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Abstract. The main aim of this paper is to study the approxi-
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basic integral inequality with explicit estimate is used to establish
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1. Introduction

Consider the initial value problem (IVP for short) for the second order
Volterra type integrodifferential equation

(1) x′′ (t) = f
(
t, x (t) , x′ (t) , Hx (t)

)
,

for t ∈ R+ = [0,∞), with the given initial conditions

(2) x (0) = x0, x
′ (0) = x̄0,

where

(3) Hx (t) : =

t∫
0

h
(
t, σ, x (σ) , x′ (σ)

)
dσ,

f , h are given functions, x is the unknown function to be found and ′ denotes
the derivative. We assume that f ∈ C (R+ ×Rn ×Rn ×Rn, Rn) and for
σ ≤ t; h ∈ C

(
R2

+ ×Rn ×Rn, Rn
)
, where Rn denotes the n-dimensional

Euclidean space with appropriate norm denoted by |.|. The problem of
existence and some other fundamental properties of solutions of more general
versions of IVP (1)-(2) are recently dealt with in [8, 9] for t ∈ [0, b] ⊂ R+,
see also [1-5, 10].
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In general, the solutions to the IVP (1)-(2) cannot be found analytically
and thus will need a new insight to handle the qualitative properties of its
solutions. The method of approximations to the solutions is a very pow-
erful tool which provides valuable information, without the need to know
in advance the solutions explicitly of various dynamic equations. In the
present paper, we apply the method of approximations to the solutions of
IVP (1)-(2) and investigate new estimate on the difference between the two
approximate solutions of equation (1) and convergence properties of solu-
tions of approximate problems. The main tool employed in the analysis is
based on the application of a variant of a certain integral inequality with
explicit estimate due to the present author given in [7] (see also [6]).

2. Main results

Let xi (t) ∈ C (R+, R
n) (i = 1, 2) be functions such that x′′i (t) exist for

t ∈ R+ and satisfy the inequalities

(4)
∣∣x′′i (t)− f

(
t, xi (t) , x′i (t) , Hxi (t)

)∣∣ ≤ εi,
for given constants εi ≥ 0, where it is assumed that the initial conditions

(5) xi (0) = xi, x′i (0) = x̄i,

are fulfilled. Then we call xi (t) the εi-approximate solutions with respect
to the equation (1).

The following variant of the integral inequality established by the present
author in [7, p. 152] is crucial in the proof of our main results.

Lemma. Let u, e, b ∈ C(R+, R+) and for s ≤ t; a(t, s), c(t, s) ∈ C(R2
+,

R+). If e(t) and a(t, s) be nondecreasing in t ∈ R+ and

(6) u (t) ≤ e (t) +

t∫
0

a (t, s)

b (s)u (s) +

s∫
0

c (s, σ)u (σ) dσ

 ds,
for t ∈ R+, then

(7) u (t) ≤ e (t) exp

 t∫
0

a (t, s)

b (s) +

s∫
0

c (s, σ) dσ

 ds
 ,

for t ∈ R+.

Proof. First we assume that e(t) is positive and fix T ∈ R+. Then from
(6) it is easy to observe that

(8)
u (t)

e (t)
≤ 1 +

t∫
0

a (T, s)

b (s)
u (s)

e (s)
+

s∫
0

c (s, σ)
u (σ)

e (σ)
dσ

 ds,
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on 0 ≤ t ≤ T . Define z(t) by the right hand side of (8). Then z(0) = 1,
u(t)
e(t) ≤ z (t) , z (t) is nondecreasing for 0 ≤ t ≤ T and

z′ (t) = a (T, t)

b (t)
u (t)

e (t)
+

t∫
0

c (t, σ)
u (σ)

e (σ)
dσ

(9)

≤ a (T, t)

b (t) +

t∫
0

c (t, σ) dσ

 z (t) .

The inequality (9) implies

(10) z (t) ≤ exp

 t∫
0

a (T, s)

b (s) +

s∫
0

c (s, σ) dσ

 ds
 ,

for 0 ≤ t ≤ T. Since T ∈ R+ is arbitrary, from (10) with T replaced by

t ∈ R+ and the fact that u(t)
e(t) ≤ z (t), we get (7). If e(t) is nonnegative, we

carry out the above procedure with e (t) + ε instead of e(t), where ε > 0 is
an arbitrary small constant, and subsequently pass to the limit as ε→ 0 to
obtain (7). �

Our main result given in the following theorem estimates the difference
between the two approximate solutions of equation (1).

Theorem 1. Suppose that the functions f , h in equation (1) satisfy the
conditions

(11) |f (t, x, y, z)− f (t, x̄, ȳ, z̄)| ≤ p (t) [|x− x̄|+ |y − ȳ|] + |z − z̄| ,

(12) |h (t, σ, x, y)− h (t, σ, x̄, ȳ)| ≤ q (t, σ) [|x− x̄|+ |y − ȳ|] ,

where p ∈ C (R+, R+) and for σ ≤ t; q (t, σ) ∈ C
(
R2

+, R+

)
. Let xi(t) (i =

1, 2) be respectively εi-approximate solutions of equation (1) with (5) on R+

such that

(13) |x1 − x2| ≤ δ, |x̄1 − x̄2| ≤ δ̄,

where δ, δ̄ are nonnegative constants. Then

|x1 (t)− x2 (t)|+
∣∣x′1 (t)− x′2 (t)

∣∣(14)

≤ m (t) exp

 t∫
0

(t− s+ 1)

p (s) +

s∫
0

q (s, σ) dσ

ds
 ,



102 Baburao G. Pachpatte

for t ∈ R+, where

(15) m (t) = (ε1 + ε2)

(
t2

2
+ t

)
+ (t+ 1) δ̄ + δ.

Proof. Since xi(t) (i = 1, 2) for t ∈ R+ are respectively εi-approximate
solutions of equation (1) with (5), we have (4). By taking t = τ in (4) and
integrating both sides with respect to τ from 0 to t, we have

εit ≥
t∫

0

∣∣x′′i (τ)− f
(
τ, xi (τ) , x′i (τ) , Hxi (τ)

)∣∣dτ(16)

≥

∣∣∣∣∣∣
t∫

0

{
x′′i (τ)− f

(
τ, xi (τ) , x′i (τ) , Hxi (τ)

)}
dτ

∣∣∣∣∣∣
=

∣∣∣∣∣∣
x′i (t)− x̄i −

t∫
0

f
(
τ, xi (τ) , x′i (τ) , Hxi (τ)

)
dτ


∣∣∣∣∣∣ .

By taking t = s in (16) and integrating both sides with respect to s from 0
to t, we have

εi
t2

2
≥

t∫
0

∣∣∣∣∣∣
x′i (s)− x̄i −

s∫
0

f
(
τ, xi (τ) , x′i (τ) , Hxi (τ)

)
dτ


∣∣∣∣∣∣ds(17)

≥

∣∣∣∣∣∣
t∫

0

x′i (s)− x̄i −
s∫

0

f
(
τ, xi (τ) , x′i (τ) , Hxi (τ)

)
dτ

ds
∣∣∣∣∣∣

=

∣∣∣∣∣∣
xi (t)− [xi + x̄it]−

t∫
0

(t− s) f
(
s, xi (s) , x′i (s) , Hxi (s)

)
ds


∣∣∣∣∣∣ .

From (16), (17) and using the elementary inequalities

(18) |v − z| ≤ |v|+ |z| , |v| − |z| ≤ |v − z| ,

we observe that

(ε1 + ε2) t ≥

∣∣∣∣∣∣
x′1 (t)− x̄1 −

t∫
0

f
(
s, x1 (s) , x′1 (s) , Hx1 (s)

)
ds


∣∣∣∣∣∣(19)

+

∣∣∣∣∣∣
x′2 (t)− x̄2 −

t∫
0

f
(
s, x2 (s) , x′2 (s) , Hx2 (s)

)
ds


∣∣∣∣∣∣
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≥

∣∣∣∣∣∣
x′1 (t)− x̄1 −

t∫
0

f
(
s, x1 (s) , x′1 (s) , Hx1 (s)

)
ds


−

x′2 (t)− x̄2 −
t∫

0

f
(
s, x2 (s) , x′2 (s) , Hx2 (s)

)
ds


∣∣∣∣∣∣

≥
∣∣x′1 (t)− x′2 (t)

∣∣− |x̄1 − x̄2|
−

t∫
0

∣∣f (s, x1 (s) , x′1 (s) , Hx1 (s)
)

− f
(
s, x2 (s) , x′2 (s) , Hx2 (s)

)∣∣ ds,
and

(ε1 + ε2)
t2

2
(20)

≥

∣∣∣∣∣∣
x1 (t)− [x1 + x̄1t]−

t∫
0

(t− s) f
(
s, x1 (s) , x′1 (s) , Hx1 (s)

)
ds


∣∣∣∣∣∣

+

∣∣∣∣∣∣
x2 (t)− [x2 + x̄2t]−

t∫
0

(t− s) f
(
s, x2 (s) , x′2 (s) , Hx2 (s)

)
ds


∣∣∣∣∣∣

≥

∣∣∣∣∣∣
x1 (t)− [x1 + x̄1t]−

t∫
0

(t− s) f
(
s, x1 (s) , x′1 (s) , Hx1 (s)

)
ds


−

x2 (t)− [x2 + x̄2t]−
t∫

0

(t− s) f
(
s, x2 (s) , x′2 (s) , Hx2 (s)

)
ds


∣∣∣∣∣∣

≥ |x1 (t)− x2 (t)| − |[x1 + x̄1t]− [x2 + x̄2t]|

−
t∫

0

∣∣(t− s) f (s, x1 (s) , x′1 (s) , Hx1 (s)
)

− (t− s) f
(
s, x2 (s) , x′2 (s) , Hx2 (s)

)∣∣ ds.
Let u (t) = |x1 (t)− x2 (t)| + |x′1 (t)− x′2 (t)| , t ∈ R+. From (19) and (20)
and using the hypotheses, we observe that

u (t) ≤ (ε1 + ε2)
t2

2
+ |(x1 − x2) + (x̄1 − x̄2) t|(21)

+

t∫
0

(t− s)

p (s)u (s) +

s∫
0

q (s, σ)u (σ) dσ

 ds
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+ (ε1 + ε2) t+ |x̄1 − x̄2|+
t∫

0

p (s)u (s) +

s∫
0

q (s, σ)u (σ) dσ

 ds
≤ (ε1 + ε2)

(
t2

2
+ t

)
+ {|x1 − x2|+ |x̄1 − x̄2| t+ |x̄1 − x̄2|}

+

t∫
0

(t− s+ 1)

p (s)u (s) +

s∫
0

q (s, σ)u (σ) dσ

 ds
≤ m (t) +

t∫
0

(t− s+ 1)

p (s)u (s) +

s∫
0

q (s, σ)u (σ) dσ

 ds,
where m(t) is given by (15). Clearly m(t) is nondecreasing for t ∈ R+. Now
a suitable application of Lemma to (21) yields (14). �

Remark 1. We note that the estimate obtained in (14) yields not only the
bound on the difference between the two approximate solutions of equation
(1) but also the bound on the difference between their derivatives. If x1 (t) is
a solution of equation (1) with x1 (0) = x1, x′1 (0) = x̄1, then we have ε1 = 0
and from (14), we see that x2 (t) → x1 (t) as ε2 → 0 and δ → 0, δ̄ → 0.
Moreover, if we put (i) ε1 = ε2 = 0 and x1 = x2, x̄1 = x̄2 in (14), then the
uniqueness of solutions of equation (1) is established and (ii) ε1 = ε2 = 0
in (14), then we get the bound which shows the dependency of solutions of
equation (1) on given initial values.

Consider the IVP (1)-(2) together with

(22) y′′ (t) = g
(
t, y (t) , y′ (t) , Hy (t)

)
,

(23) y (0) = y0, y′ (0) = ȳ0,

for t ∈ R+, where H is given by (3) and g ∈ C (R+ ×Rn ×Rn ×Rn, Rn).
The following theorem concerns the closeness of solutions of IVP (1)-(2)

and IVP (22)-(23).

Theorem 2. Suppose that the functions f , h in equation (1) satisfy the
conditions (11), (12) and there exist nonnegative constants ε̄, δ0, δ̄0 such
that

(24) |f (t, u, v, w)− g (t, u, v, w)| ≤ ε̄,

(25) |x0 − y0| ≤ δ0, |x̄0 − ȳ0| ≤ δ̄0,
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where f , x0, x̄0 and g, y0, ȳ0 are as in IVP (1)-(2) and IVP (22)-(23). Let
x(t) and y(t) be respectively, solutions of IVP (1)-(2) and IVP (22)-(23) on
R+. Then

|x (t)− y (t)|+
∣∣x′ (t)− y′ (t)∣∣(26)

≤ n (t) exp

 t∫
0

(t− s+ 1)

p (s) +

s∫
0

q (s, σ) dσ

 ds
 ,

for t ∈ R+, where

(27) n (t) = ε̄

(
t2

2
+ t

)
+ (t+ 1) δ̄0 + δ0.

Proof. Let v (t) = |x (t)− y (t)|+ |x′ (t)− y′ (t)|, t ∈ R+. Using the facts
that x(t) and y(t) are the solutions of IVP (1)-(2) and IVP (22)-(23) and
hypotheses, we observe that

v (t) ≤

∣∣∣∣∣∣
[x0 + x̄0t] +

t∫
0

(t− s) f
(
s, x (s) , x′ (s) , Hx (s)

)
ds

(28)

−

[y0 + ȳ0t] +

t∫
0

(t− s) g
(
s, y (s) , y′ (s) , Hy (s)

)
ds


∣∣∣∣∣∣

+

∣∣∣∣∣∣
x̄0 +

t∫
0

f
(
s, x (s) , x′ (s) , Hx (s)

)
ds


−

ȳ0 +

t∫
0

g
(
s, y (s) , y′ (s) , Hy (s)

)
ds


∣∣∣∣∣∣

≤ |x0 − y0|+ |x̄0 − ȳ0| t

+

t∫
0

(t− s)
∣∣f (s, x (s) , x′ (s) , Hx (s)

)
− f

(
s, y (s) , y′ (s) , Hy (s)

)∣∣ ds
+

t∫
0

(t− s)
∣∣f (s, y (s) , y′ (s) , Hy (s)

)
− g

(
s, y (s) , y′ (s) , Hy (s)

)∣∣ ds
+ |x̄0 − ȳ0|

+

t∫
0

∣∣f (s, x (s) , x′ (s) , Hx (s)
)
− f

(
s, y (s) , y′ (s) , Hy (s)

)∣∣ ds
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+

t∫
0

∣∣f (s, y (s) , y′ (s) , Hy (s)
)
− g

(
s, y (s) , y′ (s) , Hy (s)

)∣∣ ds
≤ δ0 + δ̄0t+

t∫
0

(t− s)

p (s) v (s) +

s∫
0

q (s, σ) v (σ) dσ

 ds
+

t∫
0

(t− s) ε̄ds+ δ̄0 +

t∫
0

p (s) v (s) +

s∫
0

q (s, σ) v (σ) dσ

 ds
+

t∫
0

ε̄ds = n (t) +

t∫
0

(t− s+ 1)

p (s) v (s) +

s∫
0

q (s, σ) v (σ) dσ

 ds,
for t ∈ R+, where n(t) is given by (27). Clearly n(t) is nondecreasing for
t ∈ R+. Now an application of Lemma to (28) yields (26). �

Remark 2. The result given in Theorem 2 relates the solutions of IVP
(1)-(2) and of IVP (22)-(23) in the sense that if f is close to g, x0 is close
to y0 and x̄0 is close to ȳ0, then the solutions of IVP (1)-(2) and of IVP
(22)-(23) are also close to each other.

Next, consider the IVP (1)-(2) together with

(29) y′′ (t) = fk
(
t, y (t) , y′ (t) , Hy (t)

)
,

(30) y (0) = αk, y′ (0) = ᾱk,

for k = 1, 2, ..., where H is given by (3), αk, ᾱk are sequences in Rn and
fk ∈ C (R+ ×Rn ×Rn ×Rn, Rn).

As an immediate consequence of Theorem 2, we have the following corol-
lary.

Corollary 1. Suppose that the functions f , h in equation (1) satisfy
the conditions (11), (12) and there exist nonnegative constants εk, δk, δ̄k
(k = 1, 2, ...) such that

(31) |f (t, u, v, w)− fk (t, u, v, w)| ≤ εk,

(32) |x0 − αk| ≤ δk, |x̄0 − ᾱk| ≤ δ̄k,

with εk → 0 and δk → 0, δ̄k → 0 as k →∞, where f , x0, x̄0 and fk, αk,
ᾱk are as in (1), (2) and (29), (30). If yk(t) (k = 1, 2, ...) and x(t) are
respectively the solutions of IVPs (29)-(30) and IVP (1)-(2) on R+, then as
k →∞, yk (t)→ x (t) on R+.



Approximate solutions of a certain second . . . 107

Proof. For k = 1, 2, ..., the conditions of Theorem 2 hold. As an appli-
cation of Theorem 2 yields

|yk (t)− x (t)|+
∣∣y′k (t)− x′ (t)

∣∣(33)

≤ nk (t) exp

 t∫
0

(t− s+ 1)

p (s) +

s∫
0

q (s, σ) dσ

 ds
 ,

for t ∈ R+ and k = 1, 2, ..., where

(34) nk (t) = ε̄k

(
t2

2
+ t

)
+ (t+ 1) δ̄k + δk.

�

The required result follows from (33).

Remark 3. The result obtained in Corollary provide sufficient conditions
that ensures solutions of IVPs (29)-(30) will converge to the solutions of IVP
(1)-(2). For some other qualitative properties of solutions of more general
versions of IVP (1)-(2), we refer the interested readers to [8-10].

A slight variant of Theorem 2 is given in the following theorem.

Theorem 3. Suppose that

(35) |f (t, u, v, w)− g (t, ū, v̄, w̄)| ≤ p̄ (t) [|u− ū|+ |v − v̄|] + |w − w̄| ,

where p̄ ∈ C (R+, R+) and the conditions (12) and (25) hold. Let x(t) and
y(t) be respectively, solutions of IVP (1)-(2) and IVP (22)-(23) on R+.
Then

|x (t)− y (t)|+
∣∣x′ (t)− y′ (t)∣∣(36)

≤ r (t) exp

 t∫
0

(t− s+ 1)

p̄ (s) +

s∫
0

q (s, σ) dσ

 ds
 ,

for t ∈ R+, where

(37) r (t) = (t+ 1) δ̄0 + δ0.

Proof. Define v(t) as in the proof of Theorem 2. Using the facts that
x(t) and y(t) are respectively, solutions of IVP (1)-(2) and IVP (22)-(23)
and hypotheses, we observe that

v (t) ≤ |[x0 + x̄0t]− [y0 + ȳ0t]|(38)

+

t∫
0

(t− s)
∣∣f (s, x (s) , x′ (s) , Hx (s)

)
− g

(
s, y (s) , y′ (s) , Hy (s)

)∣∣ds
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+ |x̄0 − ȳ0|

+

t∫
0

∣∣f (s, x (s) , x′ (s) , Hx (s)
)
− g

(
s, y (s) , y′ (s) , Hy (s)

)∣∣ds
≤ |x0 − y0|+ t |x̄0 − ȳ0|+

t∫
0

(t− s)

p̄ (s) v (s) +

s∫
0

q (s, σ) v (σ) dσ

 ds
+ |x̄0 − ȳ0|+

t∫
0

p̄ (s) v (s) +

s∫
0

q (s, σ) v (σ) dσ

 ds
≤ r (t) +

t∫
0

(t− s+ 1)

p̄ (s) v (s) +

s∫
0

q (s, σ) v (σ) dσ

 ds,
for t ∈ R+, where r(t) is given by (37). Clearly r(t) is nondecreasing for
t ∈ R+. Now an application of Lemma to (38) yields (36). �

Remark 4. An important feature of our approach here is that it is
elementary and can be extended to obtain similar results as given above for
more general equation of the form

(39) x(n) (t) = f
(
t, x (t) , x′ (t) , ..., x(n−1) (t) , Gx (t)

)
,

with the prescribed initial values

(40) x(k) (0) = xk, (k = 0, 1, 2, ..., n− 1) ,

for t ∈ R+, where n ≥ 2 is a given integar and

(41) Gx (t) =

t∫
0

g
(
t, σ, x (σ) , x′ (σ) , ..., x(n−1) (σ)

)
dσ,

under some suitable conditions on the functions involved in IVP (39)-(40).
We note that the idea of this paper can be extended to the general vergions
of IVP (1)-(2) and IVP (39)-(40), recently studied by the present author in
[8-10]. We shall not pursue the detailed treatment here.
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