F A S C I C U L I M A T H E M A T I C I

Mohamed Akkouchi and Valeriu Popa

WELL-POSEDNESS OF FIXED POINT PROBLEM FOR A HYBRID PAIR OF MAPPINGS

Abstract

The purpose of this paper is to extend the notion of well-posedness of fixed point problem for a mapping to a hybrid pair of mappings. Also, we prove a general common fixed point theorem for a pair of D-mappings for which the fixed point problem is well posed.

KEY WORDS: well-posedness of fixed point problem, common fixed point, D-mappings, occasionally weakly compatible mappings, implicit relations.

AMS Mathematics Subject Classification: 54H25, 47H10.

1. Introduction

Let (X, d) be a metric space and $B(X)$ the set of all nonempty bounded sets of X. As in [7] and [8], we define the functions $\delta(A, B)$ and $D(A, B)$ by

$$
\begin{aligned}
\delta(A, B) & :=\sup \{d(a, b): a \in A, b \in B\}, \\
D(A, B) & :=\inf \{d(a, b): a \in A, b \in B\} .
\end{aligned}
$$

If A consists of single point " a ", we write $\delta(A, B)=\delta(a, B)$.
If B consists of single point " b ", we write $\delta(A, B)=\delta(A, b)$.
It follows immediately from the definition of $\delta(A, B)$ that

$$
\delta(A, B)=\delta(B, A), \quad \forall A, B \in B(X)
$$

and

$$
\delta(A, B) \leq \delta(A, C)+\delta(C, B), \quad \forall A, B, C \in B(X)
$$

Throughout this paper, \mathbb{N} will be the set of non negative integers.
Definition 1. A sequence $\left\{A_{n}\right\}$ of nonempty subsets of X is said to converge to a subset A of X if:
(i) each point $a \in A$ is the limit of a convergent sequence $\left\{a_{n}\right\}$, where $a_{n} \in A_{n}$, for all $n \in \mathbb{N}$.
(ii) For arbitrary $\epsilon>0$ there exists an integer $m>0$ such that $A_{n} \subset A(\epsilon)$ for all integer $n \geq m$, where

$$
A(\epsilon):=\{x \in X: \exists a \in A: d(x, a)<\epsilon\} .
$$

The set A is said to be the limit of the sequence $\left\{A_{n}\right\}$.
Lemma 1 (Fisher [7]). If $\left\{A_{n}\right\}$ and $\left\{B_{n}\right\}$ are two sequences in $B(X)$ converging to the sets A and B respectively in $B(X)$, then the sequence $\left\{\delta\left(A_{n}, B_{n}\right)\right\}$ converges to $\delta(A, B)$.

Lemma 2 (Fisher and Sessa [8]). Let $\left\{A_{n}\right\}$ be a sequence in $B(X)$ and $y \in X$ such that $\lim _{n \rightarrow \infty} \delta\left(A_{n}, y\right)=0$. Then the sequence $\left\{A_{n}\right\}$ converges to $\{y\}$ in $B(X)$.

Let A and S be self-mappings of a metric space of a metric space (X, d). Jungck ([9]) defined A and S to be compatible if $\lim _{n \rightarrow \infty} d\left(A S x_{n}, S A x_{n}\right)=$ 0 , whenever $\left\{x_{n}\right\}$ is a sequence in X such that

$$
\lim _{n \rightarrow \infty} A x_{n}=\lim _{n \rightarrow \infty} S x_{n}=t
$$

for some $t \in X$.
A point $x \in X$ is a coincidence point of A and S if $A x=S x$. We denote by $C(A, S)$ the set of all coincidence points of A and S.

In [15], Pant defined A and S to be pointwise R-weakly commuting mappings, if for each $x \in X$, there exists $R>0$ such that $d(A S x, S A x) \leq R$, $d(A x, S x)$.

It is proved in [16] that pointwise R-weakly commuting is equivalent to commutativity at coincidence points.

Definition 2 ([10]). The pair $\{A, S\}$ is said to be weakly compatible if $A S u=S A u$ for all $u \in C(A, S)$.

Definition 3 ([3]). A and S are said to be occasionally weakly compatible mappings (owc) if $A S u=S A u$ for some $u \in C(A, S)$.

Remark 1. If A and S are weakly compatible and $C(A, S) \neq \emptyset$ then A and S are occasionally weakly compatible (owc), but the the converse is not true (see Example in [3]).

Some fixed point theorems for owc mappings are proved in [13] and other papers.

Definition 4. If $f: X \rightarrow X$ and $F: X \rightarrow B(X)$, then

1) a point $x \in X$ is said to be a coincidence point of f and f if $f x \in F x$. We denote by $C(f, F)$ the set of all coincidence points of f and F,
2) a point $x \in X$ is said to be a strict coincidence point of f and F if $\{f x\}=F x$,
3) a point $x \in X$ is a fixed point of F if $x \in F x$,
4) a point $x \in X$ is a strict fixed point of F if $\{x\}=F x$.

Definition 5 ([11]). The mappings $f: X \rightarrow X$ and $F: X \rightarrow B(X)$ are said to be δ-compatible if $\lim _{n \rightarrow \infty} \delta\left(F f x_{n}, f F x_{n}\right)=0$, whenever $\left\{x_{n}\right\}$ is a sequence in X such that $f F x_{n} \in B(X), f x_{n} \longrightarrow t$, and $F x_{n} \longrightarrow\{t\}$ for some $t \in X$.

Definition 6 ([12]). Let $f: X \rightarrow X$ and $F: X \rightarrow B(X)$ be mappings. The hybrid pair $\{f, F\}$ is said to be weakly compatible if for all $x \in C(f, F)$, we have $f F(x)=F f(x)$.

If the pair $\{f, F\}$ is δ-compatible, then it is weakly compatible, but the converse is not true in general (see[12]).

Definition 7 ([1]). Let S and T be two single valued self mappings of a metric sapce (X, d). We say that S and T satisfy property (E.A) if there exists a sequence $\left\{x_{n}\right\}$ in X such that

$$
\lim _{n \rightarrow \infty} S x_{n}=\lim _{n \rightarrow \infty} T x_{n}=t
$$

for some $t \in X$.
Remark 2. It is clear that two self mappings S and T of a metric space (X, d) will be noncompatible if there exists at least a sequence $\left\{x_{n}\right\}$ in X such that $\lim _{n \rightarrow \infty} S x_{n}=\lim _{n \rightarrow \infty} T x_{n}=t$ for some $t \in X$, but $\lim _{n \rightarrow \infty} d\left(S T x_{n}\right.$, $T S x_{n}$) is either non zero or does not exist. Therefore two noncompatible mappings of a metric space (X, d) satisfy property (E.A).

Recently, Djoudi and Khemis ([6]) introduced a generalization of pair of mappings satisfying property (E.A), named D-mappings.

Definition 8 ([6]). Two mappings $f: X \rightarrow X$ and $F: X \rightarrow B(X)$ are said to be D-mappings if there exists a sequence $\left\{x_{n}\right\}$ in X such that $\lim _{n \rightarrow \infty} f x_{n}=t$ and $\lim _{n \rightarrow \infty} F x_{n}=\{t\}$ for some $t \in X$.

Obviously, two mappings which are not δ-compatible are D-mappings.
Definition 9 ([2]). The mappings $f: X \rightarrow X$ and $F: X \rightarrow B(X)$ are said to be occasionally weakly compatible (owc) if there exists $x \in C(f, F)$ such that $f F x=F f x$.

For a pair of D-mappings the following result is obtained in [4].

Lemma 3. Let $f: X \rightarrow X$ be a self mapping of a metric space (X, d) and $F: X \rightarrow B(X)$ be a set valued map. Assume that f and F satisfy the conditions
(i) $F X \subset f X$,
(ii) the inequality

$$
\begin{aligned}
\delta(F x, F y)< & \alpha \max \{d(f x, f y), \delta(f x, F x), \delta(f y, F y)\} \\
& +(1-\alpha)[a D(f x, F y)+b D(f y, F x)]
\end{aligned}
$$

for all $x, y \in X$, where $0 \leq \alpha<1, a \geq 0, b \geq 0, a+b<1$, whenever the right hand side of inequality (ii) is positive.

If f and F are weakly compatible D-mappings and $f X$ or $F X$ is closed, then f and F have a unique common fixed point in X.

We obtain a similar lemma by Theorem 3.4 of [6] for mappings satisfying the inequality

$$
\begin{align*}
\delta(F x, F y)<\max \{c d(f x, f y) & , c \delta(f x, F x), c \delta(f y, F y) \tag{iii}\\
& a D(f x, F y)+b D(f y, F x)\}
\end{align*}
$$

for all $x, y \in X$, where $0 \leq c<1, a \geq 0, b \geq 0$ and $0<a+b<1$, whenever the right hand side of inequality (i iii) is positive.

Definition 10 ([5]). Let (X, d) be a metric space and $f:(X, d) \rightarrow(X, d)$ be a mapping. The fixed point problem of f is said to be well posed if:
(i) f has a unique fixed point x in X,
(ii) for any sequence $\left\{x_{n}\right\}$ of points in X such that $\lim _{n \rightarrow \infty} d\left(f x_{n}, x_{n}\right)=0$, we have $\lim _{n \rightarrow \infty} d\left(x_{n}, x\right)=0$.

Recently, the well-posednes of the fixed point problem for certain types of mappings have been investigated in [5], [14], [19], [20], [21] and other papers.

We extend Definition 10 for a pair of hybrid mappings.
Definition 11. Let (X, d) be a metric space. Let $f: X \rightarrow X$ be a self mapping of X and let $F: X \rightarrow B(X)$ be a multifunction. The common fixed point problem of f and F is said to be well-posed if:
(i) f and F have a unique common fixed point x in X which is a strict fixed point of F,
(ii) for any sequence $\left\{x_{n}\right\}$ of points in X such that

$$
\lim _{n \rightarrow \infty} d\left(f x_{n}, x_{n}\right)=0 \quad \text { and } \quad \lim _{n \rightarrow \infty} \delta\left(x_{n}, F x_{n}\right)=0
$$

we have $\lim _{n \rightarrow \infty} d\left(x_{n}, x\right)=0$.

In [17] and [18] the study of fixed points for mappings satisfying implicit relations was introduced.

The purpose of this paper is to prove a general common fixed point theorem for a hybrid pair of D-mappings (satisfying an implicit relation) for which the fixed point problem is well-posed.

2. Implicit relations

Definition 12. Let $F\left(t_{1}, \ldots, t_{6}\right): \mathbb{R}^{6} \rightarrow \mathbb{R}$ be a mapping. We define the following properties:
$\left(F_{m}\right): F$ is non-increasing in the variable t_{5}.
$\left(F_{1}\right): F(t, 0,0, t, t, 0)>0$, for every $t>0$.
$\left(F_{2}\right): F(t, t, 0,0, t, t) \geq 0$, for every $t>0$.
Example 1. $F\left(t_{1}, \ldots, t_{6}\right)=t_{1}-c \max \left\{t_{2}, \frac{t_{3}+t_{4}}{2}, \frac{t_{5}+t_{6}}{2}\right\}$, where $0<c \leq 1$. $\left(F_{m}\right)$: is obvious.
$\left(F_{1}\right): F(t, 0,0, t, t, 0)=t\left(1-\frac{c}{2}\right)>0$, for every $t>0$.
$\left(F_{2}\right): F(t, t, 0,0, t, t)=t(1-c) \geq 0$, for every $t>0$.
Example 2. $F\left(t_{1}, \ldots, t_{6}\right)=t_{1}^{3}-a t_{1}^{2} t_{2}-b t_{1} t_{3} t_{4}-c t_{5}^{2} t_{6}-d t_{5} t_{6}^{2}$, where $a, b, c, d \geq 0$ and $0<a+c+d \leq 1$.
$\left(F_{m}\right)$: is obvious.
$\left(F_{1}\right): F(t, 0,0, t, t, 0)=t^{3}>0$, for every $t>0$.
$\left(F_{2}\right): F(t, t, 0,0, t, t)=t^{3}(1-(a+c+d)) \geq 0$, for every $t>0$.
Example 3. $F\left(t_{1}, \ldots, t_{6}\right)=t_{1}^{6}-c \frac{t_{3}^{3} t_{4}^{3}+t_{1} t_{2} t_{5}^{2} t_{6}^{2}}{1+\left[t_{3}+t_{4}\right]^{6}}$, where $0<c \leq 1$.
$\left(F_{m}\right)$: is obvious.
$\left(F_{1}\right): F(t, 0,0, t, t, 0)=t^{6}>0$, for every $t>0$.
$\left(F_{2}\right): F(t, t, 0,0, t, t)=t^{6}(1-c) \geq 0$, for every $t>0$.
Example 4. $F\left(t_{1}, \ldots, t_{6}\right)=t_{1}-\alpha \max \left\{t_{2}, t_{3}, t_{4}\right\}-(1-\alpha)\left(a t_{5}+b t_{6}\right)$, where $0 \leq \alpha<1, a, b \geq 0$ and $0<a+b<1$.
$\left(F_{m}\right)$: is obvious.
$\left(F_{1}\right): F(t, 0,0, t, t, 0)=(1-\alpha)(1-a) t>0$, for every $t>0$.
$\left(F_{2}\right): F(t, t, 0,0, t, t)=t(1-\alpha)(1-(a+b)) \geq 0$, for every $t>0$.
Example 5. $F\left(t_{1}, \ldots, t_{6}\right)=t_{1}-\max \left\{c t_{2}, c t_{3}, c t_{4}, a t_{5}+b t_{6}\right\}$, where $0 \leq$ $c<1, a, b \geq 0$ and $0<a+b<1$.
$\left(F_{m}\right)$: is obvious.
$\left(F_{1}\right): F(t, 0,0, t, t, 0)=t(1-\max \{a, c\})>0$, for every $t>0$.
$\left(F_{2}\right): F(t, t, 0,0, t, t)=t(1-\max \{c, a+b\}) \geq 0$, for every $t>0$.
Definition 13. Let $F\left(t_{1}, \ldots, t_{6}\right): \mathbb{R}^{6} \rightarrow \mathbb{R}$ be a mapping. We define the following property:
$\left(F_{p}\right):$ There exists $p \in(0,1)$ such that for every $u, v, w \geq 0$,

$$
F(u, v, 0, w, u, v) \leq 0 \quad \Longrightarrow \quad u \leq p \max \{v, w\}
$$

Example 6. $F\left(t_{1}, \ldots, t_{6}\right)=t_{1}-c \max \left\{t_{2}, \frac{t_{3}+t_{4}}{2}, \frac{t_{5}+t_{6}}{2}\right\}$, where $0<c<1$. $\left(F_{p}\right)$: For all $u, v, w \geq 0$, we have

$$
F(u, v, 0, w, u, v)=u-c \max \left\{v, \frac{w}{2}, \frac{u+v}{2}\right\}
$$

Suppose that $F(u, v, 0, w, u, v) \leq 0$, with $u>0$ and $u \geq \max \{v, w\}$. Then we have

$$
\max \left\{v, \frac{w}{2}, \frac{u+v}{2}\right\} \leq \max \left\{u, \frac{u}{2}, \frac{u+v}{2}\right\}=u
$$

Therefore we get $u(1-c) \leq 0$, a contradiction. Hence, $0<u \leq \max \{v, w\}$, which implies that

$$
u \leq c \max \left\{v, \frac{w}{2}, \frac{u+v}{2}\right\} \leq c \max \{v, w\}
$$

Hence $u \leq c \max \{v, w\}$. This inequality is true if $u=0$. We conclude that $\left(F_{p}\right)$ is satisfied with $p:=c \in(0,1)$.

Example 7. $F\left(t_{1}, \ldots, t_{6}\right)=t_{1}^{3}-a t_{1}^{2} t_{2}-b t_{1} t_{3} t_{4}-c t_{5}^{2} t_{6}-d t_{5} t_{6}^{2}$, where $a, b, c, d \geq 0$ and $0<a+c+d<1$.
$\left(F_{p}\right)$: For all $u, v, w \geq 0$, we have

$$
F(u, v, 0, w, u, v)=u^{3}-a u^{2} v-c u^{2} v-d u v^{2}
$$

Suppose that $F(u, v, 0, w, u, v) \leq 0$. If $u>0$ then $u^{2} \leq a u v+c u v+d v^{2}$. If $u \geq v$ then $u^{2} \leq(a+c+d) u^{2}<u^{2}$, a contradiction. Hence $u<v$ and then we have $u^{2} \leq(a+c+d) v^{2}$, which implies $u \leq p v \leq p \max \{v, w\}$, where $0<p:=\sqrt{a+c+d}<1$. If $u=0$ then evidently, $u \leq p \max \{v, w\}$. Thus $\left(F_{p}\right)$ is satisfied.

Example 8. $F\left(t_{1}, \ldots, t_{6}\right)=t_{1}^{6}-c \frac{t_{3}^{3} t_{4}^{3}+t_{1} t_{2} t_{5}^{2} t_{6}^{2}}{1+\left[t_{3}+t_{4}\right]^{6}}$, where $0<c<1$.
$\left(F_{p}\right):$ For all $u, v, w \geq 0$, we have

$$
F(u, v, 0, w, u, v)=u^{6}-c \frac{u^{3} v^{3}}{1+w^{6}}
$$

Suppose that $F(u, v, 0, w, u, v) \leq 0$, then $u^{6} \leq c \frac{u^{3} v^{3}}{1+w^{6}}$, which implies $u^{6} \leq$ $c u^{3} v^{3}$. If $u>0$, then $u \leq c^{\frac{1}{3}} v \leq c^{\frac{1}{3}} \max \{v, w\}$. Hence we have $u \leq$ $p \max \{v, w\}$, where $0<p:=c^{\frac{1}{3}}<1$. If $u=0$ then $u \leq p \max \{v, w\}$. Thus the property $\left(F_{p}\right)$ is satisfied.

Example 9. $F\left(t_{1}, \ldots, t_{6}\right)=t_{1}-\alpha \max \left\{t_{2}, t_{3}, t_{4}\right\}-(1-\alpha)\left(a t_{5}+b t_{6}\right)$, where $0 \leq \alpha<1, a, b \geq 0$ and $0<a+b<1$.
$\left(F_{p}\right)$: For all $u, v, w \geq 0, F(u, v, 0, w, u, v) \leq 0$ implies $u \leq p \max \{v, w\}$, where $0<p:=\alpha+(1-\alpha)(a+b)<1$.

Example 10. $F\left(t_{1}, \ldots, t_{6}\right)=t_{1}-\max \left\{c t_{2}, c t_{3}, c t_{4}, a t_{5}+b t_{6}\right\}$, where $0<c<1, a, b \geq 0$ and $0<a+b<1$.
$\left(F_{p}\right)$: For all $u, v, w \geq 0, F(u, v, 0, w, u, v) \leq 0$ implies $u \leq p \max \{v, w\}$, where $0<p:=\max \{c,(a+b)\}<1$.

3. Common fixed points

Theorem 1. Let (X, d) be a metric space. Let $f:(X, d) \rightarrow(X, d)$ and $F:(X, d) \rightarrow B(X)$ be occasionally weakly compatible mappings. If f and F have a unique point of strict coincidence z (i.e., $\{z\}=\{f t\}=F t$, for some $t \in X)$. Then the point z is the unique common fixed point of f and F which is a strict fixed point of F.

Proof. Since f and F are occasionally weakly compatible, there exists a point $x \in X$ such that $\{f x\}=F x$ implies $f F x=F f x$. Then $z:=f x$ and $\{f z\}=F z$, hence $f z$ is another point of strict coincidence for f and F. By hypothesis, we have $f z=z$. Hence $\{z\}=\{f z\}=F z$. Thus z is a common fixed point for f and F which is a strict fixed point of F. Suppose $v \neq z$ another common fixed point for f and F which is a strict fixed point of F. Hence $\{v\}=\{f v\}=F v$. Therefore v is a point of strict coincidence for f and F. By hypothesis, we have $v=z$.

Theorem 2. Let $f:(X, d) \rightarrow(X, d)$ and $F:(X, d) \rightarrow B(X)$ be mappings such that

$$
\begin{align*}
\phi(\delta(F x, F y), d(f x, f y), & \delta(f x, F x), \delta(f y, F y) \tag{1}\\
& D(f x, F y), D(f y, F x))<0
\end{align*}
$$

for all $x, y \in X$ such that $x \neq y$, where ϕ satisfies property $\left(F_{2}\right)$. If u is a point of strict coincidence of f and F, then u is the unique point of strict coincidence of f and F.

Proof. Let $\{u\}=\{f x\}=F x$ a point of strict coincidence of f and F. Suppose that $\{v\}=\{f y\}=F y$ is another point of strict coincidence of f and F. Then we have $u=f x$ and $v=f y$. Suppose that $u \neq v$. Therefore $x \neq y$. By using inequality (1), we obtain

$$
\phi(d(f x, f y), d(f x, f y), 0,0, d(f x, f y), d(f x, f y))<0
$$

with $d(f x, f y)=d(u, v)>0$, a contradiction of property $\left(F_{2}\right)$. Hence $u=v$ and u is an unique point of strict coincidence of f and F.

Theorem 3. Let $f:(X, d) \rightarrow(X, d)$ and $F:(X, d) \rightarrow B(X)$ be mappings such that

1) f and F are D-mappings,
2) the inequality

$$
\begin{align*}
\phi(\delta(F x, F y), d(f x, f y), & \delta(f x, F x), \delta(f y, F y) \tag{2}\\
& D(f x, F y), D(f y, F x))<0
\end{align*}
$$

holds for all $x, y \in X$ such that $x \neq y$, where ϕ is a continuous function which satisfies properties $\left(F_{m}\right),\left(F_{1}\right)$ and $\left(F_{2}\right)$,
3) $F(X) \subset f(X)$. If $f(X)$ or $F(X)$ is closed then f and F have a strict coincidence point.

Moreover, if f and F are occasionally weakly compatible, then f and F have a unique common fixed point which is a strict fixed point of F.

Proof. Suppose that the pair f and F are D-mappings, then there is a sequence $\left\{x_{n}\right\}$ in X such that $\lim _{n \rightarrow \infty} f x_{n}=t$ and $\lim _{n \rightarrow \infty} F x_{n}=\{t\}$ for some $t \in X$.

Suppose that $F(X)$ or $f(X)$ is closed. Then there exists $u \in X$ such that $t=f u$.

If the sequence $\left\{x_{n}\right\}$ is stationary then we have $x_{n}=x$ for $n \geq n_{0}$ for some integer n_{0}. In this case we have $f x=t$ and $F x=\{t\}$. Hence $\{t\}=\{f x\}=F x$ is a point of strict coincidence.

If the sequence $\left\{x_{n}\right\}$ is not stationary, then by considering subsequences, we may suppose that $x_{n} \neq u$ for all integers $n \in \mathbb{N}$. By inequality (3.1), for all integer $n \in \mathbb{N}$, we have

$$
\begin{aligned}
\phi\left(\delta\left(F x_{n}, F u\right), d\left(f x_{n}, f u\right)\right. & \delta\left(f x_{n}, F x_{n}\right), \delta(f u, F u), \\
& \left.D\left(f x_{n}, F u\right), D\left(f u, F x_{n}\right)\right)<0 .
\end{aligned}
$$

Letting n tend to infinity and using the continuity of ϕ, we obtain

$$
\phi(\delta(f u, F u), 0,0, \delta(f u, F u), D(f u, F u), 0) \leq 0
$$

Since $D(f u, F u) \leq \delta(f u, F u)$ and ϕ is non-increasing in the fifth variable, then we obtain

$$
\phi(\delta(f u, F u), 0,0, \delta(f u, F u), \delta(f u, F u), 0) \leq 0
$$

a contradiction of property $\left(F_{1}\right)$ if $\delta(f u, F u)>0$. Hence $\delta(f u, F u)=0$ which implies that $\{f u\}=F u$. So u is a strict coincidence point of f and F.

In all cases, f and F have at least a strict coincidence point $u \in X$.
Moreover, if f and F are occasionally weakly compatible, then by Theorem $2\{v\}:=\{f u\}=F u$ is the unique point of strict coincidence of f and F. By Theorem $1 v$ is the unique common fixed point of f and F which is a strict fixed point for the multifunction F.

Corollary 1. a) By using Theorem 3 and Example 4, we obtain a generalization for Lemma 3.
b) By Theorem 3 and Example 5, we obtain a similar generalization for a result of [6].

4. Well-posedness of common fixed point problem

Theorem 4. Let $f:(X, d) \rightarrow(X, d)$ and $F:(X, d) \rightarrow B(X)$ be mappings such that

1) f and F are D-mappings,
2) the inequality

$$
\begin{align*}
\phi(\delta(F x, F y), d(f x, f y), & \delta(f x, F x), \delta(f y, F y) \tag{3}\\
& D(f x, F y), D(f y, F x))<0
\end{align*}
$$

holds for all $x, y \in X$ such that $x \neq y$, where ϕ is a continuous function which satisfies properties $\left(F_{m}\right),\left(F_{1}\right),\left(F_{2}\right)$ and $\left(F_{p}\right)$,
3) $F(X) \subset f(X)$.

If $f(X)$ or $F(X)$ is closed and f and F are occasionally weakly compatible, then the common fixed point problem is well-posed.

Proof. By Theorem 3 the mappings f and F have a unique common fixed point $x \in X$ which is a strict fixed point of F. Let $\left\{x_{n}\right\}$ be a sequence of points in X such that

$$
\lim _{n \rightarrow \infty} d\left(f x_{n}, x_{n}\right)=0 \quad \text { and } \quad \lim _{n \rightarrow \infty} \delta\left(x_{n}, F x_{n}\right)=0
$$

Without loss of generality, we may suppose that $x \neq x_{n}$ for every non-negative integer n. Then by inequality (3) we have

$$
\begin{aligned}
& F\left(\delta\left(F x, F x_{n}\right), d\left(f x, f x_{n}\right), \delta(f x, F x), \delta\left(f x_{n}, F x_{n}\right)\right. \\
& \left.\quad D\left(f x, F x_{n}\right), D\left(f x_{n}, F x\right)\right) \\
& \quad=F\left(\delta\left(x, F x_{n}\right), d\left(x, f x_{n}\right), 0, \delta\left(f x_{n}, F x_{n}\right), D\left(x, F x_{n}\right), d\left(x, f x_{n}\right)\right)<0 .
\end{aligned}
$$

By property $\left(F_{m}\right)$ we deduce that

$$
F\left(\delta\left(x, F x_{n}\right), d\left(x, f x_{n}\right), 0, \delta\left(f x_{n}, F x_{n}\right), \delta\left(x, F x_{n}\right), d\left(x, f x_{n}\right)\right)<0
$$

By property $\left(F_{p}\right)$ we have

$$
\begin{aligned}
\delta\left(x, F x_{n}\right) & \leq p \max \left\{d\left(x, f x_{n}\right), \delta\left(f x_{n}, F x_{n}\right)\right\} \\
& \leq p\left[d\left(x, f x_{n}\right)+\delta\left(f x_{n}, F x_{n}\right)\right]
\end{aligned}
$$

Therefore

$$
\begin{aligned}
d\left(x, x_{n}\right) \leq & \delta\left(x, F x_{n}\right)+\delta\left(F x_{n}, x_{n}\right) \\
\leq & p\left[d\left(x, f x_{n}\right)+\delta\left(f x_{n}, F x_{n}\right)\right]+\delta\left(F x_{n}, x_{n}\right) \\
\leq & p\left[d\left(x, x_{n}\right)+d\left(x_{n}, f x_{n}\right)+\delta\left(F x_{n}, x_{n}\right)+d\left(x_{n}, f x_{n}\right)\right] \\
& +\delta\left(F x_{n}, x_{n}\right)
\end{aligned}
$$

which implies

$$
d\left(x, x_{n}\right) \leq \frac{2 p}{1-p} d\left(x_{n}, f x_{n}\right)+\frac{p+1}{1-p} \delta\left(F x_{n}, x_{n}\right) \longrightarrow 0 \quad \text { as } n \longrightarrow \infty
$$

Hence $\lim _{n \rightarrow \infty} d\left(x, x_{n}\right)=0$. Consequenltly the common fixed point problem of the mappings f and F is well-posed.

Corollary 2. By using Theorem 4 and the examples 6-10, we obtain new results.

Acknowledgement. The authors thank very much the anonymous referee for his (or her) helpful comments.

References

[1] Aamri M., El Moutawakil D., Some new common fixed point theorems under strict contractive conditions, Math. Anal. Appl., 270(2002), 181-188.
[2] Aliouche M., Popa V., Generalized fixed point theorems for occasionally weakly compatible hybrid mappings and applications, (submitted).
[3] Al-Thagafi M.A., Shahzad N., Generalized I-nonexpansive self maps and invariant approximations, Acta Math. Sinica, 24(5)(2008), 867-876.
[4] Bouhadjera H., Djoudi A., Common fixed point theorems for single valued and set valued maps whithout continuity, Anal. St. Univ. Ovidius, Constanta, 16(1)(2008), 49-58.
[5] De Blasi F.S., Myjak J., Sur la porosité des contractions sans point fixe, Comptes Rendus Academie Sciences Paris, 308(1989), 51-54.
[6] Djoudi A., Khemis R., Fixed point theorems for set and single valued maps whithout continuity, Demonstratio Math., 38(3)(2005), 739-751.
[7] Fisher B., Common fixed points of mappings and set valued mappings, Rostock Math. Kolloq, 18(1981), 69-77.
[8] Fisher B., Sessa S., Two common fixed point theorems for weakly commuting mappings, Period. Math. Hungarica, 20(3)(1989), 207-218.
[9] Jungck G., Compatible mappings and common fixed points, Internat. J. Math. Math. Sci., 9(1986), 771-779.
[10] Jungck G., Common fixed points for noncontinuous nonself mappings on nonnumeric spaces, Far East, J. Math. Sci., 4(2)(1996), 199-215.
[11] Jungck G., Rhoades B.E., Some fixed point theorems for set valued functions without continuity, Internat. J. Math. Math. Sci., 16(1993), 417-428.
[12] Jungck G., Rhoades B.E., Fixed point for set valued functions without continuity, Indian J. Pure Appl. Math., 29(3)(1998) 227-238.
[13] Jungck G., Rhoades B.E., Fixed point theorems for occasionally weakly compatible mappings, Fixed Point Theory, 7(2)(2006), 287-297.
[14] Lahiri B.K., Das P., Well-posednes and porosity of certain classes of operators, Demonstratio Math., 38(2005), 170-176.
[15] Pant R.P., Common fixed points of noncommuting mappings, J. Math. Anal. Appl., 188(1994), 436-440.
[16] Pant R.P., Common fixed points for four mappings, Bull. Calcutta Math. Soc., 9(1998), 281-286.
[17] Popa V., Fixed point theorems for implicit contractive mappings, Stud. Cerc. St. Ser. Mat. Univ. Bacău, 7(1997), 127-133.
[18] Popa V., Some fixed point theorems for compatible mappings satisfying an implicit relation, Demonstratio Math., 32(1999), 157-163.
[19] Popa V., Well-posedness of fixed point problem in orbitally complete metric spaces, Stud. Cerc. St. Ser. Mat. Univ. Bacău, 16(2006), 209-214.
[20] Popa V., Well-posedness of fixed point problem in compact metric spaces, Bull. Univ. Petrol-Gase, Ploiesti, Sect. Math. Inform. Fiz., 60(1)(2008), 1-4.
[21] Reich S., Zaslavski A.J., Well-posednes of fixed point problems, Far East J. Math. Sci., Special volume 2001, Part III, 391-401.

Mohamed Akkouchi
Université Cadi Ayyad
Faculté des Sciences-Semlalia
Département de Mathématiques
Av. Prince My Abdellah, BP. 2390
Marrakech, Maroc (Morocco)
e-mail: akkouchimo@yahoo.fr
Valeriu Popa
Universitatea Vasile Alecsandri Bacãu
Str. Spiru Haret nr. 8
600114 , Bacǎu, Romania
e-mail: vpopa@ub.ro

Received on 07.02.2010 and, in revised form, on 13.05.2010.

