F A S C I C U L I M A T H E M A T I C I

Nr 45

Arun K. Tripathy

OSCILLATION PROPERTIES OF A CLASS OF NEUTRAL DIFFERENTIAL EQUATIONS WITH POSITIVE AND NEGATIVE COEFFICIENTS

AbStract. In this paper, oscillatory and asymptotic property of solutions of a class of nonlinear neutral delay differential equations of the form
(E)

$$
\begin{aligned}
& \frac{d}{d t}\left(r(t) \frac{d}{d t}(y(t)+p(t) y(t-\tau))\right) \\
& \quad+f_{1}(t) G_{1}\left(y\left(t-\sigma_{1}\right)\right)-f_{2}(t) G_{2}\left(y\left(t-\sigma_{2}\right)\right)=g(t)
\end{aligned}
$$

and

$$
\begin{aligned}
& \frac{d}{d t}\left(r(t) \frac{d}{d t}(y(t)+p(t) y(t-\tau))\right) \\
& \quad+f_{1}(t) G_{1}\left(y\left(t-\sigma_{1}\right)\right)-f_{2}(t) G_{2}\left(y\left(t-\sigma_{2}\right)\right)=0
\end{aligned}
$$

are studied under the assumptions

$$
\int_{0}^{\infty} \frac{d t}{r(t)}<\infty \quad \text { and } \quad \int_{0}^{\infty} \frac{d t}{r(t)}=\infty
$$

for various ranges of $p(t)$. Sufficient conditions are obtained for existence of bounded positive solutions of (E).
KEY WORDS: oscillation, non-oscillation, neutral differential equation, existence of positive solutions, asymptotic behaviour.
AMS Mathematics Subject Classification: 34C10, 34C15, 34K40.

1. Introduction

Recently, there has been many investigations into the nonoscillation of nonlinear neutral delay differential equations with positive and negative coefficients. See $[1,2,4,5,7]$ for reviews of this theory. However, the study of oscillatory and asymptotic behaviour of solutions of such equations has received much less attention, which is due mainly to the technical difficulties arising in its analysis.

In [6], authors have made an attempt to study the oscillation properties of a nonlinear differential equations of type

$$
\frac{d}{d t}(y(t)+p(t) y(t-\tau))+f_{1}(t) G_{1}\left(y\left(t-\sigma_{1}\right)\right)-f_{2}(t) G_{2}\left(y\left(t-\sigma_{2}\right)\right)=0
$$

and

$$
\frac{d}{d t}(y(t)+p(t) y(t-\tau))+f_{1}(t) G_{1}\left(y\left(t-\sigma_{1}\right)\right)-f_{2}(t) G_{2}\left(y\left(t-\sigma_{2}\right)\right)=g(t)
$$

with a suitable transformation. Keeping in view a similar transformation the author has discussed the oscillation properties of a class of nonlinear functional differential equation of the form

$$
\begin{align*}
\frac{d}{d t}\left(r(t) \frac{d}{d t}(y(t)+p(t) y(t-\tau))\right) & +f_{1}(t) G_{1}\left(y\left(t-\sigma_{1}\right)\right) \tag{1}\\
& -f_{2}(t) G_{2}\left(y\left(t-\sigma_{2}\right)\right)=0
\end{align*}
$$

where $\tau>0, \sigma_{1}, \sigma_{2} \geq 0, f_{1}, f_{2}, r \in C([0, \infty),[0, \infty))$ and $G_{i} \in C(R, R)$ such that $x G_{i}(x)>0, x \neq 0$ for $i=1,2$ under the assumptions

$$
\begin{equation*}
\int_{t_{0}}^{\infty} \frac{1}{r(s)}\left(\int_{s}^{\infty} f_{2}(t) d t\right) d s<\infty \tag{0}
\end{equation*}
$$

$$
\begin{equation*}
\int_{0}^{\infty} \frac{d t}{r(t)}<\infty \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{0}^{\infty} \frac{d t}{r(t)}=\infty . \tag{2}
\end{equation*}
$$

The associated forced equation

$$
\begin{align*}
\left(r(t)(y(t)+p(t) y(t-\tau))^{\prime}\right)^{\prime} & +f_{1}(t) G_{1}\left(y\left(t-\sigma_{1}\right)\right) \tag{2}\\
& -f_{2}(t) G_{2}\left(y\left(t-\sigma_{2}\right)\right)=g(t)
\end{align*}
$$

where $g \in C([0, \infty), R)$ is also studied under the assumptions $\left(H_{0}\right),\left(H_{1}\right)$ and $\left(H_{2}\right)$. Different ranges of $p(t)$ and a particular type of forcing function is considered.

Equation (1) is considered by the authors Yu and Wang, where the whole text deals with the existence of positive solutions only. It seems that almost there is no work concerning the oscillation properties of solutions of (1) and (2) under the hypotheses $\left(H_{1}\right)$ and $\left(H_{2}\right)$.

The object of this paper is to establish the necessary and sufficient conditions for oscillation of (1) and (2). An extension work of [6] for Equs.(1) and (2) provides own purpose due to the work in [7].

By a solution of $(1) /(2)$, we understand a function $y \in C([-\rho, \infty), R)$ such that $(y(t)+p(t) y(t-\tau))$ is continuously differentiable, $(r(t)(y(t)+$
$\left.p(t) y(t-\tau)^{\prime}\right)$ is continuously differentiable and equation $(1) /(2)$ is satisfied for $t \geq 0$, where $\rho=\max \left\{\tau, \sigma_{1}, \sigma_{2}\right\}$ and $\sup \left\{|y(t)|: t \geq t_{0}\right\}>0$ for every $t_{0} \geq 0$. A solution of $(1) /(2)$ is said to be oscillatory if it has arbitrarily large zeros; otherwise, it is called nonoscillatory.

2. Some preliminary results

This section deals with some lemmas which play an important role in establishing the present work.

Lemma 1. Assume that $\left(H_{1}\right)$ hold. Let $u(t)$ be an eventually positive continuously differentiable function such that $r(t) u^{\prime}(t)$ is continuously differentiable and $\left(r(t) u^{\prime}(t)\right)^{\prime} \leq 0$ but $\not \equiv 0$ for large t, where $r \in C([0, \infty),(0, \infty))$.
(i) If $u^{\prime}(t)>0$, then there exists a constant $C>0$ such that

$$
u(t) \geq C R(t), \text { for large } t
$$

(ii) If $u^{\prime}(t)<0$, then $u(t)>-r(t) u^{\prime}(t) R(t)$, where, $R(t)=\int_{t}^{\infty} \frac{d s}{r(s)}$.

Proof. (i) Since $R(t)<\infty, R(t) \rightarrow 0$ as $t \rightarrow \infty$ and $u(t)$ is nondecreasing, we can find a constant $C>0$ such that $u(t) \geq C R(t)$ for all large t.
(ii) For $s \geq t, r(s) u^{\prime}(s) \leq r(t) u^{\prime}(t)$ and hence

$$
u(s) \leq u(t)+\int_{t}^{s} \frac{r(t) u^{\prime}(t)}{r(\theta)} d \theta=u(t)+r(t) u^{\prime}(t) \int_{t}^{s} \frac{d \theta}{r(\theta)}
$$

Thus $0<u(s) \leq u(t)+r(t) u^{\prime}(t) \int_{t}^{s} \frac{d \theta}{r(\theta)}$ implies that $u(t) \geq-r(t) u^{\prime}(t) R(t)$.
Lemma 2. Assume that $\left(H_{2}\right)$ hold. Let $\left.u(t)\right)$ and $u^{\prime}(t)$ be positive continuously differentiable functions with $u^{\prime \prime}(t) \leq 0$ for $t \geq T \geq 0$. Then $u(t) \geq(t-T) u^{\prime}(t)=\beta(t) r(t) u^{\prime}(t)$ for $t \geq T \geq 0$, where $\beta(t)=\frac{t-T}{r(t)}$.

Proof. The proof is simple and hence the details are omitted.
Lemma 3 ([3). $]$ Let $p, y, z \in C([0, \infty), R)$ be such that $z(t)=y(t)+$ $p(t) y(t-\tau), t \geq \tau \geq 0, y(t)>0$ for $t \geq t_{1}>\tau, \liminf _{t \rightarrow \infty} y(t)=0$ and $\lim _{t \rightarrow \infty} z(t)=L$ exists.

Let $p(t)$ be satisfy one of the following conditions:
(i) $0 \leq p(t) \leq p_{1}<1$
(ii) $1<p_{2} \leq p(t) \leq p_{3}$,
(iii) $p_{4} \leq p(t) \leq 0$,
where p_{i} is a constant, $1 \leq i \leq 4$. Then $L=0$.

3. Oscillation properties of Eq.(1)

This section provides the sufficient conditions for oscillation and asymptotic behaviour of solutions of Eq. (1) under the assumptions $\left(\mathrm{H}_{1}\right)$ and $\left(\mathrm{H}_{2}\right)$. We need following conditons for our work in the sequel.
$\left(H_{3}\right) \quad$ For $u>0$ and $v>0$, there exists $\lambda>0$ such that

$$
G_{1}(u)+G_{1}(v) \geq \lambda G_{1}(u+v)
$$

$$
\begin{equation*}
G_{1}(u v)=G_{1}(u) G_{1}(v) \quad \text { for } \quad u, v \in R \tag{4}
\end{equation*}
$$

$$
G_{1}(-u)=-G_{1}(u), \quad u \in R
$$

$$
\int_{0}^{ \pm C} \frac{d x}{G_{1}(x)}<\infty .
$$

Remark 1. The prototype of G_{1} satisfying $\left(H_{3}\right)$ and $\left(H_{4}\right)$ is

$$
G_{1}(u)=\left(a+b|u|^{\lambda}\right)|u|^{\mu} \operatorname{sgn} u
$$

where $a \geq 1, b \geq 1, \lambda \geq 0$ and $\mu \geq 0$.
Remark 2. $\left(H_{4}\right)$ implies $\left(H_{5}\right)$, indeed, $G_{1}(1) G_{1}(1)=G_{1}(1)$, so that $G_{1}(1)=1$. Further, $G_{1}(-1) G_{1}(-1)=G_{1}(1)=1$ gives $\left(G_{1}(-1)\right)^{2}=$ 1. Because $G_{1}(-1)<0$, then $G_{1}(-1)=-1$. Consequently, $G_{1}(-u)=$ $G_{1}(-1) G_{1}(u)=-G_{1}(u)$. On the otherhand $G_{1}(u v)=G_{1}(u) G_{1}(v)$ for $u>0, v>0$ and $G_{1}(-u)=-G_{1}(u)$ imply that $G_{1}(u v)=G_{1}(u) G_{1}(v)$ for every $u, v \in R$.

Remark 3. We may note that if $y(t)$ is a solution of (1), then $x(t)=$ $-y(t)$ is also a solution of (1) provided that G_{1} satisfies $\left(H_{4}\right)$ or $\left(H_{5}\right)$.

Theorem 1. Let $0 \leq p(t) \leq d<\infty$. Suppose that $\left(H_{0}\right),\left(H_{1}\right),\left(H_{3}\right)-$ $\left(H_{5}\right)$ hold. If

$$
\begin{equation*}
\int_{0}^{\infty} Q(t) G_{1}\left(R\left(t-\sigma_{1}\right)\right) d t=\infty \tag{7}
\end{equation*}
$$

where $Q(t)=\min \left\{f_{1}(t), f_{1}(t-\tau)\right\}, t \geq \tau$, then every solution of (1) either oscillates or tends to zero as $t \rightarrow \infty$.

Proof. Suppose on the contrary that $y(t)$ is a non-oscillatory solution of (1) such that $y(t)>0$ for $t \geq t_{0} \geq 0$. Setting

$$
K(t)=\int_{t}^{\infty} \frac{1}{r(s)} \int_{s}^{\infty} f_{2}(\theta) G_{2}\left(y\left(\theta-\sigma_{2}\right)\right) d \theta d s
$$

and

$$
\begin{equation*}
w(t)=y(t)+p(t) y(t-\tau)-K(t)=z(t)-K(t) \tag{3}
\end{equation*}
$$

for $t \geq t_{0}+\rho$, Eq.(1) can be written as

$$
\left(r(t) w^{\prime}(t)\right)^{\prime}+f_{1}(t) G_{1}\left(y\left(t-\sigma_{1}\right)\right)=0
$$

that is,

$$
\begin{equation*}
\left(r(t) w^{\prime}(t)\right)^{\prime}=-f_{1}(t) G_{1}\left(y\left(t-\sigma_{1}\right)\right) \leq 0 \tag{4}
\end{equation*}
$$

for $t \geq t_{1}>t_{0}+\rho$. Hence $r(t) w^{\prime}(t)$ is a monotonic function on $\left[t_{1}, \infty\right)$. Let $w^{\prime}(t)<0$ for $t \geq t_{1}$. If $w(t)<0$, then $y(t) \leq z(t) \leq K(t), t \geq t_{1}$. We note that $K(t)$ is bounded with $\lim _{t \rightarrow \infty} K(t)=0$ and hence there exists a constant $\gamma>0$ such that $y(t) \leq \gamma$ for $t \geq t_{2}>t_{1}$. Ultimately, $w(t)$ is bounded and $\lim _{t \rightarrow \infty} w(t)$ exists. This is a contradiction to the fact that $\lim _{t \rightarrow \infty} w(t)=\lim _{t \rightarrow \infty} z(t) \neq 0$ implies that $z(t)<0$ for $t \geq t_{3}>t_{2}$. Assume that $w(t)>0$ for $t \geq t_{1}$. Successive integration of the inequality $\left(r(t) w^{\prime}(t)\right)^{\prime} \leq 0$ from t_{1} to t, we can find a constant $\eta>0$ such that $w(t) \leq \eta$ for $t \geq t_{2}>t_{1}$. Using Lemma $1(i i)$ with $u(t)$ replaced by $w(t)$, we get $w(t) \geq-r(t) w^{\prime}(t) R(t)$ and hence $z(t) \geq-r(t) w^{\prime}(t) R(t)$ for $t \geq t_{2}$. Indeed, $w(t)$ is bounded, $R(t)$ is bounded and $r(t) w^{\prime}(t)$ is monotonic imply that $\lim _{t \rightarrow \infty}\left(r(t) w^{\prime}(t)\right)$ exist. Repeated application of Eq.(1) and use of $\left(H_{3}\right)$ and $\left(H_{4}\right)$ yields

$$
\begin{align*}
0=(& \left.r(t) w^{\prime}(t)\right)^{\prime}+G_{1}(d)\left(r(t-\tau) w^{\prime}(t-\tau)\right)^{\prime} \tag{5}\\
& +f_{1}(t) G_{1}\left(y\left(t-\sigma_{1}\right)\right) \\
& +G_{1}(d) f_{1}(t-\tau) G_{1}\left(y\left(t-\sigma_{1}-\tau\right)\right)
\end{align*}
$$

that is,

$$
\begin{align*}
0 \geq & \left(r(t) w^{\prime}(t)\right)^{\prime}+G_{1}(d)\left(r(t-\tau) w^{\prime}(t-\tau)\right)^{\prime} \lambda Q(t) G_{1}\left(z\left(t-\sigma_{1}\right)\right) \tag{6}\\
\geq & \left(r(t) w^{\prime}(t)\right)^{\prime}+G_{1}(d)\left(r(t-\tau) w^{\prime}(t-\tau)\right)^{\prime} \\
& \quad+\lambda Q(t) G_{1}\left(-r\left(t-\sigma_{1}\right) w^{\prime}\left(t-\sigma_{1}\right) R\left(t-\sigma_{1}\right)\right) \\
= & \left(r(t) w^{\prime}(t)\right)^{\prime}+G_{1}(d)\left(r(t-\tau) w^{\prime}(t-\tau)\right)^{\prime} \\
& \quad+\lambda Q(t) G_{1}\left(R\left(t-\sigma_{1}\right)\right) G_{1}\left(-r\left(t-\sigma_{1}\right) w^{\prime}\left(t-\sigma_{1}\right)\right)
\end{align*}
$$

for $t \geq t_{3}>t_{2}+\sigma_{1}$. Because $-r(t) w^{\prime}(t)$ is nondecreasing, we can find a constant $c_{1}>0$ and $t_{4}>t_{3}$ such that $-r(t) w^{\prime}(t) \geq c_{1}$, for $t \geq t_{4}$. Accordingly, the last inequality becomes

$$
\lambda Q(t) G_{1}\left(c_{1}\right) G_{1}\left(R\left(t-\sigma_{1}\right)\right) \leq-\left(r(t) w^{\prime}(t)\right)^{\prime}-G_{1}(d)\left(r(t-\tau) w^{\prime}(t-\tau)\right)^{\prime}
$$

for $t \geq t_{5}>t_{4}+\sigma_{1}$ which on integration from t_{5} to ∞, we get

$$
\int_{t_{5}}^{\infty} Q(t) G_{1}\left(R\left(t-\sigma_{1}\right)\right) d t<\infty
$$

a contradiction to our hypothesis $\left(H_{7}\right)$.
Next, we suppose that $w^{\prime}(t)>0$ for $t \geq t_{1}$. If $w(t)<0$, then $\lim _{t \rightarrow \infty} w(t)$ exists and $0 \neq \lim _{t \rightarrow \infty} w(t)=\lim _{t \rightarrow \infty} z(t)$ will imply that $z(t)<0$, which is a contradiction to the fact that $z(t)>0$. Let $\lim _{t \rightarrow \infty} w(t)=0$. Consequently, $\lim _{t \rightarrow \infty} z(t)=0$ provides $\lim _{t \rightarrow \infty} y(t)=0$ due to $y(t) \leq z(t)$ for $t \geq t_{2}>t_{1}$. Consider, $w(t)>0$ for $t \geq t_{2}>t_{1}$. By the Lemma $1(i)$, it follows that $w(t) \geq C R(t)$ and $z(t) \geq w(t) \geq C R(t)$ for $t \geq t_{2}$. Accordingly, (6) yields

$$
\lambda Q(t) G_{1}(C) G_{1}\left(R\left(t-\sigma_{1}\right)\right) \leq-\left(r(t) w^{\prime}(t)\right)^{\prime}-G_{1}(d)\left(r(t-\tau) w^{\prime}(t-\tau)\right)^{\prime}
$$

for $t \geq t_{2}+\sigma_{1}$. Integrating the above inequality from t_{3} to ∞, we get

$$
\int_{t_{3}}^{\infty} Q(t) G_{1}\left(R\left(t-\sigma_{1}\right)\right) d t<\infty, \quad t_{3}>t_{2}+2 \sigma_{1}
$$

a contradiction.
If $y(t)<0$, for $t \geq t_{0} \geq 0$, then we set $x(t)=-y(t)$ to obtain $x(t)>0$ for $t \geq t_{0}$ and
$\left(r(t)(x(t)+p(t) x(t-\tau))^{\prime}\right)^{\prime}+f_{1}(t) G_{1}\left(x\left(t-\sigma_{1}\right)\right)-f_{2}(t) G_{2}\left(x\left(t-\sigma_{2}\right)\right)=0$.
Proceeding as above we obtain a similar contradiction. This completes the proof of the theorem.

Theorem 2. Let $-1<d \leq p(t) \leq 0$. If $\left(H_{0}\right),\left(H_{1}\right),\left(H_{4}\right)$ and

$$
\begin{equation*}
\int_{0}^{\infty} f_{1}(t) G_{1}\left(R\left(t-\sigma_{1}\right)\right) d t=\infty \tag{8}
\end{equation*}
$$

hold, then every solution of (1) either oscillates or tends to zero as $t \rightarrow \infty$.
Proof. Let $y(t)$ be a nonoscillatory solution of (1) such that $y(t)>0$ for $t \geq t_{0} \geq 0$. Setting as in (3), we get (4) for $t \geq t_{0}+\rho$. Accordingly, $w^{\prime}(t)$ is a monotonic function on $\left[t_{1}, \infty\right)$ which concludes that either $w(t)>$ 0 or $w(t)<0$ for $t \geq t_{2}>t_{1}$. Consider $w^{\prime}(t)<0$ and $w(t)<0$ for $t \geq t_{2}$. Then $0 \neq \lim _{t \rightarrow \infty} w(t)=\lim _{t \rightarrow \infty} z(t)$ yields that $z(t)<0$ for $t \geq t_{2}$. Hence $y(t)<y(t-\tau)$ for $t \geq t_{3}>t_{2}$, that is, $y(t)$ is bounded on $\left[t_{3}, \infty\right)$. Consequently, $w(t)$ is bounded and $\lim _{t \rightarrow \infty}\left(r(t) w^{\prime}(t)\right)$ exists. Because $w(t)$ is
monotonic, then $\lim _{t \rightarrow \infty} w(t)=L, L \in(-\infty, o)$ gives $\lim _{t \rightarrow \infty} z(t)=L$. We claim that $\liminf _{t \rightarrow \infty} y(t)=0$. If not, there exists a constant $\gamma>0$ and $t_{4}>t_{3}$ such that $y(t) \geq \gamma$ for $t \geq t_{4}$. Integrating (4) from t_{4} to ∞, we get

$$
\int_{t_{4}}^{\infty} f_{1}(t) d t<\infty
$$

a contradiction to the fact that $R(t) \rightarrow 0$ as $t \rightarrow \infty$ and $\left(H_{8}\right)$ implies that

$$
\begin{equation*}
\int_{0}^{\infty} f_{1}(t) d t=\infty \tag{7}
\end{equation*}
$$

So our claim holds. By Lemma 3, L=0. Accordingly,

$$
\begin{aligned}
0 & =\lim _{t \rightarrow \infty} z(t)=\limsup _{t \rightarrow \infty}[y(t)+p(t) y(t-\tau)] \\
& \geq \limsup _{t \rightarrow \infty}[y(t)+d y(t-\tau)] \\
& \geq \limsup _{t \rightarrow \infty} y(t)+\liminf _{t \rightarrow \infty}(d y(t-\tau)) \\
& =(1+d) \limsup _{t \rightarrow \infty} y(t)
\end{aligned}
$$

yields that $\lim _{t \rightarrow \infty} y(t)=0$. Next, we consider the case $w(t)>0$ for $t \geq t_{2}$. Let $\lim _{t \rightarrow \infty} w(t)=a, a \in[o, \infty)$. We claim that $y(t)$ is bounded. If not, there exists an increasing sequence $\left\{\eta_{n}\right\}_{n=1}^{\infty}$ such that $\eta_{n} \rightarrow \infty$ and $y\left(\eta_{n}\right) \rightarrow \infty$ as $n \rightarrow \infty$ and $y\left(\eta_{n}\right)=\max \left\{y(t): t_{2} \leq t \leq \eta_{n}\right\}$. Hence

$$
\begin{aligned}
w\left(\eta_{n}\right) & \geq y\left(\eta_{n}\right)+d y\left(\eta_{n}-\tau\right)-K\left(\eta_{n}\right) \\
& \geq(1+d) y\left(\eta_{n}\right)-K\left(\eta_{n}\right)
\end{aligned}
$$

implies that $w\left(\eta_{n}\right) \rightarrow \infty$ as $n \rightarrow \infty$, a contradiction to the fact that $\lim _{t \rightarrow \infty} w(t)$ exists. So our claim holds and accordingly, $\lim _{t \rightarrow \infty}\left(r(t) w^{\prime}(t)\right)$ exists. Using Lemma $1(i i)$ with $u(t)$ replaced by $w(t)$ we get $w(t) \geq-r(t) w^{\prime}(t) R(t)$ and hence

$$
y(t) \geq w(t) \geq-r(t) w^{\prime}(t) R(t), \quad t \geq t_{3}>t_{2}
$$

Consquently, (4) becomes

$$
f_{1}(t) G_{1}\left(R\left(t-\sigma_{1}\right)\right) G_{1}\left(-r\left(t-\sigma_{1}\right) w^{\prime}\left(t-\sigma_{1}\right)\right) \leq-\left(r(t) w^{\prime}(t)\right)^{\prime}
$$

for $t \geq t_{4}>t_{3}+\sigma_{1}$. Due to $r(t) w^{\prime}(t)$ is nonincreasing, we can find a constant $b>0$ and $t_{5}>t_{4}+\sigma_{1}$ such that $r\left(t-\sigma_{1}\right) w^{\prime}\left(t-\sigma_{1}\right) \leq-b$ for $t \geq t_{5}$. Integrating the last inequality from t_{5} to ∞, we get

$$
\int_{t_{5}}^{\infty} f_{1}(t) G_{1}\left(R\left(t-\sigma_{1}\right)\right) d t<\infty
$$

a contradiction to $\left(H_{8}\right)$.
Assume that $w^{\prime}(t)>0$ for $t \geq t_{1}$. So we have two cases, $w(t)>0$ and $w(t)<0$. If the former holds then by Lemma $1(i)$

$$
y(t) \geq w(t) \geq C R(t), \quad t \geq t_{2}>t_{1}
$$

and hence Eq.(4) can be written as

$$
f_{1}(t) G_{1}\left(C R\left(t-\sigma_{1}\right)\right) \leq-\left(r(t) w^{\prime}(t)\right)^{\prime}
$$

for $t \geq t_{3}>t_{2}+\sigma_{1}$. Integrating the above inequality from t_{3} to ∞, we get

$$
\int_{t_{3}}^{\infty} f_{1}(t) G_{1}\left(R\left(t-\sigma_{1}\right)\right) d t<\infty
$$

a contradiction to $\left(H_{8}\right)$. Suppose the latter holds. Then $\lim _{t \rightarrow \infty} w(t)$ exists and $0 \neq \lim _{t \rightarrow \infty} w(t)=\lim _{t \rightarrow \infty} z(t)$ implies that $z(t)<0$ for $t \geq t_{2}>t_{1}$. Accordingly, $y(t)$ is bounded on $\left[t_{3}, \infty\right), t_{3}>t_{2}+\rho$. Using the same type of reasoning as above, we obtain $\lim _{t \rightarrow \infty} y(t)=0$. If $0=\lim _{t \rightarrow \infty} w(t)=\lim _{t \rightarrow \infty} z(t)$, then we claim that $y(t)$ is bounded. Otherwise there is a contradiction that $w(t)>0$ as $n \rightarrow \infty$. Proceeding as above we obtain $\lim _{t \rightarrow \infty} y(t)=0$.

The case $y(t)<0$ for $t \geq t_{0} \geq 0$ is similar. Hence the theorem is proved.
Theorem 3. Suppose that $-\infty<p_{1} \leq p(t) \leq p_{2}<-1$. If $\left(H_{0}\right),\left(H_{1}\right)$, $\left(H_{4}\right)$ and $\left(H_{8}\right)$ hold, then every bounded solution of (1) either oscillates or tends to zero as $t \rightarrow \infty$.

Proof. Let $y(t)$ be a bounded nonoscillatory solution of (1) such that $y(t)>0$ for $t \geq t_{0} \geq 0$. Then from (4), it follows that $w^{\prime}(t)>0$ or $w^{\prime}(t)<0$ for $t \geq t_{1}>t_{0}+\rho$, where $w(t)$ is given by (3). Consider $w^{\prime}(t)<0$ for $t \geq t_{1}$. Proceeding as in the proof of Theorem 2, we obtain $L=0$. Consequently,

$$
\begin{aligned}
0 & =\lim _{t \rightarrow \infty} z(t)=\liminf _{t \rightarrow \infty}[y(t)+p(t) y(t-\tau)] \\
& \leq \liminf _{t \rightarrow \infty}\left[y(t)+p_{2} y(t-\tau)\right] \\
& \leq \limsup _{t \rightarrow \infty} y(t)+\liminf _{t \rightarrow \infty}\left(p_{2} y(t-\tau)\right) \\
& \leq \limsup _{t \rightarrow \infty} y(t)+p_{2} \limsup _{t \rightarrow \infty} y(t-\tau) \\
& =\left(1+p_{2}\right) \limsup _{t \rightarrow \infty} y(t)
\end{aligned}
$$

implies that $\lim _{t \rightarrow \infty} y(t)=0$, since $\left(1+p_{2}\right)<0$. Rest of the proof can be followed from the proof of the Theorem 2 and therefore the proof of the theorem is complete.

Example 1. Consider

$$
\begin{gather*}
\left(e^{2 t}\left(y(t)+e^{-2 \pi} y(t-2 \pi)\right)^{\prime}\right)^{\prime}+4 e^{-4 \pi}\left(e^{2 t}+e^{-4 t}\right) y(t-4 \pi) \tag{8}\\
-4 e^{-2(t+\pi)} y(t-2 \pi)=0
\end{gather*}
$$

for $t \geq 0$, where $f_{1}(t)=4 e^{-4 \pi}\left(e^{2 t}+e^{-4 t}\right)$ and $f_{2}(t)=4 e^{2(t+\pi)}$. Clearly, $R(t)=\frac{1}{2} e^{-2 t}, Q(t)=4\left[e^{2(t-4 \pi)}+e^{-4(t-\pi)}\right]$ and $\left(H_{0}\right),\left(H_{7}\right)$ hold. Eq.(8) satisfies all the conditions of Theorem 1. Hence every solution of (8) either oscillates or tends to zero as $t \rightarrow \infty$. In particular, $y(t)=e^{-t} \sin t$ is such a solution of (8).

Theorem 4. Let $0 \leq d(t) \leq p<\infty$. If $\left(H_{0}\right),\left(H_{2}\right),\left(H_{3}\right),\left(H_{4}\right)$, and $\left(H_{9}\right)$

$$
\int_{0}^{\infty} Q(t) d t=\infty
$$

hold, then every solution of (1) either oscillates or tends to zero as $t \rightarrow \infty$.
Proof. Let $y(t)$ be a nonoscillatory solution of (1) such that $y(t)>0$ for $t \geq t_{0} \geq 0$. The case $y(t)<0$ for $t \geq t_{0} \geq 0$ can similarly be dealt with. Setting as in (3), we get (4) for $t \geq t_{1}>t_{0}+\rho$. Hence $r(t) w^{\prime}(t)$ is a monotonic function on $\left[t_{1}, \infty\right)$. Assume that $w^{\prime}(t)<0$ for $t \geq t_{1}$. Integrating the inequality $\left(r(t) w^{\prime}(t)\right)^{\prime} \leq 0$ from t to T, we get

$$
w(t) \leq w(T)+r(T) w^{\prime}(T) \int_{T}^{t} \frac{d s}{r(s)}
$$

and hence $w(t)<0$ due to $\left(H_{2}\right)$. Following to the proof of the Theorem 1, we obtain a contradiction when $w(t)<0$ for $t \geq t_{2}>t_{1}$. Accordingly, $w^{\prime}(t)>0$ for $t \geq t_{1}$. If $w(t)<0$, then $\lim _{t \rightarrow \infty} w(t)$ exists for which there is a contradiction when $0 \neq \lim _{t \rightarrow \infty} w(t)=\lim _{t \rightarrow \infty} z(t)$. Let $\lim _{t \rightarrow \infty} w(t)=0$. Using the same type of reasoning as in the proof of Theorem 1, we obtain $\lim _{t \rightarrow \infty} y(t)=0$. Suppose that $w(t)>0$ for $t \geq t_{1}$. Consequently, there exists a constant $\alpha>0$ such that $w(t) \geq \alpha$ for $t \geq t_{2}>t_{1}$, that is, $z(t) \geq w(t) \geq \alpha$ for $t \geq t_{2}$. Accordingly, (5) yields that

$$
\int_{t_{3}}^{\infty} Q(t) d t<\infty, \quad t_{3}>t_{2}+\sigma_{1}
$$

a contradiction to our assumption $\left(H_{9}\right)$. This completes the proof of the theorem.

Remark 4. In Theorem 4, G_{1} could be linear, sublinear or superlinear. However, if we restrict τ and σ_{1}, G_{1} could be sublinear only due to the following theorem.

Theorem 5. Let $0 \leq p(t) \leq d<\infty, r^{\prime}(t) \geq 0$ and $\tau \leq \sigma_{1}$. If $\left(H_{0}\right)$, $\left(H_{2}\right),\left(H_{3}\right),\left(H_{4}\right),\left(H_{6}\right)$ and

$$
\begin{equation*}
\int_{T+\sigma_{1}}^{\infty} Q(t) G_{1}\left(\beta\left(t-\sigma_{1}\right)\right) d t=\infty \tag{10}
\end{equation*}
$$

hold, there every solution of (1) either oscillates or tends to zero as $t \rightarrow \infty$.
Proof. Proceeding as in the proof of Theorem 4, we consider the case $w^{\prime}(t)>0$ and $w(t)>0$ only for $t \geq t_{1}$. We note that $r^{\prime}(t) \geq 0$ implies $w^{\prime \prime}(t) \leq 0$. From (5) it follows that

$$
\begin{aligned}
0 \geq(& \left.(t) w^{\prime}(t)\right)^{\prime}+G_{1}(d)\left(r(t-\tau) w^{\prime}(t-\tau)\right)^{\prime} \\
& +\lambda Q(t) G_{1}\left(\beta\left(t-\sigma_{1}\right)\right) G_{1}\left(r\left(t-\sigma_{1}\right) w^{\prime}\left(t-\sigma_{1}\right)\right)
\end{aligned}
$$

due to Lemma 2 for $t \geq t_{2}>t_{1}$. Hence

$$
\begin{aligned}
\lambda Q(t) G_{1}\left(\beta\left(t-\sigma_{1}\right)\right) \leq- & {\left[G_{1}\left(r\left(t-\sigma_{1}\right) w^{\prime}\left(t-\sigma_{1}\right)\right)\right]^{-1}\left(r(t) w^{\prime}(t)\right)^{\prime} } \\
- & G_{1}(d)\left[G_{1}\left(r\left(t-\sigma_{1}\right) w^{\prime}\left(t-\sigma_{1}\right)\right)\right]^{-1} \\
& \times\left(r(t-\tau) w^{\prime}(t-\tau)\right)^{\prime}
\end{aligned}
$$

Because $\lim _{t \rightarrow \infty}\left(r(t) w^{\prime}(t)\right)$ exists, then use of $\left(H_{6}\right)$ to the above inequality, we obtain

$$
\int_{T+\sigma_{1}}^{\infty} Q(t) G_{1}\left(\beta\left(t-\sigma_{1}\right)\right) d t<\infty
$$

a contradiction to our hypothesis $\left(H_{10}\right)$. Hence the theorem is proved.
Theorem 6. Let $-1<d \leq p(t) \leq 0$. If $\left(H_{0}\right),\left(H_{2}\right),\left(H_{4}\right)$ and (7) hold, then a solution of (1) either oscillates or tends to zero as $t \rightarrow \infty$.

Proof. Using the same type of reasoning as in the proof of the Theorem 4, we obtain $w(t)<0$ for $t \geq t_{2}>t_{1}$ when $w^{\prime}(t)<0$. Accordingly, $w(t)$ is monotonic function on $\left[t_{2}, \infty\right)$ and $0 \neq \lim _{t \rightarrow \infty} w(t)=\lim _{t \rightarrow \infty} z(t)$ exists. Following to Theorem 2 we get $\lim _{t \rightarrow \infty} y(t)=0$.

Let $w^{\prime}(t)>0$ for $t \geq t_{1}$. If $w(t)<0$ for $t \geq t_{2}>t_{1}$, then we can use same arguments as in Theorem 2, to obtain $\lim _{t \rightarrow \infty} y(t)=0$. Suppose that $w(t)>0$ for $t \geq t_{2}>t_{1}$. Then there exists a constant $\gamma>0$ and $t_{3}>t_{2}$ such that $w(t) \geq \gamma, t \geq t_{3}$. Consequently, $y(t) \geq w(t) \geq \gamma$ for $t \geq t_{3}$. Integrating (4)
from $t_{3}+\sigma_{1}$ to ∞, a contradiction is obtained to (7). Hence the theorem is proved.

Theorem 7. Let $-\infty<p_{1} \leq p(t) \leq p_{2}<-1$. If $\left(H_{0}\right),\left(H_{2}\right),\left(H_{4}\right)$ and (7) hold, then every bounded solution of (1) either oscillates or tends to zero as $t \rightarrow \infty$.

The proof of the theorem can be followed from the Theorem 6 and Theorem 3.

4. Oscillation properties of Eq.(2)

In the following, we obtain sufficient conditions for oscillation of solutions of forced equation (2). Let
$\left(H_{11}\right) \quad$ there exists $F \in C([0, \infty), R)$ such that $F(t)$ changes sign, with

$$
\begin{aligned}
& -\infty<\liminf _{t \rightarrow \infty}(F(t))<0<\limsup _{t \rightarrow \infty} F(t)<\infty, r F^{\prime} \in C([0, \infty), R) \\
& \text { and }\left(r F^{\prime}\right)^{\prime}=g
\end{aligned}
$$

$$
\begin{equation*}
F^{+}(t)=\max \{F(t), 0\} \text { and } F^{-}(t)=\max \{-F(t), 0\} \tag{12}
\end{equation*}
$$

Theorem 8. Let $0 \leq p(t) \leq d<\infty$. Assume that $\left(H_{0}\right)$, $\left(H_{3}\right),\left(H_{4}\right)$, $\left(H_{5}\right),\left(H_{11}\right)$ and $\left(H_{12}\right)$ hold. If

$$
\begin{equation*}
\int_{\sigma_{1}}^{\infty} Q(t) G_{1}\left(F^{+}\left(t-\sigma_{1}\right)\right) d t=\infty=\int_{\sigma_{1}}^{\infty} Q(t) G_{1}\left(F^{-}\left(t-\sigma_{1}\right)\right) d t \tag{13}
\end{equation*}
$$

hold, then all solutions of (2) oscillate.
Proof. Let $\mathrm{y}(\mathrm{t})$ be a nonoscillatory solution of (2). Hence there exists $t_{0} \geq 0$ such that $y(t)>0$ or $y(t)<0$ for $t \geq t_{0}$. Suppose that $y(t)>0$ for $t \geq t_{0}$. Setting $z(t)$ and $w(t)$ as in (3), let

$$
\begin{equation*}
U(t)=w(t)-F(t) \tag{9}
\end{equation*}
$$

Thus Eq.(2) becomes

$$
\begin{equation*}
\left(r(t) U^{\prime}(t)\right)^{\prime}=-f_{1}(t) G_{1}\left(y\left(t-\sigma_{1}\right)\right) \leq 0, \not \equiv 0 \tag{10}
\end{equation*}
$$

for $t \geq t_{1}>t_{0}+\rho$. Accordingly, $U^{\prime}(t)$ and $U(t)$ are monotonic functions. Assume that $U^{\prime}(t)<0$ for $t \geq t_{1}$. If $U(t)<0$ for $t \geq t_{2}>t_{1}$, then $z(t)<K(t)+F(t)$ and hence

$$
\begin{aligned}
0 & =\liminf _{t \rightarrow \infty} z(t) \leq \liminf _{t \rightarrow \infty}(K(t)+F(t)) \\
& \leq \limsup _{t \rightarrow \infty} K(t)+\liminf _{t \rightarrow \infty} F(t) \\
& =\lim _{t \rightarrow \infty} K(t)+\liminf _{t \rightarrow \infty} F(t)<0
\end{aligned}
$$

a contradiction to the fact that $z(t)>0$. Hence $U(t)>0$ for $t \geq t_{2}$, that is, $z(t)>K(t)+F(t) \geq K(t)+F^{+}(t)>F^{+}(t)$ for $t \geq t_{2}$. Using Eq.(2) and (9) we obtain

$$
\begin{aligned}
0= & \left(r(t) u^{\prime}(t)\right)^{\prime}+G_{1}(d)\left(r(t-\tau) u^{\prime}(t-\tau)\right)^{\prime}+f_{1}(t) G_{1}\left(y\left(t-\sigma_{1}\right)\right) \\
& +G_{1}(d) f_{1}(t-\tau) G_{1}\left(y\left(t-\sigma_{1}-\tau\right)\right)
\end{aligned}
$$

that is,

$$
\begin{equation*}
0 \geq\left(r(t) u^{\prime}(t)\right)^{\prime}+G_{1}(d)\left(r(t-\tau) u^{\prime}(t-\tau)\right)^{\prime}+\lambda Q(t) G_{1}\left(z\left(t-\sigma_{1}\right)\right) \tag{11}
\end{equation*}
$$

due to $\left(H_{3}\right)$ and $\left(H_{4}\right)$. Thus

$$
\left(r(t) U^{\prime}(t)\right)^{\prime}+G_{1}(d)\left(r(t-\tau) U^{\prime}(t-\tau)\right)^{\prime}+\lambda Q(t) G_{1}\left(F^{+}\left(t-\sigma_{1}\right)\right) \leq 0
$$

for $t \geq t_{3}>t_{2}$. We note that $\lim _{t \rightarrow \infty} u(t)$ exists. If $y(t)$ is unbounded, then

$$
U(t)=z(t)-K(t)-F(t)>y(t)-F(t)-K(t)
$$

implies that $U(t)$ is unbounded. Consequently, $y(t)$ is bounded, on $\left[t_{4}, \infty\right)$, $t_{4}>t_{3}$, that is, $\lim _{t \rightarrow \infty}\left(r(t) U^{\prime}(t)\right)$ exists. Integrating the last inequality following to (11) from t_{4} to ∞, we obtain

$$
\int_{t_{4}}^{\infty} Q(t) G_{1}\left(F^{+}\left(t-\sigma_{1}\right)\right) d t<\infty
$$

a contradiction to our hypothesis $\left(H_{13}\right)$.
Next, we suppose that $U^{\prime}(t)>0$ for $t \geq t_{1}$. Then $\lim _{t \rightarrow \infty}\left(r(t) U^{\prime}(t)\right)$ exists. Similar contradictions hold when we consider the cases $U(t)>0$ and $U(t)<0$ for $t \geq t_{2}>t_{1}$.

If $y(t)<0$ for $t \geq t_{0}$, then we set $x(t)=-y(t)$ to obtain $x(t)>0$ for $t \geq t_{0}$ and

$$
\begin{aligned}
\left(r(t)(x(t)+p(t) x(t-\tau))^{\prime}\right)^{\prime} & +f_{1}(t) G_{1}\left(x\left(t-\sigma_{1}\right)\right) \\
& -f_{2}(t) G_{2}\left(x\left(t-\sigma_{2}\right)\right)=\tilde{g}(t)
\end{aligned}
$$

where $\tilde{g}(t)=-g(t)$. If $\tilde{F}(t)=-F(t)$, then $\left(r(t) \tilde{F}_{\tilde{F}}^{\prime}(t)\right)^{\prime}=-g(t)=\tilde{g}(t)$ and $\tilde{F}(t)$ changes sign. Further $\tilde{F}^{+}(t)=F^{-}(t)$ and $\tilde{F}^{-}(t)=\tilde{F}^{+}(t)$. Proceeding as above we obtain a contradiction. Thus the proof of the theorem is complete.

Theorem 9. Let $-1<d \leq p(t) \leq 0$. Suppose that $\left(H_{0}\right),\left(H_{4}\right),\left(H_{11}\right)$, $\left(H_{12}\right)$ and
$\left(H_{14}\right) \quad \int_{\sigma_{1}}^{\infty} f_{1}(t) G_{1}\left(F^{-}\left(t+\tau-\sigma_{1}\right)\right) d t=\infty=\int_{\sigma_{1}}^{\infty} f_{1}(t) G_{1}\left(F^{+}\left(t-\sigma_{1}\right)\right) d t$
and
$\left(H_{15}\right) \quad \int_{\sigma_{1}}^{\infty} f_{1}(t) G_{1}\left(F^{-}\left(t-\sigma_{1}\right)\right) d t=\infty=\int_{\sigma_{1}}^{\infty} f_{1}(t) G_{1}\left(F^{+}\left(t+\tau-\sigma_{1}\right)\right) d t$
hold, then (2) is oscillatory.
Proof. Suppose for contrary that $y(t)$ is a nonoscillatory solution of (2) such that $y(t)>0$ for $t \geq t_{0}$. Setting as in (3) and (9), we get (10). Hence $U^{\prime}(t)$ is a monotonic function on $\left[t_{1}, \infty\right), t_{1}>t_{0}+\rho$. Let $U^{\prime}(t)<0$ for $t \geq t_{1}$. Accordingly, $U(t)$ is a monotonic function and $\lim _{t \rightarrow \infty} U(t)=\lim _{t \rightarrow \infty}(z(t)-F(t))$ implies that $z(t)-F(t)<0$ when $U(t)<0$, that is, $z(t)<F(t)$ for $t \geq t_{2}>$ t_{1}. If $z(t)>0$, then $F(t)>0$ which is absurd. Hence $z(t)<0$ for $t \geq t_{2}$. Ultimately, $z(t)<-F^{-}(t)$ for $t \geq t_{2}$ and

$$
d y(t-\tau) \leq p(t) y(t-\tau)<z(t)<-F^{-}(t)
$$

yields that $y\left(t-\sigma_{1}\right)>F^{-}\left(t+\tau-\sigma_{1}\right)$ for $t \geq t_{3}>t_{2}$. On the otherhand, $y(t)$ is bounded due to $z(t)<0$, that is, $y(t)<y(t-\tau)$ and hence $\lim _{t \rightarrow \infty}\left(r(t) U^{\prime}(t)\right)$ exists. Integrating (10) from t_{3} to ∞, we get

$$
\int_{t_{3}}^{\infty} f_{1}(t) G_{1}\left(F^{-}\left(t+\tau-\sigma_{1}\right)\right) d t<\infty
$$

a contradiction to our hypothesis. Next, we suppose that $U(t)>0$ for $t \geq t_{2}>t_{1}$. Hence $\lim _{t \rightarrow \infty} U(t)=\lim _{t \rightarrow \infty}(z(t)-F(t))$ implies that $z(t)-F(t)>0$ if $\lim _{t \rightarrow \infty} U(t) \neq 0$, that is, $z(t)>F(t)$ for $t \geq t_{2}$. Ultimately, $y(t)>F^{+}(t)$ for $t \geq t_{3}>t_{2}$. We claim that $y(t)$ is bounded. If not, there exists an increasing sequence $\left\{\eta_{n}\right\}_{n=1}^{\infty}$ such that $\eta_{n} \rightarrow \infty$ and $y\left(\eta_{n}\right) \rightarrow \infty$ as $n \rightarrow \infty$ and

$$
y\left(\eta_{n}\right)=\max \left\{y(t): t_{3} \leq t \leq \eta_{n}\right\} .
$$

Hence

$$
\begin{aligned}
U\left(\eta_{n}\right) & \geq y\left(\eta_{n}\right)+d y\left(\eta_{n}-\tau\right)-K\left(\eta_{n}\right)-F\left(\eta_{n}\right) \\
& \geq(1+d) y\left(\eta_{n}\right)-K\left(\eta_{n}\right)-F\left(\eta_{n}\right)
\end{aligned}
$$

implies that $U\left(\eta_{n}\right) \rightarrow \infty$ as $n \rightarrow \infty$, a contradiction to the fact that $\lim _{t \rightarrow \infty} U(t)$ exists. So our claim holds and $\lim _{t \rightarrow \infty}\left(r(t) U^{\prime}(t)\right)$ exists. Integrating (10) from t_{3} to ∞, we obtain

$$
\int_{t_{3}}^{\infty} f_{1}(t) G_{1}\left(F^{+}\left(t-\sigma_{1}\right)\right) d t<\infty
$$

a contradiction to the hypothesis $\left(H_{14}\right)$. If $\lim _{t \rightarrow \infty} U(t)=0$, then $z(t)-F(t)>0$ or $z(t)-F(t)<0$ for $t \geq t_{2}$. In either case we have a contradiction.

Assume that $U^{\prime}(t)>0$ for $t \geq t_{1}$. Then $\lim _{t \rightarrow \infty}\left(r(t) U^{\prime}(t)\right)$ exists. Proceeding in the lines of the above argument, we obtain similar contradictions for the cases $U(t)<0$ and $U(t)>0 . y(t)<0$ for $t \geq t_{0}$ is similar. Hence the theorem is proved.

Theorem 10. Let $-\infty<d \leq p(t) \leq-1$. If all the conditions of Theorem 9 hold, then every bounded solution of (2) is oscillatory.

Proof. The proof follows from the Theorem 9 and hence the details are omitted.

Theorem 11. Assume that $0 \leq p(t) \leq d<\infty$. If $\left(H_{0}\right),\left(H_{1}\right),\left(H_{3}\right)-$ $\left(H_{5}\right),\left(H_{7}\right),\left(H_{11}\right)$ and $\left(H_{12}\right)$ hold, then (2) is oscillatory.

Proof. Proceeding as in the proof of the Theorem $8, U(t)<0$ is not possible when $U^{\prime}(t)<0$ for $t \geq t_{1}$. Hence $U(t)>0$ for $t \geq t_{2}>t_{1}$. Using Lemma 1 (ii) with $u(t)$ is replaced by $U(t)$, we get $U(t) \geq-r(t) U^{\prime}(t) R(t)$ and hence

$$
\begin{aligned}
z(t) & \geq-r(t) U^{\prime}(t) R(t)+K(t)+F(t) \\
& \geq-r(t) U^{\prime}(t) R(t)+K(t)+F^{+}(t) \\
& >-r(t) U^{\prime}(t) R(t)
\end{aligned}
$$

for $t \geq t_{2}$. Further, $r(t) U^{\prime}(t)$ is non-increasing. So we can find a constant $c_{1}>0$ and $t_{3}>t_{2}$ such that $-r(t) U^{\prime}(t) \geq-c_{1}$ for $t \geq t_{3}$. Hence inequality (6) becomes

$$
\lambda Q(t) G_{1}\left(-c_{1}\right) G_{1}\left(R\left(t-\sigma_{1}\right)\right) \leq-\left(r(t) U^{\prime}(t)\right)^{\prime}-G_{1}(d)\left(r(t-\tau) U^{\prime}(t-\tau)\right)^{\prime}
$$

where $w(t)$ is replaced by $U(t)$ for $t \geq t_{4}>t_{3}+\sigma_{1}$. Since $\lim _{t \rightarrow \infty} U(t)$ exists, we claim that $y(t)$ is bounded. Otherwise, following to Theorem 8., $U(t)$
is unbounded. Consequently, $\lim _{t \rightarrow \infty}\left(r(t) U^{\prime}(t)\right)^{\prime}$ exists. Integrating the last inequality from t_{4} to ∞, we obtain

$$
\int_{t_{4}}^{\infty} Q(t) G_{1}\left(R\left(t-\sigma_{1}\right)\right) d t<\infty
$$

a contradiction to $\left(H_{7}\right)$.
Let $U^{\prime}(t)>0$ for $t \geq t_{1}$. The argument for the case $U(t)<0$ is same. Consider the case $U(t)>0$ for $t \geq t_{2}>t_{1}$. By Lemma $1(i)$, it follows that $U(t) \geq C R(t)$, that is,

$$
z(t) \geq C R(t)+K(t)+F^{+}(t)>C R(t)
$$

for $t \geq t_{2}$. Using the same type of reasoning as in the proof of the Theorem 1 , we get a contradiction to our hypothesis $\left(H_{7}\right)$. This completes the proof of the theorem.

Theorem 12. If $0 \leq p(t) \leq d<\infty$ and $\left(H_{0}\right)$, $\left(H_{2}\right),\left(H_{3}\right),\left(H_{4}\right),\left(H_{9}\right)$, $\left(H_{11}\right)$ and $\left(H_{12}\right)$ hold, then every solution of (2) oscillates.

Proof. Proceeding as in the proof of Theorem 8, we assume that $U^{\prime}(t)<$ 0 for $t \geq t_{1}$. Accordingly, $U(t)<0$ for $t \geq t_{2}>t_{1}$ due to $\left(H_{2}\right)$. Using the same type of reasoning as in the proof of Theorem $8, U(t)<0$ is a contradiction. Hence $U^{\prime}(t)>0$ for $t \geq t_{1}$. Ultimately, $U(t)>0, t \geq t_{2}>t_{1}$. Since $U(t)$ is nondecreasing, there exists a constant $\alpha>0$ and $t_{3}>t_{2}$ such that $U(t) \geq \alpha, t \geq t_{3}$. Therefore

$$
z(t) \geq \alpha+K(t)+F(t) \geq \alpha+K(t)+F^{+}(t)>\alpha
$$

for $t \geq t_{3}$. Using the last inequality and then integrating (11) from t_{4} to ∞, we get

$$
\int_{t_{4}}^{\infty} Q(t) d t<\infty, \quad t_{4}>t_{3}+\sigma_{1}
$$

a contradiction to our hypothesis $\left(H_{9}\right)$. This completes the proof of the theorem.

Theorem 13. Assume that $0 \leq p(t) \leq d<\infty, r^{\prime}(t) \geq 0$ and $\tau \leq \sigma_{1}$. If $\left(H_{2}\right),\left(H_{3}\right),\left(H_{4}\right),\left(H_{6}\right),\left(H_{10}\right),\left(H_{11}\right)$ and $\left(H_{12}\right)$ hold, then (2) is oscillatory.

The proof of the the theorem can be followed from the Theorems 5 and 12 and hence the details are omitted.

Theorem 14. Assume that $-1<d \leq p(t) \leq 0$. If $\left(H_{0}\right),\left(H_{1}\right),\left(H_{4}\right)$, $\left(H_{8}\right),\left(H_{11}\right)$ and $\left(H_{12}\right)$ hold, then (2) is oscillatory.

Proof. Proceeding as in the proof of the Theorem 9 and using the same type of reasoning, we consider the case $U^{\prime}(t)<0, U(t)<0$ and $z(t)<0$ for $t \geq t_{2}$. Accordingly, $y(t)<y(t-\tau)$, that is, $y(t)$ is bounded on $\left[t_{2}, \infty\right)$. Hence $U(t)$ is bounded and $\lim _{t \rightarrow \infty}\left(r(t) U^{\prime}(t)\right)$ exists. Using the fact that $d y(t-\tau)<z(t)<-F^{-}(t)$ and $F(t)$ is bounded, we may conclude that $\liminf _{t \rightarrow \infty} y(t) \neq 0$. On the otherhand when $\left(H_{9}\right)$ hold, $\liminf _{t \rightarrow \infty} y(t)=0$, a contradiction. Consequently, $U(t)>0$ for $t \geq t_{2}>t_{1}$. Using Lemma 1 (ii), we have $U(t) \geq-r(t) U^{\prime}(t) R(t)$ and hence for $t \geq t_{2}$,

$$
z(t) \geq-r(t) U^{\prime}(t) R(t)+K(t)+F^{+}(t)
$$

that is,

$$
y(t) \geq-r(t) U^{\prime}(t) R(t)+K(t)+F^{+}(t)>-r(t) U^{\prime}(t) R(t)
$$

Further, $r(t) U^{\prime}(t)$ is nonincreasing. So we can find a constant $C_{1}>0$ and $t_{3}>t_{2}$ such that $-r(t) U^{\prime}(t) \geq-C_{1}$ for $t \geq t_{3}$. Hence for $t \geq t_{3}, y(t)>$ $-C_{1} R(t)$. Integrating (10) from t_{4} to ∞, we get

$$
G_{1}\left(-C_{1}\right) \int_{t_{4}}^{\infty} f_{1}(t) G_{1}\left(R\left(t-\sigma_{1}\right)\right) d t<-\int_{t_{4}}^{\infty}\left(r(t) U^{\prime}(t)\right)^{\prime} d t
$$

$t_{4}>t_{3}+\sigma_{1}$. On the otherhand, $\lim _{t \rightarrow \infty} U(t)$ exists which implies that $y(t)$ is bounded. Otherwise, by Theorem $9, U\left(\eta_{n}\right) \rightarrow \infty$ as $n \rightarrow \infty$. Thus $\lim _{t \rightarrow \infty}\left(r(t) U^{\prime}(t)\right)$ exists and the last integral becomes

$$
\int_{t_{4}}^{\infty} f_{1}(t) G_{1}\left(R\left(t-\sigma_{1}\right)\right) d t<\infty
$$

a contradiction to $\left(H_{8}\right)$.
Let $U^{\prime}(t)>0$ for $t \geq t_{1}$. Then $\lim _{t \rightarrow \infty}\left(r(t) U^{\prime}(t)\right)$ exists. Similar contradictions can be obtained for $U(t)>0$ and $U(t)<0$ for $t \geq t_{2}>t_{1}$. The case $y(t)<0$ for $t \geq t_{0}$ is similar. Hence the proof of the theorem is complete.

Theorem 15. Let $-\infty<d \leq p(t) \leq-1$. If all the conditions of Theorem 14 are satisfied, then every bounded solution of (2) is oscillatory.

The proof follows from the Theorem 14.

Theorem 16. If $-1<d \leq p(t) \leq 0$ and $\left(H_{0}\right),\left(H_{2}\right),\left(H_{4}\right),\left(H_{11}\right)$, ($\left.H_{12}\right)$ and (7) hold, then (2) is oscillatory.

The proof of the theorem follows from the proof of the Theorems 14 and 12. Accordingly, the proof of the theorem is complete.

Theorem 17. Suppose that $-\infty<d \leq p(t) \leq-1$. Let all the conditions of Theorem 16 be hold. Then every bounded solution of (2) is oscillatory.

Remark 5. In Theorems 8-10, $\left(H_{1}\right)$ and $\left(H_{2}\right)$ are not required to show that Eq.(2) is oscillatory. This happened due to the analysis presented here. However, presence of $r(t)$ and to predict sufficient conditions with $r(t)$ is more interesting than the former ones.

Example 2. Consider

$$
\begin{equation*}
\left(e^{t}\left(y(t)-e^{-t} y(t-\pi)\right)^{\prime}\right)^{\prime}+f_{1}(t) y(t-2 \pi)-f_{2}(t) y(t-\pi)=g(t) \tag{12}
\end{equation*}
$$

for $t \geq 0$, where $R(t)=e^{-t}, f_{1}(t)=\left(e^{t}+e^{-t}+1\right), f_{2}(t)=e^{-t}$ and $g(t)=\left(1-e^{t}\right) \sin t$. Clearly $\left(H_{8}\right)$ hold. If we set

$$
F(t)=\frac{1}{2}\left(1+e^{-t}\right) \cos t+\frac{1}{2}\left(1-e^{-t}\right) \sin t
$$

then it is easy to verify that $\left(r(t) F^{\prime}(t)\right)^{\prime}=g(t)$ and $\left(H_{11}\right),\left(H_{12}\right)$ hold. Eq.(12) satisfies all the conditions of Theorem 14. Hence every solution of (12) oscillates. Indeed, $y(t)=$ cost is such an oscillatory solution of (12).

Example 3. Theorem 12 can be applied to

$$
\left(y(t)+e^{-t} y(t-\pi)\right)^{\prime \prime}+f_{1}(t) y(t-2 \pi)-f_{2}(t) y^{3}(t-4 \pi)=g(t)
$$

for $t \geq 0$, where $f_{1}(t)=\left(3 e^{-t}+1\right), f_{2}(t)=4 e^{-t}$ and $g(t)=2 e^{-t} \operatorname{cost}+$ $e^{-t} \sin 3 t$. Clearly, $\left(H_{0}\right),\left(H_{2}\right)$ and $\left(H_{9}\right)$ hold. If we set

$$
F(t)=e^{-t}\left(\frac{3}{50} \cos 3 t-\frac{4}{50} \sin 3 t-\sin t\right)
$$

then it is easy to verify that $F^{\prime \prime}(t)=g(t)$ and $\left(H_{11}\right),\left(H_{12}\right)$ hold. Indeed, $y(t)=\sin t$ is such an oscillatory solution of the above equation.

5. Existence of positive solutions

In this section, necessary conditions are obtained to show that Eq.(12) admits a positive bounded solution.

Theorem 18. Let $G_{i},=1,2$ be Lipschitzian on the intervals of the form $[a, b], 0<a<b<\infty$. Suppose that $g(t)$ satisfies $\left(H_{11}\right)$ and $\left(H_{12}\right)$. If

$$
\int_{0}^{\infty} A(t) f_{i}(t) d t<\infty, \quad i=1,2
$$

where $A(t)=\int_{T_{0}}^{t} \frac{d \theta}{r(\theta)}$, then Eq.(2) admits a positive bounded solution.
Proof. The proof of the theorem is divided accordingly with respect to different ranges of $p(t)$.

Let $0 \leq p(t) \leq b_{1}<1$. It is possible to find T_{0} large enough such that

$$
M_{1} \int_{T_{0}}^{\infty} A(t) f_{1}(t) d t<\frac{1-b_{1}}{10}, \quad M_{2} \int_{T_{0}}^{\infty} A(t) f_{2}(t) d t<\frac{1-b_{1}}{20}
$$

where $M_{1}=\max \left\{L_{1}, G_{1}(1)\right\}, M_{2}=\max \left\{L_{2}, G_{2}(1)\right\}$ and L_{1}, L_{2} are Lipschitz constants on $\left[\frac{1-b_{1}}{10}, 1\right]$. Let $F(t)$ be such that $-\frac{\left(1-b_{1}\right)}{20} \leq F(t) \leq \frac{1-b_{1}}{10}$ for $t \geq T_{0}$.

Let $B C\left(\left[T_{0}, \infty\right), R\right)$ be the Banach space of all bounded real valued continuous functions $x(t), t \geq T_{0}$ with supremum norm defined by

$$
\|x\|=\sup \left\{|x(t)|: t \geq T_{0}\right\}
$$

Set

$$
S=\left\{x \in X: \frac{1-b_{1}}{10} \leq x(t) \leq 1, \quad t \geq T_{0}\right\}
$$

For $y \in S$, define

$$
(T y)(t)= \begin{cases}T y\left(T_{0}+\rho\right), & T_{0} \leq t \leq T_{0}+\rho \\ -p(t) y(t-\tau)+\frac{1+4 b_{1}}{5}+F(t) \\ +A(t) \int_{t}^{\infty}\left[f_{1}(s) G_{1}\left(y\left(s-\sigma_{1}\right)\right)-F_{2}(s) G_{2}\left(y\left(s-\sigma_{2}\right)\right)\right] d s \\ +\int_{T_{0}}^{t} A(s)\left[f_{1}(s) G_{1}\left(y\left(s-\sigma_{1}\right)\right)-F_{2}(s) G_{2}\left(y\left(s-\sigma_{2}\right)\right)\right] d s \\ & t \geq T_{0}+\rho\end{cases}
$$

Clearly, $T y$ is continuous. For every $t \geq T_{0}$,

$$
T y(t) \leq \frac{1+4 b_{1}}{5}+\frac{1-b_{1}}{10}+A(t) \int_{t}^{\infty} f_{1}(s) G_{1}(1) d s+\int_{T_{0}}^{\infty} A(s) f_{1}(s) G_{1}(1) d s
$$

$$
\begin{aligned}
& \leq \frac{1+4 b_{1}}{5}+\frac{1-b_{1}}{10}+\int_{t}^{\infty} A(s) f_{1}(s) G_{1}(1) d s+\int_{T_{0}}^{\infty} A(s) f_{1}(s) G_{1}(1) d s \\
& \leq \frac{1+4 b_{1}}{5}+\frac{1-b_{1}}{10}+G_{1}(1) \int_{T_{0}}^{\infty} A(s) f_{1}(s) d s \\
& \leq \frac{1+3 b_{1}}{5}<1
\end{aligned}
$$

We note that $A(t)$ is a nondecreasing function. Again for every $t \geq T_{0}$,

$$
T y(t) \geq-b_{1}+\frac{1+4 b_{1}}{5}-\frac{1-b_{1}}{20}-\frac{1-b_{1}}{20}=\frac{1-b_{1}}{10}
$$

Thus $T: S \rightarrow S$. Further, for $x, y \in S$,

$$
\begin{aligned}
|T x(t)-T y(t)| \leq & b_{1}\|x-y\| \\
& +\left|A(t) \int_{t}^{\infty} f_{1}(s)\left[G_{1}\left(x\left(s-\sigma_{1}\right)\right)-G_{1}\left(y\left(s-\sigma_{1}\right)\right)\right] d s\right| \\
& +\left|\int_{T_{0}}^{\infty} A(s) f_{1}(s)\left[G_{1}\left(x\left(s-\sigma_{1}\right)\right)-G_{1}\left(y\left(s-\sigma_{1}\right)\right)\right] d s\right| \\
& +\left|A(t) \int_{t}^{\infty} f_{2}(s)\left[G_{2}\left(x\left(s-\sigma_{1}\right)\right)-G_{2}\left(y\left(s-\sigma_{2}\right)\right)\right] d s\right| \\
& +\left|\int_{T_{0}}^{\infty} A(s) f_{2}(s)\left[G_{2}\left(x\left(s-\sigma_{1}\right)\right)-G_{2}\left(y\left(s-\sigma_{1}\right)\right)\right] d s\right| \\
\leq & b_{1}\|x-y\|+L_{1}\|x-y\| \int_{t}^{\infty} A(s) f_{1}(s) d s \\
& +L_{1}\|x-y\| \int_{T_{0}}^{\infty} A(s) f_{1}(s) d s \\
& +L_{2}\|x-y\| \int_{t}^{\infty} A(s) f_{2}(s) d s+L_{2}\|x-y\| \int_{T_{0}}^{\infty} A(s) f_{2}(s) d s \\
\leq & b_{1}\|x-y\|
\end{aligned}
$$

$$
\begin{aligned}
& +\left[M_{1} \int_{T_{0}}^{\infty} A(s) f_{1}(s) d s+M_{2} \int_{T_{0}}^{\infty} A(s) f_{2}(s) d s\right]\|x-y\| \\
< & \frac{3+17 b_{1}}{20}\|x-y\|
\end{aligned}
$$

implies that $\|T x-T y\|<\frac{3+17 b_{1}}{20}\|x-y\|$. Thus T is a contraction. Consequently, T has a unique fixed point y in S. It is the required solution of (2).

In the other ranges of $p(t)$, the above procedure is same. Hence without details, the necessary informations are given below :
(ii) Let $-1<b_{1} \leq p(t) \leq 0$. Choose T_{0} sufficiently large such that for $t \geq T_{0}$,

$$
M_{1} \int_{T_{0}}^{\infty} A(t) f_{1}(t) d t<\frac{1+b_{1}}{10}, \quad M_{2} \int_{T_{0}}^{\infty} A(t) f_{2}(t) d t<\frac{1+b_{1}}{20}
$$

and $-\frac{\left(1+b_{1}\right)}{20} \leq F(t) \leq \frac{1+b_{1}}{10}$. We set

$$
S=\left\{x \in X: \frac{1+b_{1}}{10} \leq x(t) \leq 1, \quad t \geq T_{0}\right\}
$$

and
$(T y)(t)=\left\{\begin{array}{l}T y\left(T_{0}+\rho\right), \\ -p(t) y(t-\tau)+\frac{1+b_{1}}{5}+F(t) \\ +A(t) \int_{t}^{\infty}\left[f_{1}(s) G_{1}\left(y\left(s-\sigma_{1}\right)\right)-f_{2}(s) G_{2}\left(y\left(s-\sigma_{2}\right)\right)\right] d s \\ +\int_{T_{0}}^{t} A(s)\left[f_{1}(s) G_{1}\left(y\left(s-\sigma_{1}\right)\right)-f_{2}(s) G_{2}\left(y\left(s-\sigma_{2}\right)\right)\right] d s, \\ t \geq T_{0}+\rho .\end{array}\right.$
(iii) Let $-1<b_{1} \leq p(t) \leq b_{2}<1, b_{1}<0, b_{2}>0$ be such that $b_{2}<1+5 b_{1}$. Choose T_{0} sufficiently large such that

$$
M_{1} \int_{T_{0}}^{\infty} A(t) f_{1}(t) d t<\frac{b_{1}}{2}+\frac{1-b_{2}}{2}, \quad M_{2} \int_{T_{0}}^{\infty} A(t) f_{2}(t) d t<\frac{1-b_{2}}{20}
$$

and $-\frac{\left(1-b_{2}\right)}{20} \leq F(t) \leq \frac{b_{1}}{2}+\frac{1-b_{2}}{10}$ for $t \geq T_{0}$. Here, we set

$$
S=\left\{x \in X: \frac{1-b_{2}}{10} \leq x(t) \leq 1, \quad t \geq T_{0}\right\}
$$

and

$$
(T y)(t)=\left\{\begin{array}{l}
T y\left(T_{0}+\rho\right), \\
-p(t) y(t-\tau)+\frac{1+4 b_{2}}{5}+F(t) \quad T_{0} \leq t \leq T_{0}+\rho \\
+A(t) \int_{t}^{\infty}\left[f_{1}(s) G_{1}\left(y\left(s-\sigma_{1}\right)\right)-f_{2}(s) G_{2}\left(y\left(s-\sigma_{2}\right)\right)\right] d s \\
+\int_{T_{0}}^{t} A(s)\left[f_{1}(s) G_{1}\left(y\left(s-\sigma_{1}\right)\right)-f_{2}(s) G_{2}\left(y\left(s-\sigma_{2}\right)\right)\right] d s \\
\quad t \geq T_{0}+\rho
\end{array}\right.
$$

(iv) $\quad p(t) \equiv-1$. Let b_{1} be such that $0<b_{1}<1, b_{1} \neq \frac{1}{2}$. We can find T_{0} large enough such that

$$
M_{1} \int_{T_{0}}^{\infty} A(t) f_{1}(t) d t<\frac{1-2 b_{1}}{20}, \quad M_{2} \int_{T_{0}}^{\infty} A(t) f_{2}(t) d t<\frac{1-2 b_{1}}{40}
$$

and $-\frac{\left(1-2 b_{1}\right)}{40} \leq F(t) \leq \frac{1-2 b_{1}}{20}$, for $t \geq T_{0}$. We set

$$
S=\left\{x \in X: \frac{1-b_{1}}{20} \leq x(t) \leq b_{1}, \quad t \geq T_{0}\right\}
$$

and

$$
(T y)(t)=\left\{\begin{array}{l}
T y\left(T_{0}+\rho\right), \\
-y(t-\tau)+\frac{1-b_{1}}{10}+F(t) \\
+A(t) \int_{t}^{\infty}\left[f_{1}(s) G_{1}\left(y\left(s-\sigma_{1}\right)\right)-F_{2}(S) G_{2}\left(y\left(s-\sigma_{2}\right)\right)\right] d s \\
+\int_{T_{0}}^{t} A(s)\left[f_{1}(s) G_{1}\left(y\left(s-\sigma_{1}\right)\right)-F_{2}(s) G_{2}\left(y\left(s-\sigma_{2}\right)\right)\right] d s \\
\quad t \geq T_{0}+\rho
\end{array}\right.
$$

(v) $\quad p(t) \equiv 1$. Let $-1<b_{1}<0$ be such that $b_{1} \neq-\frac{1}{2}$. Replacing $-b_{1}$ in the place of b_{1} of the above settings of $(i v)$, we obtain the needed.
(vi) Let $-\infty<b_{1} \leq p(t) \leq b_{2}<-1$. It is possible to find T_{0}, large enough such that

$$
M_{1} \int_{T_{0}}^{\infty} A(t) f_{1}(t) d t<\frac{-b_{2}}{2\left(D-b_{2}\right)}, \quad M_{2} \int_{T_{0}}^{\infty} A(t) f_{2}(t) d t<\frac{-b_{2}}{2\left(D-b_{2}\right)}
$$

and $-\frac{1}{2\left(D-b_{2}\right)} \leq F(t) \leq \frac{1}{2\left(D-b_{2}\right)}$ for $t \geq T_{0}$, where $D>\max \left\{-b_{1}, b_{2}+\frac{b_{2}}{1+b_{2}}\right\}$.
We set

$$
S=\left\{x \in X: \frac{-b_{2}}{D-b_{2}} \leq x(t) \leq K, \quad t \geq T_{0}\right\}
$$

and
$(T y)(t)=\left\{\begin{array}{l}T y\left(T_{0}+\rho\right), \\ -\frac{y(t+\tau)}{p(t+\tau)}-\frac{D\left(2-b_{2}\right)}{p(t+\tau)\left(D-b_{2}\right)}+\frac{F(t+\tau)}{p(t+\tau)} \\ +\frac{A(t+\tau)}{p(t+\tau)} \int_{t+\tau}^{\infty}\left[f_{1}(s) G_{1}\left(y\left(s-\sigma_{1}\right)\right)-f_{2}(s) G_{2}\left(y\left(s-\sigma_{2}\right)\right)\right] d s \\ +\int_{T_{0}}^{t+\tau} A(s)\left[f_{1}(s) G_{1}\left(y\left(s-\sigma_{1}\right)\right)-f_{2}(s) G_{2}\left(y\left(s-\sigma_{2}\right)\right)\right] d s, \\ t \geq T_{0}+\rho\end{array}\right.$
where $K=\frac{2 D-b_{2}(D+1)}{\left(b_{2}-D\right)\left(1+b_{2}\right)}>0$.
(vii) Let $1<b_{1} \leq p(t) \leq b_{2}<\frac{1}{2} b_{1}^{2}$. It is possible to find T_{0}, large enough such that

$$
M_{1} \int_{T_{0}}^{\infty} A(t) f_{1}(t) d t<\frac{b_{1}-1}{8 b_{1}}+\frac{b_{1}-1}{16 b_{2}}, \quad M_{2} \int_{T_{0}}^{\infty} f_{2}(t) A(t) d t<\frac{b_{1}-1}{16 b_{2}}
$$

and $-\frac{b_{1}-1}{16 b_{1} b_{2}} \leq F(t) \leq \frac{b_{1}-1}{8 b_{1}^{2}}+\frac{b_{1}-1}{16 b_{1} b_{2}}$ for $t \geq T_{0}$. Set

$$
S=\left\{x \in X: \frac{b_{1}-1}{8 b_{1} b_{2}} \leq x(t) \leq 1, \quad t \geq T_{0}\right\}
$$

and
$(T y)(t)=\left\{\begin{array}{lc}T y\left(T_{0}+\rho\right), & T_{0} \leq t \leq T_{0}+\rho \\ -\frac{y(t+\tau)}{p(t+\tau)}+\frac{2 b_{1}^{2}+b_{1}-1}{4 b_{1} p(t+\tau)}+\frac{F(t+\tau)}{p(t+\tau)} & \\ +\frac{A(t+\tau)}{p(t+\tau)} \int_{t+\tau}^{\infty}\left[f_{1}(s) G_{1}\left(y\left(s-\sigma_{1}\right)\right)-f_{2}(s) G_{2}\left(y\left(s-\sigma_{2}\right)\right)\right] d s \\ +\int_{T_{0}}^{t+\tau} A(s)\left[f_{1}(s) G_{1}\left(y\left(s-\sigma_{1}\right)\right)-f_{2}(s) G_{2}\left(y\left(s-\sigma_{2}\right)\right)\right] d s, \\ & t \geq T_{0}+\rho .\end{array}\right.$
Hence the proof of the theorem is complete.

6. Summary

It is worth observation that both unforced and forced Eqs.(1) and (2) are studied under $\left(H_{1}\right)$ and $\left(H_{2}\right)$ keeping inview of the key assumptions $\left(H_{7}\right),\left(H_{8}\right)$ and $\left(H_{1} 0\right)$. The results concerning Eq.(1) are not completely oscillatory due to the analysis incorporated here. However, Eq.(2) provides complete oscillatory results. Of course influence of forcing term can be
considered. It seems that some extra conditions are required to see that Eq.(1) is oscillatory.

Acknowledgement. The author is thankful to the referee for his helpful remarks.

References

[1] Bainov D.D., Mishev D.P., Oscillation Theory for Neutral Differential Equation with Delay, Hilger, Bristol, 1991.
[2] Erbe L.H., Kong Q., Zhang B.G., Oscillation Theory for Functional Differential Equation, Dekker, New York, 1995.
[3] Gyori I., Ladas G., Oscillation Theory for Delay Differential Equations with Applications, Oxford Univ. Press, London, 1991.
[4] Kulenovic M.R.S., Hadziomerspahic S., Existence of nonoscillatory solution of second order linerar neutral delay equation, J. Math. Anal. Appl., 228(1998), 436-448.
[5] Shen J., Tang X., New nonoscillation criteria for delay differential equations, J. Math. Anal. Appl., 290(2004), 1-9.
[6] Tripathy A.K., Rao K.V.V.S., Oscillation properties of a class of nonlinear differential equation of neutral type, (communicated).
[7] Yu Y., Wang H., Nonoscillatory solutions of second order nonlinear neutral delay equations, J. Math. Anal. Appl., 311(2005), 445-456.

Arun Kumar Tripathy
Department of Mathematics
Kakatiya Institute of Technology and Science Warangal-506015, India
e-mail: arun_tripathy70@rediffmail.com

Received on 17.03.2009 and, in revised form, on 22.08.2009.

