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1. Introduction

The concept of generalized closed (briefly g-closed) sets in topological
spaces was introduced by Levine [15]. These sets also considered by Dun-
ham [10] and Dunham and Levine [11]. In 1981, Munshi and Bassan [20]
introduced the notion of generalized continuous (briefly g-continuous) func-
tions. The notion of g-continuity is also studied in [5], [6], [7], [8] and other
papers. The notions of sg*-closed sets, pg*-closed sets, ag*-closed sets, and
Bg*-closed sets are introduced and studied in [21] by using semi-open sets,
preopen sets, a-open sets, and [-open sets, respectively. The notion of
sg*-closed sets is called w-closed [34], g-closed [35], or semi-star general-
ized closed [30]. The notion of w-continuous (or g-continuous) functions is
introduced and studied in [35], [29], [33], and [34].

In [25] and [26], the present authors introduced and studied the notions
of m-structures, m-spaces and m-continuity. In [23], the present authors
introduced the notion of mg*-closed sets in order to establish the unified
theory of the notions: sg*-closed sets, pg*-closed sets, ag*-closed sets, and
Bg*-closed sets and obtain the basic properties, characterizations and pre-
serving properties.

In this paper, by using mg*-closed sets and m-continuity, we introduce
the notion of mg*-continuous functions as a generalization of w-continuity or
g-continuity. We obtain some characterizations and properties of mg*-conti-
nuity. In the last section, we introduce new generalizations of w-continuous
functions.
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2. Preliminaries

Let (X, 7) be a topological space and A a subset of X. The closure of
A and the interior of A are denoted by Cl(A) and Int(A), respectively. We
recall some generalized open sets in topological spaces.

Definition 1. Let (X, 7) be a topological space. A subset A of X is said
to be

(1) a-open [22] if A C Int(Cl(Int(A))),

(2) semi-open [14] if A C Cl(Int(A)),

(3) preopen [17] if A C Int(Cl(A)),

(4) B-open [1] or semi-preopen [3] if A C Cl(Int(Cl(A))).

The family of all a-open (resp. semi-open, preopen, S-open) sets in (X, 7)
is denoted by a(X) (resp. SO(X), PO(X), B(X)).

Definition 2. Let (X, 7) be a topological space. A subset A of X is said

to be a-closed [18] (resp. semi-closed [9], preclosed [17], B-closed [1]) if the
complement of A is a-open (resp. semi-open, preopen, [3-open).

Definition 3. Let (X, 1) be a topological space and A a subset of X. The
intersection of all a-closed (resp. semi-closed, preclosed, 3-closed) sets of X
containing A is called the a-closure [18] (resp. semi-closure [9], preclosure
[12], B-closure [2]) of A and is denoted by aCl(A) (resp. sCl(A), pClL(A),
3CI(A)).

Definition 4. Let (X, 1) be a topological space and A a subset of X. The
union of all a-open (resp. semi-open, preopen, B-open) sets of X contained
in A is called the a-interior [18] (resp. semi-interior [9], preinterior [12],
B-interior [2]) of A and is denoted by alnt(A) (resp. sInt(A), pInt(A),
sInt(A)).

3. Minimal structures and m-continuity

Definition 5. Let X be a nonempty set and P (X ) the power set of X.
A subfamily mx of P (X ) is called a minimal structure (briefly m-structure)
on X [25], [26] if D € mx and X € mx.

By (X, mx), we denote a nonempty set X with an m-structure mx on
X and call it an m-space. Each member of mx is said to be mx-open and
the complement of an mx-open set is said to be mx -closed.

Remark 1. Let (X, 7) be a topological space. Then the family a(X) is
a topology which is finer than 7. The families SO(X), PO(X), and 5(X)
are all m-structures on X.
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Definition 6. Let X be a nonempty set and mx an m-structure on X.
For a subset A of X, the mx-closure of A and the mx-interior of A are
defined in [16] as follows:

(1) mCl(A) =n{F:ACF,X —F €mx},

(2) mInt(A) =U{U : U C A,U € mx}.

Remark 2. Let (X,7) be a topological space and A a subset of X. If
myx = 7 (resp. SO(X), PO(X), a(X), (X)), then we have

(1) mCl(A) = CI(A) (resp. sCIl(A), pCIl(A), aCl(A), 3CI(A4)),

(2) mInt(A) = Int(A) (resp. sInt(A), pInt(A), adnt(A), glnt(A)) .

Lemma 1 (Maki et al. [16]). Let X be a nonempty set and mx a minimal
structure on X. For subsets A and B of X, the following properties hold:

(1) mCl(X — A) = X — mInt(A) and mInt(X — A) = X —mCI(A),

(2) If (X — A) € mx, then mCl(A) = A and if A € mx, then

mlInt(A) = A4,

(3) mCL(0) =0, mCl(X) = X, mInt()) = @ and mInt(X) = X,

(4) If A C B, then mCl(A) C mCl(B) and mInt(A) C mlnt(B),

(5) AcC mCl(A) and mInt(A) C A,

(6) mCl(mCl(A)) = mCl(A) and mInt(mInt(A4)) = mInt(A).

Lemma 2 (Popa and Noiri [25]). Let X be a nonempty set with a minimal
structure mx and A a subset of X. Then x € mCI(A) if and only if UNA # ()
for every U € mx containing x.

Definition 7. A minimal structure mx on a nonempty set X is said
to have property B [16] if the union of any family of subsets belong to mx
belongs to mx.

Remark 3. If (X, 7) is a topological space, then SO(X), PO(X), a(X),
and (X) have property B.

Lemma 3 (Popa and Noiri [28]). Let X be a nonempty set and mx an
m-structure on X satisfying property B. For a subset A of X, the following
properties hold:

(1) A e mx if and only if mInt(A) = A,

(2) A is mx-closed if and only if mCl(A) = A,

(3) mInt(A) € mx and mCl(A) is mx-closed.

Definition 8. A function f : (X, mx) — (Y, 0) is said to be m-continuous
[26] if for each x € X and each open set V containing f(x), there exists
U € mx containing x such that f(U) C V.

Theorem 1 (Popa and Noiri [26]). For a function f: (X,mx) — (Y,0),
the following properties are equivalent:
(1) fis m-continuous;
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) (V) = mInt(f~1(V)) for every open set V of Y;

) (F) = mCI(f~Y(F)) for every closed set F of Y;

) mCl(f~1(B)) C f~Y(CIUB)) for every subset B of Y;
) f(mCl(A)) C CI(f(A)) for every subset A of X;

) f~H(Int(B)) C mInt(f~(B)) for every subset B of Y.

Corollary 1 (Popa and Noiri [26]). For a function f : (X,mx) — (Y,0),
where mx has property B, the following properties are equivalent:

(1) fis m-continuous;

(2) f~H(V) is mx-open in X for every open set V of Y;

(3) f~YF) is mx-closed in X for every closed set F of Y.

Definition 9. A function f : (X, mx) — (Y, 0) is said to be m*-continuous
[19] if f=Y(V') is mx-open in X for each open set V of Y.

Remark 4. (1) If f : (X,mx) — (Y,0) is m*-continuous, then it is
m-continuous. By Example 3.4 of [19], an m-continuous function may not
be m*-continuous.

(2) Let mx have property B, then it follows from Corollary 1 that f is
m-continuous if and only if f is m*-continuous.

4. m~continuity and mg*-continuity

Definition 10. Let (X, ) be a topological space. A subset A of X is said
to be g-closed [15] (resp. sg*-closed, pg*-closed, ag*-closed, Bg*-closed [21])
if C1I(A) C U whenever A C U and U is open (resp. semi-open, preopen,
a-open, B-open) in X.

Remark 5. (1) An sg*-closed set is called w-closed [34], g-closed [35],
or semi-star generalized closed [30].
(2) By the definitions, we obtain the following diagram:

DIAGRAM 1

g-closed <= ag*-closed <= pg*-closed

T T

sg*-closed < Bg*-closed < closed

Definition 11. A subset A of a topological space (X, T) is said to be

g-open (resp. sg*-open or w-open, pg*-open, ag*-open, Bg*-open [21]) if
X — A is g-closed (resp. sg*-closed, pg*-closed, ag*-closed, 5g*-closed).

The family of all g-open (resp. sg*-open, pg*-open, ag*-open, Bg*-open)
sets of X is denoted by GO(X) (resp. SG*O(X) or w(X), PG*O(X),
aG*O(X), SG*O(X)).
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Definition 12. Let (X, 7) be a topological space and A a subset of X.
The intersection of all g-closed (resp. sg*-closed, pg*-closed, ag*-closed,
Bg*-closed) sets of X containing A is called the g-closure [10] (resp. sg*-clo-
sure or w-closure [33/, pg*-closure, ag*-closure, Sg*-closure) of A and is de-
noted by gC1(A) (resp. sg*Cl(A) or wCl(A), pg*Cl(A), ag*Cl(A), Bg*Cl(A)).

Definition 13. Let (X, 7) be a topological space and A a subset of X. The
union of all g-open (resp. sg*-open, pg*-open, ag*-open, Bg*-open) sets of
X contained in A is called the g-interior [8] (resp. sg*-interior, pg*-interior,
ag*-interior, Bg*-interior) of A and is denoted by gInt(A) (resp. sg*Int(A),
pg*Int(A), ag*Int(A), Sg*Int(A)).

Remark 6. Let (X, 7) be a topological space and A a subset of X.

(1) Then, GO(X), SG*O(X), PG*O(X), aG*O(X) and SG*O(X) are
all m-structures on X. Hence, if we put mx = GO(X) (resp. SG*O(X),
PG*O(X), aG*O(X), BG*O(X)), then we have

(1) mCl(A) = gCI(A) (resp. sg*Cl(A), pg*Cl(A), ag*Cl(A), Bg*Cl(A)),
(77) mInt(A) = gInt(A) (resp. sg*Int(A)), pg*Int(A), ag*Int(A),
By Tnt(A)).

(2) If mx = GO(X), then by Lemma 1 we obtain Theorem 2.1 (5) and
Theorem 2.8 (2), (3), (5), (6), (7) established in [8]. By Lemma 2, we obtain
Theorem 2.1 (4) in [8].

(3) If mx = SG*O(X), then by Lemma 2 we obtain Proposition 3.16 of
33].

(4) The m-structures GO(X), PG*O(X), aG*O(X), SG*O(X) do not
have property B, in general. However, it is known in [32] that SG*O(X) is
a topology for X.

Definition 14. Let (X, 1) be a topological space and mx an m-structure
on X. A subset A of X is said to be mg*-closed [23] if CI(A) C U whenever
AcCU and U € mx.

Remark 7. Let (X, 7) be a topological space and mx an m-structure
on X. We put mx = 7 (resp. SO(X), PO(X), a(X), B(X)). Then,
an mg*-closed set is a g-closed (resp. sg*-closed, pg*-closed, ag*-closed,
Bg*-closed ) set.

Lemma 4 (Noiri and Popa [23]). Let (X, 7) be a topological space and
mx an m-structure on X. Let 7 C mx. Then the following implications
hold: closed = mg*-closed = g-closed.

Remark 8. Let (X, 7) be a topological space and my an m-structure
on X. Let T C mx.

(1) By Lemma 4, we obtain Propositions 2.4 and 2.5 in [33], Theorem
1.33 (a) and (c) in [30], and Theorem 3.01 in [35].
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(2) The implications in Lemma 4 are strict as seen from Examples 3.01
and 3.02 in [35] or Examples 1.3.5 and 1.3.6 in [30].

The complement of an mg*-closed set is said to be mg*-open. The family
of all mg*-open sets is denoted by mG*O(X). Obviously, mG*O(X) is an
m-structure on X and is called an mg*-structure on X. If mx = 7 (resp.
SO(X), PO(X), a(X), (X)), then mG*O(X) = GO(X) (resp. SG*O(X),
PG*O(X), aG*O(X), BG*O(X)).

Definition 15. A function f : (X,7) — (Y, 0) is said to be w-continuous
[32] or g-continuous [35] if f~H(K) is w-closed in X for every closed set K
of Y.

Remark 9. (1) Let (X, 7) be a topological space and mx = SG*O(X) =
w(X), then f: (X,7) — (Y, 0) is w-continuous if and only if f : (X,w(X)) —
(Y, o) is m*-continuous.

(2) By Lemma 4, we have the following implications: continuity =
w-continuity = g-continuity. The implications are strict as seen from Ex-
amples 3.8 and 3.9 of [33].

Definition 16. Let (X,7) be a topological space and mG*O(X) an
mg*-structure on X. A function f: (X,7) — (Y,0) is said to be

(1) mg*-continuous if f : (X,mG*O(X)) — (Y,0) is m-continuous,
equivalently if for each x € X and each open set V' containing f(x) there
exists an mg*-open set U containing x such that f(U) C V,

(2) m*g*-continuous if f : (X, mG*O(X)) — (Y,0) is m*-continuous,
equivalently if f~1(K) is mg*-closed in X for each closed set K of Y.

By DIAGRAM I and Definition 16, we obtain the following diagram:
DIAGRAM 11

g-continuity < ag*-continuity < pg*-continuity

) T

sg*-continuity < Bg*-continuity < continuity

Definition 17. Let X be a nonempty set and mG*O(X ) an mg*-structure
on X. For a subset A of X, the mg*-closure of A and the mg*-interior of
A are defined as follows:

(1) mg*Cl(A) =n{F: AC F, X — F e mG*O(X)},

(2) mg*Int(A) = U{U : U Cc A,U e mG*O(X)}.

By Theorem 1, we obtain the following theorem and corollary.

Theorem 2. Let (X, T) be a topological space and mG*O(X) an mg*-struc-
ture on X. For a function f : (X,7) — (Y,0), the following properties are
equivalent:
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(1)
(2) f~ 1( ) mg*Int( L(V)) for every open set V of Y;
(3) fYF) = mg*Cl( (F)) for every closed set F of Y;
(4) mg*Cl(f~1(B)) c f~Y(CIU(B)) for every subset B of Y;
(5) f(mg*Cl( )) C CL(f(A)) for every subset A of X;
(6) f~Y(Int(B)) C mg*Int(f~1(B)) for every subset B of Y.

Corollary 2. Let (X, 1) be a topological space and mG*O(X) an mg*-struc-
ture with property B on X. Then, for a function f : (X,7) — (Y,0), the
following properties are equivalent:

(1) fis m*g*-continuous;

(2) f71(V) is mg*-open in X for every open set V of Y;

(3) f7Y(F) is mg*-closed in X for every closed set F of Y.

Remark 10. If mG*O(X) = SG*O(X), then by Theorem 2 and Corol-
lary 2 we obtain the result established in Theorem 3.17 of [33].

Let (X, 7) be a topological space and A a subset of X. A point x € X
is called a f-cluster point of A if CI(V) N A # ( for every open set V
containing x. The set of all #-cluster points of A is called the 8-closure of A

and is denoted by Clp(A) [36]. If A = Clp(A), then A is said to be 6-closed.
The complement of a 6-closed set is said to be 8-open.

Theorem 3. Let (Y, 0) be a reqular space. For a function f: (X,mx) —
(Y,0), the following properties are equivalent:

(1) fis m-continuous;

(2) f~YCly(B)) = InCl(f L(Cly(B))) for every subset B of Y;

(3) f~Y(K)=mCl(f~ (K)) for every 0-closed set K of Y;

(4) f~YV) = mInt(f~Y(V)) for every 0-open set V of Y.

Proof. It is known in [36] that Clg(B) is closed in Y for every subset B
of Y. Since (Y, 0) is regular, every open (resp. closed) set of Y is f-open
(resp. O-closed). Therefore, the proof follows easily from Theorem 1. |

Corollary 3. Let (Y,0) be a reqular space and mx an m-structure with
property B. For a function f : (X,mx) — (Y,0), the following properties
are equivalent:
1) f is m-continuous;
2) f~1(Cly(B)) is m-closed for every subset B of Y ;

) f7H(K) is m-closed in X for every -closed set K of Y ;
) f7H(V) is m-open in X for every 0-open set V of Y.

Proof. The proof follows from Lemma 3 and Theorem 3. |
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Theorem 4. Let (Y, 0) be a reqular space and mG*O(X) an mg*-structu-
re on X. For a function f : (X,7) — (Y,0), the following properties are
equivalent:

(1) f is mg*-continuous;

(2) f7Y(Cly(B)) = mg*Cl(f~1(Clp(B))) for every subset B of Y;
(3) fHK) = mg*Cl(f~1(K)) for every O-closed set K of Y ;
(4) f~YV) = mg*mInt(f~1(V)) for every 0-open set V of Y.

Proof. The proof follows from Definition 16 and Theorem 3. |

Corollary 4. Let (Y, 0) be a reqular space and mG*O(X) an mg*-structure
with property B on X. For a function f : (X,7) — (Y,0), the following
properties are equivalent:

(1) f is mg*-continuous;

(2) f~Y(Cly(B)) is mg*-closed in X for every subset B of Y ;

(3) f7H(K) is mg*-closed in X for every 0-closed set K of Y;

(4) f~Y(V) is mg*-open in X for every 0-open set V of Y.

Proof. The proof follows from Theorem 4 and Lemma 3. |

Corollary 5. Let (Y,0) be a regular space. For a function f: (X, 1) —
(Y,0), the following properties are equivalent:

(1) f is w-continuous;

(2) f7Y1(Cly(B)) is w-closed in X for every subset B of Y ;

(3) f~YK) is w-closed in X for every 0-closed set K of Y;

(4) f~Y(V) is w-open in X for every 0-open set V of Y.

Proof. The proof follows from Corollary 4 because the family of w-open
sets is a topology for X and hence it has property B. |

5. Some properties of mg*-continuity

In this section, we investigate the relationships between mg*-continuity
and mg*-compactness, mg*-connectedness and strongly mg*-closed graphs.

Definition 18. An m-space (X, mx) is said to be m-Ty [26] if for any
distinct points x,y of X, there exist U,V € mx such that x € U,y € V, and
unv =40.

Remark 11. (1) Let (X, 7) be a topological space and mG*O(X) an
mg*-structure on X, then (X, 7) is said to be mg*-T if the m-space (X, mG*
O(X)) is m-Tx.

(2) F mG*O(X) = SG*O(X) = w(X), then (X, 7) is said to be w-T» [29].
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Lemma 5 (Popa and Noiri [26]). If f : (X,mx) — (Y, 0) is an m-continu-
ous injection and (Y, o) is a Ty-space, then (X, mx) is m-T5.

Theorem 5. If f : (X,7) — (Y, 0) is an m*g*-continuous injection and
(Y,0) is a Ty-space, then (X, 7) is mg*-T5.

Proof. The proof follows from Remark 4 and Lemma 5. |

Corollary 6. If f : (X,7) — (Y,0) is an w-continuous injection and
(Y,0) is a Ty-space, then (X, 7) is w-T5.

Definition 19. An m-space (X, mx) is said to be m-compact [26] if
every cover of X by sets of mx has a finite subcover.

A subset K of an m-space (X, mx) is said to be m-compact [26] if every
cover of K by subsets of mx has a finite subcover.

Remark 12. Let (X,7) be a topological space and mG*O(X)) an
mg*-structure on X.

(1) (X, 7) is said to be mg*-compact if (X, mG*O(X)) is m-compact.

(2) fmG*O(X) =SG*O(X) = w(X), then (X, 7) is said to be w-compact.

Lemma 6 (Popa and Noiri [26]). If a function f: (X,mx) — (Y,0) is
m-continuous and K is an m-compact set of X, then f(K) is compact.

Theorem 6. If f: (X,7) — (Y,0) is an m*g*-continuous function and
K is an mg*-compact set of X, then f(K) is compact.

Proof. The proof follows from Definition 19, Remark 4 and Lemma 6. B

Corollary 7. If f : (X,7) — (Y,0) is an w-continuous function and K
is an w-compact set of X, then f(K) is compact.

Definition 20. An m-space (X, mx) is said to be m-connected [26] if
X cannot be written as the union of two nonempty disjoint m-open sets.

Remark 13. Let (X, 7) be a topological space and mG*O(X) an mg*-struc-
ture on X.
(1) (X, 7) is said to be mg*-connected if (X, mG*O(X)) is m-connected.
(2) fmG*O(X) = SG*O(X) = w(X), then (X, 7) is said to be w-connected
[32].
Lemma 7. If f : (X,mx) — (Y,0) is an m*-continuous surjection and

(X, mx) is m-connected, then (Y, o) is connected.

Proof. Assume that (Y, ) is not connected. Then there exist nonempty
open sets V4 and V5 such that V1 NVo = ) and V3 UV, = Y. Hence we
have f~1(Vi) N f~1(Va) = 0 and f~1(V3) U f~1(Va) = X. Since f is an
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m*-continuous surjection, f~!(V7) and f~1(V4) are nonempty m-open sets.
Therefore, (X, mx) is not m-connected. This is a contradiction and hence
Y is connected. |

Theorem 7. Let (X, 7) be a topological space and mG*O(X) an mg*-struc-
ture on X. If f : (X,7) = (Y,0) is an m*g*-continuous surjection and
(X, 1) is mg*-connected, then (Y, o) is connected.

Proof. The proof follows from Definition 20, Remark 13 and Lemma 7. B

Corollary 8. If f : (X,7) — (Y,0) is an w-continuous surjection and
(X, 7) is w-connected, then (Y, o) is connected.

Definition 21. A function f : (X,mx) — (Y,0) is said to have a
strongly m-closed graph (resp. m-closed graph) [26] if for each (z,y) €
(X xY) —G(f), there exist U € mx containing x and an open set V of Y
containing y such that [U x CL{V)|NG(f) =0 (resp. [Ux V]NG(f)=0).

Remark 14. Let (X, 7) be a topological space and mG*O(X) an mg*-stru-
cture on X.

(1) A function f : (X,7) — (Y,0) is said to have a strongly mg*-closed
graph (resp. mg*-closed graph) if for each (z,y) € (X xY) — G(f), there
exist U € mG*O(X) containing = and an open set V of Y containing y such
that [U x CL(V)|NG(f) =0 (resp. [U x VING(f) =0).

(2) If mG*O(X) = GO(X) (resp. SG*O(X), PG*O(X), aG*O(X),
BG*O(X)) and f has a strongly mg*-closed graph, then f has a strongly
g-closed graph (resp. strongly sg*-closed graph or strongly w-closed graph,
strongly pg*-closed graph, strongly ag*-closed graph, strongly Sg*-closed
graph). For mg*-closed graphs, we define similarly.

Lemma 8 (Popa and Noiri [26]). A function f : (X,mx) — (Y,0) is
m-continuous and (Y, o) is a Hausdorff space, then f has a strongly m-closed
graph.

Theorem 8. Let (X, T) be a topological space and mG*O(X) an mg*-stru-
cture on X. If a function f: (X,7) — (Y,0) is mg*-continuous and (Y, o)
1s a Hausdorff space, then f has a strongly mg*-closed graph.

Proof. The proof follows from Definition 21, Remark 14 and Lemma 8. B
Corollary 9. If a function f : (X,7) — (Y,0) is an w-continuous

function and (Y,o0) is a Hausdorff space, then f has a strongly w-closed
graph.
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Lemma 9 (Popa and Noiri [26]). Let (X, mx) be an m-space and (Y, o)
a topological space. If f : (X,mx) — (Y,0) is a surjective function with a
strongly m-closed graph, then Y is Hausdorff.

Theorem 9. Let (X, ) be a topological space and mG*O(X) an mg*-struc-
ture on X. If f : (X,7) = (Y,0) is a surjective function with a strongly
mg*-closed graph, then Y is Hausdorff.

Proof. The proof follows from Definition 21 and Lemma 9. |

Corollary 10. If f : (X,7) — (Y,0) is a surjective function with a
strongly w-closed graph, then Y is Hausdorff.

Lemma 10 (Popa and Noiri [26]). Let (X,mx) be an m-space, where
mx has property B. If f: (X,mx) — (Y,0) is an m-continuous injection
with an m-closed graph, then X is m-T5.

Theorem 10. Let (X, 7) be a topological space and mG*O(X) an mg*-struc-
ture satisfying property B. If f : (X,7) — (Y,0) is an mg*-continuous
injection with an mg*-closed graph, then X is mg*-T5.

Proof. The proof follows from Definition 21, Remark 14 and Lemma 10. Bl

Corollary 11. If f : (X,7) — (Y,0) is an injective w-continuous func-
tion with an w-closed graph, then Y is w-T5.

Definition 22. Let (X, mx) be an m-space and A a subset of X. The
mx-frontier of A, mFr(A), [26] is defined by mFr(A) = mCIl(A) N mCl(X —
A) =mCl(A) — mInt(A).

If (X,7) is a topological space and mG*O(X) is an mg*-structure, then
mg*Fr(A) = mg*Cl(A) N mg*Cl(X — A) = mg*Cl(A) — mg*Int(A4). If
mG*O(X) = GO(X), then we obtain the g-frontier in Definition 4 of [8].

Theorem 11. The set of all points of X at which a function f : (X, mx) —
(Y, 0) is not m-continuous is identical with the union of the m-frontiers of
the inverse images of open sets containing f(x).

Proof. Suppose that f is not m-continuous at x € X. There exists an
open set V of Y containing f(z) such that U N (X — f~1(V)) # 0 for every
m-open set U containing z. By Lemma 2, we have x € mCl(X — f~1(V)).
On the other hand, we have x € f~!(V) and hence x € mFr(f~(V)).

Conversely, suppose that f is m-continuous at x € X. Then, for any open
set V of Y containing f(x), there exists U € mx containing x such that
f(U) C V; hence U C f~1(V). Therefore, we have z € U C mInt(f~(V)).
This contradicts to the fact that 2 € mFr(f~(V)). [ |
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Theorem 12. Let (X, 7) is a topological space and mG*O(X) an mg*-struc-
ture. Then, the set of all points of X at which a function f: (X,7) — (Y,0)
s not mg* -continuous is identical with the union of the mg*-frontiers of the
inverse images of open sets containing f(x).

Proof. The proof follows from Definition 22 and Theorem 11. |

Corollary 12. The set of all points at x € X which a function f :
(X,7) = (Y, 0) is not w-continuous is identical with the union of the w-front-
iers of the inverse images of open sets containing f(z).

Proof. Since w(X) is a topology for X, m-continuity coincides with
m*-continuity and hence the result follows from Theorem 12. |

For a function f: (X,mx) — (Y, 0), we define D,,(f) as follows:
D, (f) ={x € X : f is not m-continuous at x}.

Lemma 11 (Popa and Noiri [27]). For a function f: (X,mx) — (Y,0),
the following properties hold:

Din(f) = Ugeo{f7H(G) —mInt(f~(G))}

=Upe roy {f7 (Int( )) — mlnt(f~1(B))}
=Uge poy {mCI(f (B )) — f7H(CUB))}
= Uae Pix {mCI( ) = ( l(f(A)))}
=Ure 7 {mCl( HF )) ()}

where F is the family of closed sets of (Y, o).

Let (X, 7) be a topological space and mG*O(X) an mg*-structure on X.
For a function f : (X,7) — (Y,0), we denote by D4 (f) the set of all
points of X at which the function f is not mg*-continuous.

Theorem 13. Let (X, 7) be a topological space and mG*O(X) an mg*-struc-
ture on X. For a function f : (X,7) — (Y, 0), the following properties hold:
Ding=(f) = Uge, 1f1(G ) mg*Int(f~(G))}
=Uge pov) {f 1 (Int(B )) mg*Int( Y(B))}
=Uge ) {mg*Cl(f~'(B )) HCUB))}
= Uae pix) {mg” CI(A) ( (f(A)))}
=Upe 7 {mg*Cl(f hea )) Y}
where F is the family of closed sets of (Y o).

Proof. The proof follows from Lemma 11. |

Let f: (X,7) — (Y,0) be a function. By D,(f), we denote the set of
all points € X at which f is not w-continuous. Then by Theorem 13 we
obtain the following corollary.
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Corollary 13. For a function f: (X,7) — (Y, 0), the following proper-
ties hold:
Dy(f) = Uge, 4G )—wlﬂt(f_1 G))}
=Uge por) {f7 (Int(B)) — wint (
=Ugpe Pv {wCI( NB)) — X
= UAe P(X) {wCl(A) - f~ 1( 1(f(
=Upe 7 {WCI(fH(F)) — F7H(F)
where F is the family of closed sets of (Y, o).

'(B))
(B))}
)}

—

/-
Cl
4)
2

6. Other generalizations of w-continuity

First, we recall the d-closure of a subset in a topological space. Let
(X, 7) be a topological space and A a subset of X. A point z € X is called
a 0-cluster point of A if Int(CL(V)) NA # () for every open set V' containing
x. The set of all d-cluster points of A is called the d-closure of A and is
denoted by Cls(A) [36].

Definition 23. A subset of a topological space (X, T) is said to be
(1) 6-preopen [31] (resp. §-preopen [24]) if A C Int(Cls(A))
(resp. A C Int(Cly(A))),
(2) 6-B-open [13] (resp. 6-B-open [24]) if A C Cl(Int(Cls(A)))
(resp. A C Cl(Int(Cl,(A)))),
(3) b-open [4] if A C Int(C1(A)) U Cl(Int(A)).

By 0PO(X) (resp. d5(X), PO(X), 65(X), BO(X)), we denote the
collection of all d-preopen (resp. d-f-open, 6-preopen, 6-3-open, b-open)
sets of a topological space (X, 7). These five collections are m-structures
with property B. In [24], the following diagram is known:

DIAGRAM III

a-open = preopen = J-preopen = f-preopen

I I 4 I

semi-open = (-open = J-S-open = #-(3-open

For the new collections of subsets of a topological space (X, 7), we can
define many new variations of g-closed sets. For example, in case mx =
JPO(X), 08(X), OPO(X), 0B(X), or BO(X) we can define new types of
g-closed sets as follows:

Definition 24. A subset A of a topological space (X,T) is said to
be dpg*-closed (resp. Opg*-closed, 6Bg*-closed, OBg*-closed, bg*-closed) if
Cl(A) C U whenever A C U and U is §-preopen (resp. O-preopen, d-5-open,
0-p-open, b-open) in (X, ).
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By DIAGRAM I and Definition 24, we have the following diagram:
DIAGRAM IV

g-closed <= ag*-closed < pg*-closed < dpg*-closed < Opg*-closed

) T T T

sg*-closed <= Bg*-closed <= d5¢g*-closed < 08g*-closed < closed

Definition 25. A function f : (X,7) — (Y, 0) is said to be dpg*-continu-
ous (resp. Opg*-continuous, 6 Bg*-continuous, §5¢g*-continuous, bg*-continu-
ous) if fT1H(K) is dpg*-closed (resp. Opg*-closed, 63g*-closed, 0Bg*-closed,
bg*-closed) in X for each closed set K of Y.

Finally, we have to state the following remark:

Remark 15. The families 0PO(X), 08(X), 0PO(X), 5(X), and BO(X)
have property B and we can apply the results established in Sections 4 and
5 to the functions in Definition 25.
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