A is called the g-closure [10] (resp. sg^* -closure or ω -closure [33], pg^* -closure, αg^* -closure, βg^* -closure) of A and is denoted by gCl(A) (resp. sg^* Cl(A) or ω Cl(A), pg^* Cl(A), αg^* Cl(A), βg^* Cl(A)).

Definition 13. Let (X, τ) be a topological space and A a subset of X. The union of all g-open (resp. sg^* -open, pg^* -open, αg^* -open, βg^* -open) sets of X contained in A is called the g-interior [8] (resp. sg^* -interior, pg^* -interior, αg^* -interior, βg^* -interior) of A and is denoted by gInt(A) (resp. sg^* Int(A), pg^* Int(A), αg^* Int(A), βg^* Int(A)).

Remark 6. Let (X, τ) be a topological space and A a subset of X.

(1) Then, GO(X), $SG^*O(X)$, $PG^*O(X)$, $\alpha G^*O(X)$ and $\beta G^*O(X)$ are all *m*-structures on *X*. Hence, if we put $m_X = GO(X)$ (resp. $SG^*O(X)$, $PG^*O(X)$, $\alpha G^*O(X)$, $\beta G^*O(X)$), then we have

(i) $\mathrm{mCl}(A) = g\mathrm{Cl}(A)$ (resp. $sg^*\mathrm{Cl}(A), pg^*\mathrm{Cl}(A), \alpha g^*\mathrm{Cl}(A), \beta g^*\mathrm{Cl}(A))$,

(*ii*) mInt(A) = gInt(A) (resp. sg^* Int(A)), pg^* Int(A), αg^* Int(A), βg^* Int(A)).

(2) If $m_X = \text{GO}(X)$, then by Lemma 1 we obtain Theorem 2.1 (5) and Theorem 2.8 (2), (3), (5), (6), (7) established in [8]. By Lemma 2, we obtain Theorem 2.1 (4) in [8].

(3) If $m_X = SG^*O(X)$, then by Lemma 2 we obtain Proposition 3.16 of [33].

(4) The *m*-structures GO(X), $PG^*O(X)$, $\alpha G^*O(X)$, $\beta G^*O(X)$ do not have property \mathcal{B} , in general. However, it is known in [32] that $SG^*O(X)$ is a topology for X.

Definition 14. Let (X, τ) be a topological space and m_X an *m*-structure on X. A subset A of X is said to be mg^* -closed [23] if $Cl(A) \subset U$ whenever $A \subset U$ and $U \in m_X$.

Remark 7. Let (X, τ) be a topological space and m_X an *m*-structure on *X*. We put $m_X = \tau$ (resp. SO(*X*), PO(*X*), $\alpha(X)$, $\beta(X)$). Then, an mg^* -closed set is a *g*-closed (resp. sg^* -closed, pg^* -closed, αg^* -closed, βg^* -closed) set.

Lemma 4 (Noiri and Popa [23]). Let (X, τ) be a topological space and m_X an m-structure on X. Let $\tau \subset m_X$. Then the following implications hold: closed $\Rightarrow mg^*$ -closed $\Rightarrow g$ -closed.

Remark 8. Let (X, τ) be a topological space and m_X an *m*-structure on X. Let $\tau \subset m_X$.

(1) By Lemma 4, we obtain Propositions 2.4 and 2.5 in [33], Theorem 1.33 (a) and (c) in [30], and Theorem 3.01 in [35].

(2) The implications in Lemma 4 are strict as seen from Examples 3.01 and 3.02 in [35] or Examples 1.3.5 and 1.3.6 in [30].

The complement of an mg^* -closed set is said to be mg^* -open. The family of all mg^* -open sets is denoted by $mG^*O(X)$. Obviously, $mG^*O(X)$ is an *m*-structure on X and is called an mg^* -structure on X. If $m_X = \tau$ (resp. SO(X), PO(X), $\alpha(X)$, $\beta(X)$), then $mG^*O(X) = GO(X)$ (resp. $SG^*O(X)$, $PG^*O(X)$, $\alpha G^*O(X)$, $\beta G^*O(X)$).

Definition 15. A function $f : (X, \tau) \to (Y, \sigma)$ is said to be ω -continuous [32] or \hat{g} -continuous [35] if $f^{-1}(K)$ is ω -closed in X for every closed set K of Y.

Remark 9. (1) Let (X, τ) be a topological space and $m_X = SG^*O(X) = \omega(X)$, then $f : (X, \tau) \to (Y, \sigma)$ is ω -continuous if and only if $f : (X, \omega(X)) \to (Y, \sigma)$ is m^* -continuous.

(2) By Lemma 4, we have the following implications: continuity $\Rightarrow \omega$ -continuity $\Rightarrow g$ -continuity. The implications are strict as seen from Examples 3.8 and 3.9 of [33].

Definition 16. Let (X, τ) be a topological space and $mG^*O(X)$ an mg^* -structure on X. A function $f: (X, \tau) \to (Y, \sigma)$ is said to be

(1) mg^* -continuous if $f : (X, mG^*O(X)) \to (Y, \sigma)$ is m-continuous, equivalently if for each $x \in X$ and each open set V containing f(x) there exists an mg^* -open set U containing x such that $f(U) \subset V$,

(2) m^*g^* -continuous if $f : (X, \mathrm{mG}^*\mathrm{O}(X)) \to (Y, \sigma)$ is m^* -continuous, equivalently if $f^{-1}(K)$ is mg^* -closed in X for each closed set K of Y.

By DIAGRAM I and Definition 16, we obtain the following diagram:

DIAGRAM II

$$\begin{array}{c} g\text{-continuity} \Leftarrow \alpha g^*\text{-continuity} \\ & \uparrow \\ sg^*\text{-continuity} \Leftarrow \beta g^*\text{-continuity} \Leftarrow \text{continuity} \\ \end{array}$$

Definition 17. Let X be a nonempty set and $mG^*O(X)$ an mg^* -structure on X. For a subset A of X, the mg^* -closure of A and the mg^* -interior of A are defined as follows:

(1) $mg^*\mathrm{Cl}(A) = \cap \{F : A \subset F, X - F \in \mathrm{mG}^*\mathrm{O}(X)\},\$

(2) $mg^*\operatorname{Int}(A) = \bigcup \{U : U \subset A, U \in \mathrm{mG}^*\mathrm{O}(X)\}.$

By Theorem 1, we obtain the following theorem and corollary.

Theorem 2. Let (X, τ) be a topological space and $mG^*O(X)$ an mg^* -structure on X. For a function $f : (X, \tau) \to (Y, \sigma)$, the following properties are equivalent:

(1) f is mg^* -continuous; (2) $f^{-1}(V) = mg^* \operatorname{Int}(f^{-1}(V))$ for every open set V of Y; (3) $f^{-1}(F) = mg^* \operatorname{Cl}(f^{-1}(F))$ for every closed set F of Y; (4) $mg^* \operatorname{Cl}(f^{-1}(B)) \subset f^{-1}(\operatorname{Cl}(B))$ for every subset B of Y; (5) $f(mg^* \operatorname{Cl}(A)) \subset \operatorname{Cl}(f(A))$ for every subset A of X; (6) $f^{-1}(\operatorname{Int}(B)) \subset mg^* \operatorname{Int}(f^{-1}(B))$ for every subset B of Y.

Corollary 2. Let (X, τ) be a topological space and $mG^*O(X)$ an mg^* -structure with property \mathcal{B} on X. Then, for a function $f : (X, \tau) \to (Y, \sigma)$, the following properties are equivalent:

(1) f is m^*g^* -continuous;

(2) $f^{-1}(V)$ is mg^* -open in X for every open set V of Y;

(3) $f^{-1}(F)$ is mg^* -closed in X for every closed set F of Y.

Remark 10. If $mG^*O(X) = SG^*O(X)$, then by Theorem 2 and Corollary 2 we obtain the result established in Theorem 3.17 of [33].

Let (X, τ) be a topological space and A a subset of X. A point $x \in X$ is called a θ -cluster point of A if $\operatorname{Cl}(V) \cap A \neq \emptyset$ for every open set Vcontaining x. The set of all θ -cluster points of A is called the θ -closure of Aand is denoted by $\operatorname{Cl}_{\theta}(A)$ [36]. If $A = \operatorname{Cl}_{\theta}(A)$, then A is said to be θ -closed. The complement of a θ -closed set is said to be θ -open.

Theorem 3. Let (Y, σ) be a regular space. For a function $f : (X, m_X) \to (Y, \sigma)$, the following properties are equivalent:

- (1) f is m-continuous;
- (2) $f^{-1}(\operatorname{Cl}_{\theta}(B)) = \operatorname{mCl}(f^{-1}(\operatorname{Cl}_{\theta}(B)))$ for every subset B of Y;

(3) $f^{-1}(K) = \mathrm{mCl}(f^{-1}(K))$ for every θ -closed set K of Y;

(4) $f^{-1}(V) = \operatorname{mInt}(f^{-1}(V))$ for every θ -open set V of Y.

Proof. It is known in [36] that $\operatorname{Cl}_{\theta}(B)$ is closed in Y for every subset B of Y. Since (Y, σ) is regular, every open (resp. closed) set of Y is θ -open (resp. θ -closed). Therefore, the proof follows easily from Theorem 1.

Corollary 3. Let (Y, σ) be a regular space and m_X an m-structure with property \mathcal{B} . For a function $f : (X, m_X) \to (Y, \sigma)$, the following properties are equivalent:

- (1) f is m-continuous;
- (2) $f^{-1}(\operatorname{Cl}_{\theta}(B))$ is m-closed for every subset B of Y;
- (3) $f^{-1}(K)$ is m-closed in X for every θ -closed set K of Y;
- (4) $f^{-1}(V)$ is m-open in X for every θ -open set V of Y.

Proof. The proof follows from Lemma 3 and Theorem 3.

Theorem 4. Let (Y, σ) be a regular space and $mG^*O(X)$ an mg^* -structure on X. For a function $f : (X, \tau) \to (Y, \sigma)$, the following properties are equivalent:

(1) f is mg^* -continuous; (2) $f^{-1}(\operatorname{Cl}_{\theta}(B)) = mg^*\operatorname{Cl}(f^{-1}(\operatorname{Cl}_{\theta}(B)))$ for every subset B of Y; (3) $f^{-1}(K) = mg^*\operatorname{Cl}(f^{-1}(K))$ for every θ -closed set K of Y; (4) $f^{-1}(V) = mg^*\operatorname{mInt}(f^{-1}(V))$ for every θ -open set V of Y.

Proof. The proof follows from Definition 16 and Theorem 3.

Corollary 4. Let (Y, σ) be a regular space and $mG^*O(X)$ an mg^* -structure with property \mathcal{B} on X. For a function $f : (X, \tau) \to (Y, \sigma)$, the following properties are equivalent:

(1) f is mg^* -continuous; (2) $f^{-1}(Cl_*(P))$ is mg^* closed in f

(2) $f^{-1}(Cl_{\theta}(B))$ is mg^* -closed in X for every subset B of Y;

- (3) $f^{-1}(K)$ is mg^* -closed in X for every θ -closed set K of Y;
- (4) $f^{-1}(V)$ is mg^* -open in X for every θ -open set V of Y.

Proof. The proof follows from Theorem 4 and Lemma 3.

Corollary 5. Let (Y, σ) be a regular space. For a function $f : (X, \tau) \to (Y, \sigma)$, the following properties are equivalent:

- (1) f is ω -continuous;
- (2) $f^{-1}(Cl_{\theta}(B))$ is ω -closed in X for every subset B of Y;
- (3) $f^{-1}(K)$ is ω -closed in X for every θ -closed set K of Y;
- (4) $f^{-1}(V)$ is ω -open in X for every θ -open set V of Y.

Proof. The proof follows from Corollary 4 because the family of ω -open sets is a topology for X and hence it has property \mathcal{B} .

5. Some properties of mg^* -continuity

In this section, we investigate the relationships between mg^* -continuity and mg^* -compactness, mg^* -connectedness and strongly mg^* -closed graphs.

Definition 18. An *m*-space (X, m_X) is said to be m- T_2 [26] if for any distinct points x, y of X, there exist $U, V \in m_X$ such that $x \in U, y \in V$, and $U \cap V = \emptyset$.

Remark 11. (1) Let (X, τ) be a topological space and $\mathrm{mG^*O}(X)$ an mg^* -structure on X, then (X, τ) is said to be mg^*-T_2 if the *m*-space $(X, \mathrm{mG^*}O(X))$ is $m-T_2$.

(2) If $mG^*O(X) = SG^*O(X) = \omega(X)$, then (X, τ) is said to be ω - T_2 [29].

Lemma 5 (Popa and Noiri [26]). If $f : (X, m_X) \to (Y, \sigma)$ is an m-continuous injection and (Y, σ) is a T_2 -space, then (X, m_X) is m- T_2 .

Theorem 5. If $f : (X, \tau) \to (Y, \sigma)$ is an m^*g^* -continuous injection and (Y, σ) is a T_2 -space, then (X, τ) is mg^* - T_2 .

Proof. The proof follows from Remark 4 and Lemma 5.

Corollary 6. If $f : (X, \tau) \to (Y, \sigma)$ is an ω -continuous injection and (Y, σ) is a T_2 -space, then (X, τ) is ω - T_2 .

Definition 19. An *m*-space (X, m_X) is said to be *m*-compact [26] if every cover of X by sets of m_X has a finite subcover.

A subset K of an m-space (X, m_X) is said to be m-compact [26] if every cover of K by subsets of m_X has a finite subcover.

Remark 12. Let (X, τ) be a topological space and $mG^*O(X)$) an mg^* -structure on X.

(1) (X, τ) is said to be mg^* -compact if $(X, mG^*O(X))$ is m-compact.

(2) If $mG^*O(X) = SG^*O(X) = \omega(X)$, then (X, τ) is said to be ω -compact.

Lemma 6 (Popa and Noiri [26]). If a function $f : (X, m_X) \to (Y, \sigma)$ is *m*-continuous and K is an *m*-compact set of X, then f(K) is compact.

Theorem 6. If $f : (X, \tau) \to (Y, \sigma)$ is an m^*g^* -continuous function and K is an mg^* -compact set of X, then f(K) is compact.

Proof. The proof follows from Definition 19, Remark 4 and Lemma 6. ■

Corollary 7. If $f : (X, \tau) \to (Y, \sigma)$ is an ω -continuous function and K is an ω -compact set of X, then f(K) is compact.

Definition 20. An *m*-space (X, m_X) is said to be *m*-connected [26] if X cannot be written as the union of two nonempty disjoint *m*-open sets.

Remark 13. Let (X, τ) be a topological space and mG^{*}O(X) an mg^* -structure on X.

(1) (X, τ) is said to be mg^* -connected if $(X, mG^*O(X))$ is m-connected.

(2) If mG*O(X) = SG*O(X) = $\omega(X)$, then (X, τ) is said to be ω -connected [32].

Lemma 7. If $f: (X, m_X) \to (Y, \sigma)$ is an m^* -continuous surjection and (X, m_X) is m-connected, then (Y, σ) is connected.

Proof. Assume that (Y, σ) is not connected. Then there exist nonempty open sets V_1 and V_2 such that $V_1 \cap V_2 = \emptyset$ and $V_1 \cup V_2 = Y$. Hence we have $f^{-1}(V_1) \cap f^{-1}(V_2) = \emptyset$ and $f^{-1}(V_1) \cup f^{-1}(V_2) = X$. Since f is an

 m^* -continuous surjection, $f^{-1}(V_1)$ and $f^{-1}(V_2)$ are nonempty *m*-open sets. Therefore, (X, m_X) is not *m*-connected. This is a contradiction and hence Y is connected.

Theorem 7. Let (X, τ) be a topological space and $mG^*O(X)$ an mg^* -structure on X. If $f : (X, \tau) \to (Y, \sigma)$ is an m^*g^* -continuous surjection and (X, τ) is mg^* -connected, then (Y, σ) is connected.

Proof. The proof follows from Definition 20, Remark 13 and Lemma 7. ■

Corollary 8. If $f : (X, \tau) \to (Y, \sigma)$ is an ω -continuous surjection and (X, τ) is ω -connected, then (Y, σ) is connected.

Definition 21. A function $f : (X, m_X) \to (Y, \sigma)$ is said to have a strongly m-closed graph (resp. m-closed graph) [26] if for each $(x, y) \in$ $(X \times Y) - G(f)$, there exist $U \in m_X$ containing x and an open set V of Y containing y such that $[U \times Cl(V)] \cap G(f) = \emptyset$ (resp. $[U \times V] \cap G(f) = \emptyset$).

Remark 14. Let (X, τ) be a topological space and mG^{*}O(X) an mg^* -structure on X.

(1) A function $f : (X, \tau) \to (Y, \sigma)$ is said to have a strongly mg^* -closed graph (resp. mg^* -closed graph) if for each $(x, y) \in (X \times Y) - G(f)$, there exist $U \in mG^*O(X)$ containing x and an open set V of Y containing y such that $[U \times Cl(V)] \cap G(f) = \emptyset$ (resp. $[U \times V] \cap G(f) = \emptyset$).

(2) If $mG^*O(X) = GO(X)$ (resp. $SG^*O(X)$, $PG^*O(X)$, $\alpha G^*O(X)$, $\beta G^*O(X)$) and f has a strongly mg^* -closed graph, then f has a strongly g-closed graph (resp. strongly sg^* -closed graph or strongly ω -closed graph, strongly pg^* -closed graph, strongly αg^* -closed graph, strongly βg^* -closed graph). For mg^* -closed graphs, we define similarly.

Lemma 8 (Popa and Noiri [26]). A function $f : (X, m_X) \to (Y, \sigma)$ is *m*-continuous and (Y, σ) is a Hausdorff space, then f has a strongly *m*-closed graph.

Theorem 8. Let (X, τ) be a topological space and $mG^*O(X)$ an mg^* -structure on X. If a function $f : (X, \tau) \to (Y, \sigma)$ is mg^* -continuous and (Y, σ) is a Hausdorff space, then f has a strongly mg^* -closed graph.

Proof. The proof follows from Definition 21, Remark 14 and Lemma 8. ■

Corollary 9. If a function $f : (X, \tau) \to (Y, \sigma)$ is an ω -continuous function and (Y, σ) is a Hausdorff space, then f has a strongly ω -closed graph.

Lemma 9 (Popa and Noiri [26]). Let (X, m_X) be an m-space and (Y, σ) a topological space. If $f : (X, m_X) \to (Y, \sigma)$ is a surjective function with a strongly m-closed graph, then Y is Hausdorff.

Theorem 9. Let (X, τ) be a topological space and $mG^*O(X)$ an mg^* -structure on X. If $f : (X, \tau) \to (Y, \sigma)$ is a surjective function with a strongly mg^* -closed graph, then Y is Hausdorff.

Proof. The proof follows from Definition 21 and Lemma 9.

Corollary 10. If $f : (X, \tau) \to (Y, \sigma)$ is a surjective function with a strongly ω -closed graph, then Y is Hausdorff.

Lemma 10 (Popa and Noiri [26]). Let (X, m_X) be an m-space, where m_X has property \mathcal{B} . If $f : (X, m_X) \to (Y, \sigma)$ is an m-continuous injection with an m-closed graph, then X is m-T₂.

Theorem 10. Let (X, τ) be a topological space and $\mathrm{mG^*O}(X)$ an mg^* -structure satisfying property \mathcal{B} . If $f : (X, \tau) \to (Y, \sigma)$ is an mg^* -continuous injection with an mg^* -closed graph, then X is mg^* -T₂.

Proof. The proof follows from Definition 21, Remark 14 and Lemma 10. ■

Corollary 11. If $f : (X, \tau) \to (Y, \sigma)$ is an injective ω -continuous function with an ω -closed graph, then Y is ω -T₂.

Definition 22. Let (X, m_X) be an m-space and A a subset of X. The m_X -frontier of A, mFr(A), [26] is defined by mFr(A) = mCl(A) \cap mCl(X – A) = mCl(A) – mInt(A).

If (X, τ) is a topological space and $\mathrm{mG^*O}(X)$ is an mg^* -structure, then $mg^*\mathrm{Fr}(A) = mg^*\mathrm{Cl}(A) \cap mg^*\mathrm{Cl}(X - A) = mg^*\mathrm{Cl}(A) - mg^*\mathrm{Int}(A)$. If $\mathrm{mG^*O}(X) = \mathrm{GO}(X)$, then we obtain the g-frontier in Definition 4 of [8].

Theorem 11. The set of all points of X at which a function $f : (X, m_X) \rightarrow (Y, \sigma)$ is not m-continuous is identical with the union of the m-frontiers of the inverse images of open sets containing f(x).

Proof. Suppose that f is not m-continuous at $x \in X$. There exists an open set V of Y containing f(x) such that $U \cap (X - f^{-1}(V)) \neq \emptyset$ for every m-open set U containing x. By Lemma 2, we have $x \in \operatorname{mCl}(X - f^{-1}(V))$. On the other hand, we have $x \in f^{-1}(V)$ and hence $x \in \operatorname{mFr}(f^{-1}(V))$.

Conversely, suppose that f is m-continuous at $x \in X$. Then, for any open set V of Y containing f(x), there exists $U \in m_X$ containing x such that $f(U) \subset V$; hence $U \subset f^{-1}(V)$. Therefore, we have $x \in U \subset \operatorname{mInt}(f^{-1}(V))$. This contradicts to the fact that $x \in \operatorname{mFr}(f^{-1}(V))$. **Theorem 12.** Let (X, τ) is a topological space and $mG^*O(X)$ an mg^* -structure. Then, the set of all points of X at which a function $f : (X, \tau) \to (Y, \sigma)$ is not mg^* -continuous is identical with the union of the mg^* -frontiers of the inverse images of open sets containing f(x).

Proof. The proof follows from Definition 22 and Theorem 11.

Corollary 12. The set of all points at $x \in X$ which a function $f : (X, \tau) \to (Y, \sigma)$ is not ω -continuous is identical with the union of the ω -frontiers of the inverse images of open sets containing f(x).

Proof. Since $\omega(X)$ is a topology for X, m-continuity coincides with m^* -continuity and hence the result follows from Theorem 12.

For a function $f: (X, m_X) \to (Y, \sigma)$, we define $D_m(f)$ as follows:

 $D_m(f) = \{x \in X : f \text{ is not } m \text{-continuous at } x\}.$

Lemma 11 (Popa and Noiri [27]). For a function $f : (X, m_X) \to (Y, \sigma)$, the following properties hold:

$$D_m(f) = \bigcup_{G \in \sigma} \{f^{-1}(G) - \operatorname{mInt}(f^{-1}(G))\}$$

= $\bigcup_{B \in \mathcal{P}(Y)} \{f^{-1}(\operatorname{Int}(B)) - \operatorname{mInt}(f^{-1}(B))\}$
= $\bigcup_{B \in \mathcal{P}(Y)} \{\operatorname{mCl}(f^{-1}(B)) - f^{-1}(\operatorname{Cl}(B))\}$
= $\bigcup_{A \in \mathcal{P}(X)} \{\operatorname{mCl}(A) - f^{-1}(\operatorname{Cl}(f(A)))\}$
= $\bigcup_{F \in \mathcal{F}} \{\operatorname{mCl}(f^{-1}(F)) - f^{-1}(F)\},$
where \mathcal{F} is the family of closed sets of $(Y, \sigma).$

Let (X, τ) be a topological space and mG^{*}O(X) an mg^* -structure on X. For a function $f : (X, \tau) \to (Y, \sigma)$, we denote by $D_{mg^*}(f)$ the set of all points of X at which the function f is not mg^* -continuous.

Theorem 13. Let (X, τ) be a topological space and $\mathrm{mG}^*\mathrm{O}(X)$ an mg^* -structure on X. For a function $f: (X, \tau) \to (Y, \sigma)$, the following properties hold: $D_{mg^*}(f) = \bigcup_{G \in \sigma} \{f^{-1}(G) - mg^*\mathrm{Int}(f^{-1}(G))\}$ $= \bigcup_{B \in \mathcal{P}(Y)} \{f^{-1}(\mathrm{Int}(B)) - mg^*\mathrm{Int}(f^{-1}(B))\}$ $= \bigcup_{B \in \mathcal{P}(Y)} \{mg^*\mathrm{Cl}(f^{-1}(B)) - f^{-1}(\mathrm{Cl}(B))\}$ $= \bigcup_{A \in \mathcal{P}(X)} \{mg^*\mathrm{Cl}(A) - f^{-1}(\mathrm{Cl}(f(A)))\}$ $= \bigcup_{F \in \mathcal{F}} \{mg^*\mathrm{Cl}(f^{-1}(F)) - f^{-1}(F)\},$ where \mathcal{F} is the family of closed sets of (Y, σ) .

Proof. The proof follows from Lemma 11.

Let $f: (X, \tau) \to (Y, \sigma)$ be a function. By $D_{\omega}(f)$, we denote the set of all points $x \in X$ at which f is not ω -continuous. Then by Theorem 13 we obtain the following corollary.

Corollary 13. For a function $f : (X, \tau) \to (Y, \sigma)$, the following properties hold:

$$D_{\omega}(f) = \bigcup_{G \in \sigma} \{f^{-1}(G) - \omega \operatorname{Int}(f^{-1}(G))\} \\= \bigcup_{B \in \mathcal{P}(Y)} \{f^{-1}(\operatorname{Int}(B)) - \omega \operatorname{Int}(f^{-1}(B))\} \\= \bigcup_{B \in \mathcal{P}(Y)} \{\omega \operatorname{Cl}(f^{-1}(B)) - f^{-1}(\operatorname{Cl}(B))\} \\= \bigcup_{A \in \mathcal{P}(X)} \{\omega \operatorname{Cl}(A) - f^{-1}(\operatorname{Cl}(f(A)))\} \\= \bigcup_{F \in \mathcal{F}} \{\omega \operatorname{Cl}(f^{-1}(F)) - f^{-1}(F)\},$$
where \mathcal{F} is the family of closed sets of (Y, σ) .

6. Other generalizations of ω -continuity

First, we recall the δ -closure of a subset in a topological space. Let (X, τ) be a topological space and A a subset of X. A point $x \in X$ is called a δ -cluster point of A if $Int(Cl(V)) \cap A \neq \emptyset$ for every open set V containing x. The set of all δ -cluster points of A is called the δ -closure of A and is denoted by $Cl_{\delta}(A)$ [36].

Definition 23. A subset of a topological space (X, τ) is said to be

- (1) δ -preopen [31] (resp. θ -preopen [24]) if $A \subset Int(Cl_{\delta}(A))$ (resp. $A \subset Int(Cl_{\theta}(A)))$,
- (2) δ - β -open [13] (resp. θ - β -open [24]) if $A \subset Cl(Int(Cl_{\delta}(A)))$ (resp. $A \subset Cl(Int(Cl_{\theta}(A))))$,
- (3) b-open [4] if $A \subset Int(Cl(A)) \cup Cl(Int(A))$.

By $\delta PO(X)$ (resp. $\delta\beta(X)$, $\theta PO(X)$, $\theta\beta(X)$, BO(X)), we denote the collection of all δ -preopen (resp. δ - β -open, θ -preopen, θ - β -open, b-open) sets of a topological space (X, τ) . These five collections are *m*-structures with property \mathcal{B} . In [24], the following diagram is known:

DIAGRAM III

$$\begin{array}{ccc} \alpha \text{-open} \Rightarrow \text{preopen} \Rightarrow \delta \text{-preopen} \Rightarrow \theta \text{-preopen} \\ & & & & & \\ & & & & & \\ \text{semi-open} \Rightarrow \beta \text{-open} \Rightarrow \delta \text{-}\beta \text{-open} \Rightarrow \theta \text{-}\beta \text{-open} \end{array}$$

For the new collections of subsets of a topological space (X, τ) , we can define many new variations of g-closed sets. For example, in case $m_X = \delta \text{PO}(X)$, $\delta \beta(X)$, $\theta \text{PO}(X)$, $\theta \beta(X)$, or BO(X) we can define new types of g-closed sets as follows:

Definition 24. A subset A of a topological space (X, τ) is said to be δpg^* -closed (resp. θpg^* -closed, $\delta \beta g^*$ -closed, $\theta \beta g^*$ -closed, bg^* -closed) if $Cl(A) \subset U$ whenever $A \subset U$ and U is δ -preopen (resp. θ -preopen, δ - β -open, θ - β -open, b-open) in (X, τ) . By DIAGRAM I and Definition 24, we have the following diagram:

DIAGRAM IV

$$g\text{-closed} \Leftarrow \alpha g^*\text{-closed} \Leftarrow pg^*\text{-closed} \Leftarrow \delta pg^*\text{-closed} \Leftarrow \theta pg^*\text{-closed}$$

$$\uparrow \qquad \uparrow \qquad \uparrow$$

$$sg^*\text{-closed} \Leftarrow \beta g^*\text{-closed} \Leftarrow \delta \beta g^*\text{-closed} \Leftarrow \theta \beta g^*\text{-closed} \Leftarrow \text{closed}$$

Definition 25. A function $f : (X, \tau) \to (Y, \sigma)$ is said to be δpg^* -continuous (resp. θpg^* -continuous, $\delta\beta g^*$ -continuous, $\theta\beta g^*$ -continuous, bg^* -continuous) if $f^{-1}(K)$ is δpg^* -closed (resp. θpg^* -closed, $\delta\beta g^*$ -closed, $\theta\beta g^*$ -closed, bg^* -closed) in X for each closed set K of Y.

Finally, we have to state the following remark:

Remark 15. The families $\delta PO(X)$, $\delta\beta(X)$, $\theta PO(X)$, $\theta\beta(X)$, and BO(X) have property \mathcal{B} and we can apply the results established in Sections 4 and 5 to the functions in Definition 25.

References

- ABD EL-MONSEF M.E., EL-DEEB S.N., MAHMOUD R.A., β-open sets and β-continuous mappings, Bull. Fac. Sci. Assiut Univ., 12(1983), 77-90.
- [2] ABD EL-MONSEF M.E., MAHMOUD R.A., LASHIN E.R., β-closure and β-interior, J. Fac. Ed. Ain Shams Univ., 10(1986), 235-245.
- [3] ANDRIJEVIĆ D., Semi-preopen sets, Mat. Vesnik, 38(1986), 24-32.
- [4] ANDRIJEVIĆ D., On b-open sets, Mat. Vesnik, 48(1996), 59-64.
- [5] BALACHANDRAN K., SUNDARM P., MAKI H., On generalized continuous maps in topological spaces, Mem. Fac. Sci. Kochi Univ. Ser. A Math., 12(1991), 5-13.
- [6] CALDAS M., On g-closed sets and g-continuous mappings, Kyungpook Math. J., 33(1993), 205-209.
- [7] CALDAS M., Further results on generalized open mappings in topological spaces, Bull. Calcutta Math. Soc., 88(1996), 37-42.
- [8] CALDAS M., JAFARI S., NOIRI T., Notions via g-open sets, Kochi J. Math., 2(2007), 43-50.
- [9] CROSSLEY S.G., HILDEBRAND S.K., Semi-closure, Texas J. Sci., 22(1971), 99-112.
- [10] DUNHAM W., A new closure operator for non- T_1 topologies, Kyungpook Math. J., 22(1982), 55-60.
- [11] DUNHAM W., LEVINE N., Further results of genralized closed sets in topology, *Kyungpook Math. J.*, 20(1980), 169–175.
- [12] EL-DEEB S.N., HASANEIN I.A., MASHHOUR A.S., NOIRI T., On p-regular spaces, Bull. Math. Soc. Sci. Math. R. S. Roumanie, 27(75)(1983), 311-315.
- [13] HATIR E., NOIRI T., Decompositions of continuity and complete continuity, Acta Math. Hungar., 113(2006), 281-287.

- [14] LEVINE N., Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly, 70(1963), 36-41.
- [15] LEVINE N., Generalized closed sets in topology, Rend. Circ. Mat. Palermo (2), 19(1970), 89-96.
- [16] MAKI H., RAO K.C., GANI A.N., On generalizing semi-open and preopen sets, *Pure Appl. Math. Sci.*, 49(1999), 17-29.
- [17] MASHHOUR A.S., ABD EL-MONSEF M.E., EL-DEEP S.N., On precontinuous and weak precontinuous mappings, *Proc. Math. Phys. Soc. Egypt*, 53(1982), 47-53.
- [18] MASHHOUR A.S., HASANEIN I.A., EL-DEEP S.N., α-continuous and α-open mappings, Acta Math. Hungar., 41(1983), 213-218.
- [19] MIN W.K., M^{*}-continuity and product minimal structures on minimal structures, (submitted).
- [20] MUNSHI B.M., BASSAN D.S., g-continuous mappings, Vidya J. Gujarat Univ. B Sci., 24(1981), 63-68.
- [21] MURUGALINGAM M., A Study of Semi-generalized Topology, Ph. D. Thesis, Manonmaniam Sundaranar Univ., Tamil Nadu (India), 2005.
- [22] NJÅSTAD O., On some classes of nearly open sets, Pacific J. Math., 15(1965), 961-970.
- [23] NOIRI T., POPA V., Between closed sets and g-closed sets, Rend. Circ. Mat. Palermo (2), 55(2006), 175-184.
- [24] NOIRI T., POPA V., On *m*-almost continuous multifunctions, Istanbul J. Math. Phys. Astro. Fac. Sci. (N.S.), 1(2004/2005) (to appear).
- [25] POPA V., NOIRI T., On M-continuous functions, Anal. Univ. "Dunărea de Jos" Galați, Ser. Mat. Fiz. Mec. Teor. (2), 18(23)(2000), 31-41.
- [26] POPA V., NOIRI T., On the definitions of some generalized forms of continuity under minimal conditions, Mem. Fac. Sci. Kochi Univ. Ser. A Math., 22(2001), 9-18.
- [27] POPA V., NOIRI T., On the points of continuity and discontinuity, Bull. U. P. G. Ploesti, Ser. Mat. Fiz. Inform., 53(2001), 95-100.
- [28] POPA V., NOIRI T., A unified theory of weak continuity for functions, Rend. Circ. Mat. Palermo (2), 51(2002), 439-464.
- [29] RAJESH N., On total ω -continuity, strong ω -continuity and contra ω -continuity, Soochow J. Math., 33(2007), 679-690.
- [30] RAO K.C., JOSEPH K., Semi-star generalized closed sets, Bull. Pure Appl. Sci., 19E(2)(2000), 281-290.
- [31] RAYCHAUDHURI S., MUKHERJEE M.N., On δ-almost continuity and δ-preopen sets, Bull. Inst. Math. Acad. Sinica, 21(1993), 357-366.
- [32] SHEIK M.J., A Study on Generalizations of Closed Sets and Continuous Maps in Topological Spaces, Ph. D. Thesis, Bharathiar Univ., Coinbatore, (2002).
- [33] SHEIK M.J., SUNDARAM P., On decomposition of continuity, Bull. Allahabad Math. Soc., 22(2007), 1-9.
- [34] SUNDARAM P., SHEIK M.J., Weakly closed sets and weakly continuous maps in topological spaces, Proc. 82nd Indian Science Congress, Calcutta, 1995, p. 49.
- [35] VEERA KUMAR M.K.R.S., On ĝ-closed sets in topological spaces, Bull. Allahabad Math. Soc., 18(2003), 99-112.

[36] VELIČKO N.V., *H*-closed topological spaces, *Amer. Math. Soc. Transl. (2)*, 78(1968), 103-118.

Takashi Noiri 2949-1 Shiokita-Cho, Hinagu Yatsushiro-Shi, Kumamoto-Ken, 869-5142, Japan *e-mail:* t.noiri@nifty.com

VALERIU POPA DEPARTMENT OF MATHEMATICS UNIV. VASILE ALECSANDRI OF BACĂU 600 114 BACĂU, ROMANIA *e-mail:* vpopa@ub.ro

Received on 09.05.2009 and, in revised form, on 09.05.2010.