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Abstract. The purpose of this paper is to extend the notion
of well-posedness of fixed point problem for a mapping to a hy-
brid pair of mappings. Also, we prove a general common fixed
point theorem for a pair of D-mappings for which the fixed point
problem is well posed.
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1. Introduction

Let (X, d) be a metric space and B(X) the set of all nonempty bounded
sets of X. As in [7] and [8], we define the functions δ(A,B) and D(A,B) by

δ(A,B) := sup{d(a, b) : a ∈ A, b ∈ B},

D(A,B) := inf{d(a, b) : a ∈ A, b ∈ B}.

If A consists of single point ”a”, we write δ(A,B) = δ(a,B).
If B consists of single point ”b”, we write δ(A,B) = δ(A, b).

It follows immediately from the definition of δ(A,B) that

δ(A,B) = δ(B,A), ∀A,B ∈ B(X),

and

δ(A,B) ≤ δ(A,C) + δ(C,B), ∀A,B,C ∈ B(X).

Throughout this paper, N will be the set of non negative integers.

Definition 1. A sequence {An} of nonempty subsets of X is said to
converge to a subset A of X if:

(i) each point a ∈ A is the limit of a convergent sequence {an}, where
an ∈ An, for all n ∈ N.
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(ii) For arbitrary ε > 0 there exists an integer m > 0 such that An ⊂ A(ε)
for all integer n ≥ m, where

A(ε) := {x ∈ X : ∃a ∈ A : d(x, a) < ε}.

The set A is said to be the limit of the sequence {An}.

Lemma 1 (Fisher [7]). If {An} and {Bn} are two sequences in B(X)
converging to the sets A and B respectively in B(X), then the sequence
{δ(An, Bn)} converges to δ(A,B).

Lemma 2 (Fisher and Sessa [8]). Let {An} be a sequence in B(X) and
y ∈ X such that limn→∞ δ(An, y) = 0. Then the sequence {An} converges
to {y} in B(X).

Let A and S be self-mappings of a metric space of a metric space (X, d).
Jungck ([9]) defined A and S to be compatible if limn→∞ d(ASxn, SAxn) =
0, whenever {xn} is a sequence in X such that

lim
n→∞

Axn = lim
n→∞

Sxn = t,

for some t ∈ X.
A point x ∈ X is a coincidence point of A and S if Ax = Sx. We denote

by C(A,S) the set of all coincidence points of A and S.
In [15], Pant defined A and S to be pointwise R-weakly commuting map-

pings, if for each x ∈ X, there exists R > 0 such that d(ASx, SAx) ≤ R,
d(Ax, Sx).

It is proved in [16] that pointwise R-weakly commuting is equivalent to
commutativity at coincidence points.

Definition 2 ([10]). The pair {A,S} is said to be weakly compatible if
ASu = SAu for all u ∈ C(A,S).

Definition 3 ([3]). A and S are said to be occasionally weakly compatible
mappings (owc) if ASu = SAu for some u ∈ C(A,S).

Remark 1. If A and S are weakly compatible and C(A,S) 6= ∅ then A
and S are occasionally weakly compatible (owc), but the the converse is not
true (see Example in [3]).

Some fixed point theorems for owc mappings are proved in [13] and other
papers.

Definition 4. If f : X → X and F : X → B(X), then
1) a point x ∈ X is said to be a coincidence point of f and f if fx ∈ Fx.

We denote by C(f, F ) the set of all coincidence points of f and F ,
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2) a point x ∈ X is said to be a strict coincidence point of f and F if
{fx} = Fx,

3) a point x ∈ X is a fixed point of F if x ∈ Fx,
4) a point x ∈ X is a strict fixed point of F if {x} = Fx.

Definition 5 ([11]). The mappings f : X → X and F : X → B(X) are
said to be δ-compatible if limn→∞ δ(Ffxn, fFxn) = 0, whenever {xn} is a
sequence in X such that fFxn ∈ B(X), fxn −→ t, and Fxn −→ {t} for
some t ∈ X.

Definition 6 ([12]). Let f : X → X and F : X → B(X) be mappings.
The hybrid pair {f, F} is said to be weakly compatible if for all x ∈ C(f, F ),
we have fF (x) = Ff(x).

If the pair {f, F} is δ-compatible, then it is weakly compatible, but the
converse is not true in general (see[12]).

Definition 7 ([1]). Let S and T be two single valued self mappings of
a metric sapce (X, d). We say that S and T satisfy property (E.A) if there
exists a sequence {xn} in X such that

lim
n→∞

Sxn = lim
n→∞

Txn = t,

for some t ∈ X.

Remark 2. It is clear that two self mappings S and T of a metric space
(X, d) will be noncompatible if there exists at least a sequence {xn} inX such
that limn→∞ Sxn = limn→∞ Txn = t for some t ∈ X, but limn→∞ d(STxn,
TSxn) is either non zero or does not exist. Therefore two noncompatible
mappings of a metric space (X, d) satisfy property (E.A).

Recently, Djoudi and Khemis ([6]) introduced a generalization of pair of
mappings satisfying property (E.A), named D-mappings.

Definition 8 ([6]). Two mappings f : X → X and F : X → B(X)
are said to be D-mappings if there exists a sequence {xn} in X such that
limn→∞ fxn = t and limn→∞ Fxn = {t} for some t ∈ X.

Obviously, two mappings which are not δ-compatible are D-mappings.

Definition 9 ([2]). The mappings f : X → X and F : X → B(X) are
said to be occasionally weakly compatible (owc) if there exists x ∈ C(f, F )
such that fFx = Ffx.

For a pair of D-mappings the following result is obtained in [4].
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Lemma 3. Let f : X → X be a self mapping of a metric space (X, d)
and F : X → B(X) be a set valued map. Assume that f and F satisfy the
conditions

(i) FX ⊂ fX,

(ii) the inequality

δ(Fx, Fy) < αmax{d(fx, fy), δ(fx, Fx), δ(fy, Fy)}
+ (1− α)[aD(fx, Fy) + bD(fy, Fx)],

for all x, y ∈ X, where 0 ≤ α < 1, a ≥ 0, b ≥ 0, a + b < 1, whenever the
right hand side of inequality (ii) is positive.

If f and F are weakly compatible D-mappings and fX or FX is closed,
then f and F have a unique common fixed point in X.

We obtain a similar lemma by Theorem 3.4 of [6] for mappings satisfying
the inequality

(iii) δ(Fx, Fy) < max{cd(fx, fy), cδ(fx, Fx), cδ(fy, Fy),

aD(fx, Fy) + bD(fy, Fx)},

for all x, y ∈ X, where 0 ≤ c < 1, a ≥ 0, b ≥ 0 and 0 < a+ b < 1, whenever
the right hand side of inequality (iii) is positive.

Definition 10 ([5]). Let (X, d) be a metric space and f : (X, d)→ (X, d)
be a mapping. The fixed point problem of f is said to be well posed if:

(i) f has a unique fixed point x in X,
(ii) for any sequence {xn} of points in X such that limn→∞ d(fxn, xn) = 0,

we have limn→∞ d(xn, x) = 0.

Recently, the well-posednes of the fixed point problem for certain types of
mappings have been investigated in [5], [14], [19], [20], [21] and other papers.

We extend Definition 10 for a pair of hybrid mappings.

Definition 11. Let (X, d) be a metric space. Let f : X → X be a self
mapping of X and let F : X → B(X) be a multifunction. The common fixed
point problem of f and F is said to be well-posed if:

(i) f and F have a unique common fixed point x in X which is a strict
fixed point of F ,

(ii) for any sequence {xn} of points in X such that

lim
n→∞

d(fxn, xn) = 0 and lim
n→∞

δ(xn, Fxn) = 0,

we have limn→∞ d(xn, x) = 0.
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In [17] and [18] the study of fixed points for mappings satisfying implicit
relations was introduced.

The purpose of this paper is to prove a general common fixed point
theorem for a hybrid pair of D-mappings (satisfying an implicit relation) for
which the fixed point problem is well-posed.

2. Implicit relations

Definition 12. Let F (t1, . . . , t6) : R6 → R be a mapping. We define the
following properties:

(Fm) : F is non-increasing in the variable t5.
(F1) : F (t, 0, 0, t, t, 0) > 0, for every t > 0.
(F2) : F (t, t, 0, 0, t, t) ≥ 0, for every t > 0.

Example 1. F (t1, . . . , t6) = t1−c max{t2, t3+t4
2 , t5+t6

2 }, where 0 < c ≤ 1.
(Fm) : is obvious.
(F1) : F (t, 0, 0, t, t, 0) = t(1− c

2) > 0, for every t > 0.
(F2) : F (t, t, 0, 0, t, t) = t(1− c) ≥ 0, for every t > 0.

Example 2. F (t1, . . . , t6) = t31 − at21t2 − bt1t3t4 − ct25t6 − dt5t26, where
a, b, c, d ≥ 0 and 0 < a+ c+ d ≤ 1.

(Fm) : is obvious.
(F1) : F (t, 0, 0, t, t, 0) = t3 > 0, for every t > 0.
(F2) : F (t, t, 0, 0, t, t) = t3(1− (a+ c+ d)) ≥ 0, for every t > 0.

Example 3. F (t1, . . . , t6) = t61 − c
t33t

3
4 + t1t2t

2
5t

2
6

1 + [t3 + t4]6
, where 0 < c ≤ 1.

(Fm) : is obvious.
(F1) : F (t, 0, 0, t, t, 0) = t6 > 0, for every t > 0.
(F2) : F (t, t, 0, 0, t, t) = t6(1− c) ≥ 0, for every t > 0.

Example 4. F (t1, . . . , t6) = t1 − αmax{t2, t3, t4} − (1 − α)(at5 + bt6),
where 0 ≤ α < 1, a, b ≥ 0 and 0 < a+ b < 1.

(Fm) : is obvious.
(F1) : F (t, 0, 0, t, t, 0) = (1− α)(1− a)t > 0, for every t > 0.
(F2) : F (t, t, 0, 0, t, t) = t(1− α)(1− (a+ b)) ≥ 0, for every t > 0.

Example 5. F (t1, . . . , t6) = t1 −max{ct2, ct3, ct4, at5 + bt6}, where 0 ≤
c < 1, a, b ≥ 0 and 0 < a+ b < 1.

(Fm) : is obvious.
(F1) : F (t, 0, 0, t, t, 0) = t(1−max{a, c}) > 0, for every t > 0.
(F2) : F (t, t, 0, 0, t, t) = t(1−max{c, a+ b}) ≥ 0, for every t > 0.

Definition 13. Let F (t1, . . . , t6) : R6 → R be a mapping. We define the
following property:
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(Fp) : There exists p ∈ (0, 1) such that for every u, v, w ≥ 0,

F (u, v, 0, w, u, v) ≤ 0 =⇒ u ≤ p max{v, w}.

Example 6. F (t1, . . . , t6) = t1−c max{t2, t3+t4
2 , t5+t6

2 }, where 0 < c < 1.
(Fp) : For all u, v, w ≥ 0, we have

F (u, v, 0, w, u, v) = u− cmax{v, w
2
,
u+ v

2
}.

Suppose that F (u, v, 0, w, u, v) ≤ 0, with u > 0 and u ≥ max{v, w}. Then
we have

max{v, w
2
,
u+ v

2
} ≤ max{u, u

2
,
u+ v

2
} = u.

Therefore we get u(1− c) ≤ 0, a contradiction. Hence, 0 < u ≤ max{v, w},
which implies that

u ≤ c max{v, w
2
,
u+ v

2
} ≤ c max{v, w}.

Hence u ≤ cmax{v, w}. This inequality is true if u = 0. We conclude that
(Fp) is satisfied with p := c ∈ (0, 1).

Example 7. F (t1, . . . , t6) = t31 − at21t2 − bt1t3t4 − ct25t6 − dt5t26, where
a, b, c, d ≥ 0 and 0 < a+ c+ d < 1.

(Fp) : For all u, v, w ≥ 0, we have

F (u, v, 0, w, u, v) = u3 − au2v − cu2v − duv2.

Suppose that F (u, v, 0, w, u, v) ≤ 0. If u > 0 then u2 ≤ auv + cuv + dv2. If
u ≥ v then u2 ≤ (a+ c+ d)u2 < u2, a contradiction. Hence u < v and then
we have u2 ≤ (a + c + d)v2, which implies u ≤ p v ≤ p max{v, w}, where
0 < p :=

√
a+ c+ d < 1. If u = 0 then evidently, u ≤ p max{v, w}. Thus

(Fp) is satisfied.

Example 8. F (t1, . . . , t6) = t61 − c
t33t

3
4 + t1t2t

2
5t

2
6

1 + [t3 + t4]6
, where 0 < c < 1.

(Fp) : For all u, v, w ≥ 0, we have

F (u, v, 0, w, u, v) = u6 − c u3 v3

1 + w6
.

Suppose that F (u, v, 0, w, u, v) ≤ 0, then u6 ≤ c u3 v3

1+w6 , which implies u6 ≤
c u3 v3. If u > 0, then u ≤ c

1
3 v ≤ c

1
3 max{v, w}. Hence we have u ≤

p max{v, w}, where 0 < p := c
1
3 < 1. If u = 0 then u ≤ p max{v, w}. Thus

the property (Fp) is satisfied.
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Example 9. F (t1, . . . , t6) = t1 − αmax{t2, t3, t4} − (1 − α)(at5 + bt6),
where 0 ≤ α < 1, a, b ≥ 0 and 0 < a+ b < 1.

(Fp) : For all u, v, w ≥ 0, F (u, v, 0, w, u, v) ≤ 0 implies u ≤ p max{v, w},
where 0 < p := α+ (1− α)(a+ b) < 1.

Example 10. F (t1, . . . , t6) = t1 − max{ct2, ct3, ct4, at5 + bt6}, where
0 < c < 1, a, b ≥ 0 and 0 < a+ b < 1.

(Fp) : For all u, v, w ≥ 0, F (u, v, 0, w, u, v) ≤ 0 implies u ≤ p max{v, w},
where 0 < p := max{c, (a+ b)} < 1.

3. Common fixed points

Theorem 1. Let (X, d) be a metric space. Let f : (X, d) → (X, d) and
F : (X, d) → B(X) be occasionally weakly compatible mappings. If f and
F have a unique point of strict coincidence z (i.e., {z} = {ft} = Ft, for
some t ∈ X). Then the point z is the unique common fixed point of f and
F which is a strict fixed point of F .

Proof. Since f and F are occasionally weakly compatible, there exists a
point x ∈ X such that {fx} = Fx implies fFx = Ffx. Then z := fx and
{fz} = Fz, hence fz is another point of strict coincidence for f and F . By
hypothesis, we have fz = z. Hence {z} = {fz} = Fz. Thus z is a common
fixed point for f and F which is a strict fixed point of F . Suppose v 6= z
another common fixed point for f and F which is a strict fixed point of F .
Hence {v} = {fv} = Fv. Therefore v is a point of strict coincidence for f
and F . By hypothesis, we have v = z. �

Theorem 2. Let f : (X, d) → (X, d) and F : (X, d) → B(X) be map-
pings such that

φ (δ(Fx, Fy), d(fx, fy), δ(fx, Fx), δ(fy, Fy),(1)

D(fx, Fy), D(fy, Fx)) < 0,

for all x, y ∈ X such that x 6= y, where φ satisfies property (F2). If u is a
point of strict coincidence of f and F , then u is the unique point of strict
coincidence of f and F .

Proof. Let {u} = {fx} = Fx a point of strict coincidence of f and F .
Suppose that {v} = {fy} = Fy is another point of strict coincidence of f
and F . Then we have u = fx and v = fy. Suppose that u 6= v. Therefore
x 6= y. By using inequality (1), we obtain

φ (d(fx, fy), d(fx, fy), 0, 0, d(fx, fy), d(fx, fy)) < 0,
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with d(fx, fy) = d(u, v) > 0, a contradiction of property (F2). Hence u = v
and u is an unique point of strict coincidence of f and F . �

Theorem 3. Let f : (X, d) → (X, d) and F : (X, d) → B(X) be map-
pings such that

1) f and F are D-mappings,
2) the inequality

φ (δ(Fx, Fy), d(fx, fy), δ(fx, Fx), δ(fy, Fy),(2)

D(fx, Fy), D(fy, Fx)) < 0,

holds for all x, y ∈ X such that x 6= y, where φ is a continuous function
which satisfies properties (Fm), (F1) and (F2),

3) F (X) ⊂ f(X).
If f(X) or F (X) is closed then f and F have a strict coincidence point.

Moreover, if f and F are occasionally weakly compatible, then f and F
have a unique common fixed point which is a strict fixed point of F .

Proof. Suppose that the pair f and F are D-mappings, then there is a
sequence {xn} in X such that limn→∞ fxn = t and limn→∞ Fxn = {t} for
some t ∈ X.

Suppose that F (X) or f(X) is closed. Then there exists u ∈ X such that
t = fu.

If the sequence {xn} is stationary then we have xn = x for n ≥ n0
for some integer n0. In this case we have fx = t and Fx = {t}. Hence
{t} = {fx} = Fx is a point of strict coincidence.

If the sequence {xn} is not stationary, then by considering subsequences,
we may suppose that xn 6= u for all integers n ∈ N. By inequality (3.1), for
all integer n ∈ N, we have

φ (δ(Fxn, Fu), d(fxn, fu), δ(fxn, Fxn), δ(fu, Fu),

D(fxn, Fu), D(fu, Fxn)) < 0.

Letting n tend to infinity and using the continuity of φ, we obtain

φ (δ(fu, Fu), 0, 0, δ(fu, Fu), D(fu, Fu), 0) ≤ 0.

Since D(fu, Fu) ≤ δ(fu, Fu) and φ is non-increasing in the fifth variable,
then we obtain

φ (δ(fu, Fu), 0, 0, δ(fu, Fu), δ(fu, Fu), 0) ≤ 0,

a contradiction of property (F1) if δ(fu, Fu) > 0. Hence δ(fu, Fu) = 0
which implies that {fu} = Fu. So u is a strict coincidence point of f
and F .
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In all cases, f and F have at least a strict coincidence point u ∈ X.
Moreover, if f and F are occasionally weakly compatible, then by Theo-

rem 2 {v} := {fu} = Fu is the unique point of strict coincidence of f and
F . By Theorem 1 v is the unique common fixed point of f and F which is
a strict fixed point for the multifunction F . �

Corollary 1. a) By using Theorem 3 and Example 4, we obtain a gen-
eralization for Lemma 3.
b) By Theorem 3 and Example 5, we obtain a similar generalization for

a result of [6].

4. Well-posedness of common fixed point problem

Theorem 4. Let f : (X, d) → (X, d) and F : (X, d) → B(X) be map-
pings such that

1) f and F are D-mappings,
2) the inequality

φ (δ(Fx, Fy), d(fx, fy), δ(fx, Fx), δ(fy, Fy),(3)

D(fx, Fy), D(fy, Fx)) < 0,

holds for all x, y ∈ X such that x 6= y, where φ is a continuous function
which satisfies properties (Fm), (F1), (F2) and (Fp),

3) F (X) ⊂ f(X).
If f(X) or F (X) is closed and f and F are occasionally weakly compatible,
then the common fixed point problem is well-posed.

Proof. By Theorem 3 the mappings f and F have a unique common
fixed point x ∈ X which is a strict fixed point of F . Let {xn} be a sequence
of points in X such that

lim
n→∞

d(fxn, xn) = 0 and lim
n→∞

δ(xn, Fxn) = 0.

Without loss of generality, we may suppose that x 6= xn for every non-negative
integer n. Then by inequality (3) we have

F (δ(Fx, Fxn), d(fx, fxn), δ(fx, Fx), δ(fxn, Fxn),

D(fx, Fxn), D(fxn, Fx))

= F (δ(x, Fxn), d(x, fxn), 0, δ(fxn, Fxn), D(x, Fxn), d(x, fxn)) < 0.

By property (Fm) we deduce that

F (δ(x, Fxn), d(x, fxn), 0, δ(fxn, Fxn), δ(x, Fxn), d(x, fxn)) < 0.
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By property (Fp) we have

δ(x, Fxn) ≤ p max{d(x, fxn), δ(fxn, Fxn)}
≤ p [d(x, fxn) + δ(fxn, Fxn)].

Therefore

d(x, xn) ≤ δ(x, Fxn) + δ(Fxn, xn)

≤ p [d(x, fxn) + δ(fxn, Fxn)] + δ(Fxn, xn)

≤ p [d(x, xn) + d(xn, fxn) + δ(Fxn, xn) + d(xn, fxn)]

+ δ(Fxn, xn),

which implies

d(x, xn) ≤ 2p

1− p
d(xn, fxn) +

p+ 1

1− p
δ(Fxn, xn) −→ 0 as n −→∞.

Hence limn→∞ d(x, xn) = 0. Consequenltly the common fixed point problem
of the mappings f and F is well-posed. �

Corollary 2. By using Theorem 4 and the examples 6–10, we obtain
new results.

Acknowledgement. The authors thank very much the anonymous ref-
eree for his (or her) helpful comments.
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